

OWASP OWTF - Web Interface
Enhancements

MOHIT SHARMA
ms892075@gmail.com

TABLE OF CONTENTS

OVERVIEW

PRE-GSoC PROJECT INVOLVEMENT

PRE-GSoC IMPLEMENTATION RESEARCH

IMPLEMENTATION PLAN
SWITCHING UI TO REACT-REDUX

Breakdown of the individual pages into components
Writing async Actions creators and Reducers while making Api calls with
redux-saga (Async Redux)
Enhancing performance using Selectors and Reselect

IMPLEMENTING AN AUTOMATED TESTING ENVIRONMENT USING JEST
AND ENZYME

Setting up Jest & Enzyme
Writing Tests
Snapshot Testing with Jest

REFINING LAYOUTS AND ADDING NEW FEATURES/COMPONENTS
Dashboard
Targets Page
Report Page
Plugin Side Sheet
Workers Page

DELIVERABLES
PRIMARY GOALS
SECONDARY GOALS

PROJECT TIMELINE

PERSONAL INFO

AVAILABILITY

BACKGROUND INFORMATION

REFERENCES

OVERVIEW

The current web interface of OWTF is non-functional and some of its pages are

not yet implemented. This project is about implementing a full functional and

responsive webui for all the pages of the app written in ReactJs with Redux as its

state manager. The project also includes introducing new features in the app with

refinement of the current layouts ensuring excellent reliability and performance.

Implementing an automated testing environment with a good Unit/Integration test

coverage is also an important part of the project. Project also demands adding

Typescript to the app (if time permits) to eliminate a large no. of errors from the

code.

PRE-GSoC PROJECT INVOLVEMENT

I am constantly in touch with this project and quite familiar with it, below are my

contributions to this project:-

Pull requests:

● A few basic unit tests written in Jest and Enzyme are added and babel

upgraded to v7.0(required for babel-jest)

○ Initial tests added and babel upgraded to v7.0

https://github.com/owtf/owtf/pull/1017 (PULL)

● Implemented the Transaction Page using Evergreen components with minor

bug fixes.

○ Implemented Transaction Page in evergreen-ui

https://github.com/owtf/owtf/pull/1011 (PULL)

● Implemented the Settings Page using Evergreen components.

○ Settings Page ported to evergreen-ui

https://github.com/owtf/owtf/pull/1008 (PULL)

● Implemented the Help Page using Evergreen components.

○ Help page ported to evergreen-ui

https://github.com/owtf/owtf/pull/1017
https://github.com/owtf/owtf/pull/1011
https://github.com/owtf/owtf/pull/1008

https://github.com/owtf/owtf/pull/1006 (PULL)

● Porting Targets page to react using react-bootstrap, along with APIs

calling(for backend) using react-sagas.

○ Implements Reports Page in the React application

https://github.com/owtf/owtf/pull/999 (PULL)

● Porting Targets page to react using react-bootstrap, along with APIs

calling(for backened) using react-sagas.

○ Implements Targets Page in the React application

https://github.com/owtf/owtf/pull/990 (PULL)

● Porting Transaction page to react using react-bootstrap, along with APIs

calling(for backened) using react-sagas.

○ Implements Transactions Page in the React application

https://github.com/owtf/owtf/pull/989 (PULL)

● Ported settings page to react using react-bootstrap, along with

configurations load and patch using react-sagas.

○ Implements SettingsPage in the React application

https://github.com/owtf/owtf/pull/987 (PULL)

● Code for creating a new session has been implemented and backend

functionality for deleting a session has been added along with

documentation.

○ Adds session creation and deletion functionality

https://github.com/owtf/owtf/pull/980 (PULL)

● After applying filter for a work from the worklist and pressing delete button,

work having the selected type will get deleted instead of all the works.

○ Delete selected filter in worklist added

https://github.com/owtf/owtf/pull/930 (PULL)

Reported Issues:

● Improper orientation of page describing individual targets

https://github.com/owtf/owtf/issues/926

https://github.com/owtf/owtf/pull/1006
https://github.com/owtf/owtf/pull/999
https://github.com/owtf/owtf/pull/990
https://github.com/owtf/owtf/pull/989
https://github.com/owtf/owtf/pull/987
https://github.com/owtf/owtf/pull/980
https://github.com/owtf/owtf/pull/930
https://github.com/owtf/owtf/issues/926

PRE-GSoC IMPLEMENTATION RESEARCH

I’ve been looking at the older version of the OWTF (master branch) to get an idea

of how the UI is working and what’s the best way to implement the same

functionality in the new UI using React-Redux with excellent user experience. The

old webui was implemented in React along with some jinja templates with styling

done using vanilla-bootstrapping. The best way of getting a good understanding

of the project is to implement a small portion of the UI in react-redux. So I began

with porting some simple pages to React with UI components built using

Evergreen-ui. The final layouts of the ported pages are shown below:-

Help page

Settings Page

Transaction Page

IMPLEMENTATION PLAN

SWITCHING UI TO REACT-REDUX

1. Breakdown of the individual pages into components

The main part of the project is to divide each page of the webapp into

chunks of components based on the overall purpose of each component.

To write a more clean and maintainable code, it is beneficial to keep React

and Redux logic separately which further divide components into -

○ Presentational Components - Concerned with how things look. Their

only function is presentational markup. In a Redux-powered app, a

presentational component does not interact with the Redux store.

○ Container Components - Deals with Redux logic, dispatch “Actions”

and more. It passes the data to the presentational component via

props, handle events, deal with React on behalf of Presentational

component.

Ex :- The breakdown of the Settings Page into presentational and

container components is shown below:

Legend: Black dotted lines = “Presentational” components. Red

dotted lines = “Container” components.

2. Writing async Actions creators and Reducers while making Api calls
with redux-saga (Async Redux)

In order for our app to function, it needs to make Api calls and reflect the

outcome in the components. Since Redux out of the box supports only

synchronous actions, the standard way to do make asynchronous api calls

with Redux is to use Redux Middlewares (middleware is what comes in

between dispatching an action and updating the store) like redux-thunk,

redux-promise, redux-saga.

I’ll be using redux-saga to make api calls as it allows us to test our

asynchronous flows easily and also maintains purity of our actions as

Saga’s listen independently to actions unlike in the case of thunks.

Redux-saga is designed to make handling side effects in our redux app

nice and simple. It achieves this by leveraging an ES6 feature called

Generators, allowing us to write asynchronous code that looks

synchronous, and is very easy to test.

The workflow of async redux redux is as follows:

○ A component calls an action creator

○ The action creator then emits an action using a specific type

○ The watcher sagas all listen for any actions emitted and intercept an

action that it is listening for. It then calls the appropriate worker saga.

○ The worker saga makes an API call and dispatches an action to the

reducers with the type of action and the payload.

○ The reducer listens for any dispatched actions and if it matches, it

then uses the supplied data to update the state in the store.

Courtesy -Link

The App has generally three states:

STATE(before call) →STATE(during call) →STATE(answer received)

There will be three action creators for every API call.

Ex - LOAD_TARGETS(called during api call),

LOAD_TARGET_SUCCESS(called when the response is received

successfully),

LOAD_TARGET_ERROR (called when there is an error while receiving the

response).

A basic reducer for an api call will look something like this-

function targetsLoadReducer(state = {}, action) {
 switch (action.type) {
 case LOAD_TARGETS:
 // Return default state
 case LOAD_TARGETS_SUCCESS:
 // Return new state (with response received)
 case LOAD_TARGETS_ERROR:
 // Return new state (with error received)
 default:
 return state;
 }

}

https://i.stack.imgur.com/iCi6Y.png

3. Enhancing performance using Selectors and Reselect

Consider the following problem: Suppose the Targets Page of our webapp

has 3 types of inputs:

● URLs of the targets added

● No. of targets

● Severity of each target

The problem is that whenever the state of any of the inputs is modified (a

new target is added, a target URL is changed, or the selected state is

changed), everything will need to be recalculated and rerendered. This

would be very problematic if we had hundreds of targets. To avoid such

redundancy we use Reselect.

Reselect is a library for building memoized selectors. We define selectors as

the functions that retrieve snippets of the Redux state for our React

components. Selectors are beneficial because they encapsulate knowledge

of where to find that particular subset of data and are also reusable and

flexible. Using memoization, we can prevent unnecessary rerenders and

recalculations of derived data which in turn will speed up our application.

Reselect’s Syntax: Reselect offers up a function called createSelector()

that’s used to create memoized selectors. Below is an example code that

get load state from the targets data:-

import { createSelector } from 'reselect';

const selectTarget = (state) => state.get('targets');

const makeSelectFetch = createSelector(
 selectTarget,

 (targetState) => targetState.get('load')
);

createSelector is a function that takes two arguments:

1. Selector(s) — selectTarget in the above example. 

2. A transformer function that takes the values of the selectors from the

first arguments and uses them to select or derive relevant data

Using Reselect to retrieve state in a component: Reselect offers a

createStructuredSelector() function that is being passed to connect. It is

most helpful to use in components that are pulling in a number of selectors.

const mapStateToProps = createStructuredSelector({
 targets: makeSelectFetchTargets,
 fetchLoading: makeSelectFetchLoading,
 fetchError: makeSelectFetchError,
 });

IMPLEMENTING AN AUTOMATED TESTING ENVIRONMENT USING JEST
AND ENZYME

Jest: Jest is a testing library that can be used to test simple Javascript code or

React components. This is done through simple API that Jest provides to users.

Using these APIs it is possible to make assertions on how functions should

behave and then test our expected outcome against the test outcome. These are

some major highlights of Jest:

● It is very easy to set up and is usable right out of the box.

● Ability to run tests in parallel. For a huge app with lot of tests, this feature

prove to be very beneficial.

● Snapshot testing is the most powerful feature of Jest. It helps in reducing

the number of tests we have to write as it creates a snapshots of our code

and if anything changes in the component, It will throw an error when the

snapshot is generated the next time.

● Code coverage is available right out of the box. Jest can collect code

coverage information from entire projects, including untested files.

● In-built Manual mocking. Jest allows us to mock any object outside of our

test’s scope by using a custom resolver for imports.

Enzyme: It is another library commonly used with Jest. With Enzyme we can

create a mock DOM to test whether components are rendered correctly, and

whether they behave correctly when acted upon. Enzyme’s mock rendering can

mainly be done in two ways:-

1. Shallow rendering is used when doing unit testing of a component. This

allows for tests to focus only on that component and how it functions,

without caring about other components it might interact with.

2. Full DOM rendering involves rendering of component and all children

components. The allows for more in-depth testing to see how our

components on the DOM interact with each other.

Setting up Jest & Enzyme

The following packages are required to be added as devDependencies in the

package.json file:

$ npm install --save-dev jest
$ npm install --save-dev babel-jest
$ npm install --save-dev enzyme
$ npm install --save-dev enzyme-adapter-react-16
$ npm install --save-dev react-test-renderer

* jest — Unit Testing framework for ReactJs developed by Facebook.

* babel-jest — To support ES6 and ES7 for our tests.

* enzyme — JS testing utility developed by Airbnb to make it easier to assert

React Components.

* enzyme-adapter-react-16 —To provide compatibility with React 16.x.

* react-test-renderer — Used to grab snapshot of DOM tree rendered by React

DOM/ React Native components

The scripts in package.json also needs to be modified to run the tests:

...

"scripts": {
 ...

 "test": jest,
 "test:watch": "npm test -- --watch"
}

...

A src/setupTests.js file also needs to be present in order to use Enzyme, which

essentially configures Enzyme to run with React using the adaptor we just

installed.

import { configure } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';

configure({ adapter: new Adapter() });

Writing Tests

There are 3 naming conventions we can adopt in order for Jest to pick up our

tests:

● Any file with a .test.js suffix or a .spec.js suffix. (I am currently using .test.js

convention)

● Any .js file within __tests__ folders throughout your project.

I have written down initial unit tests for some of the very basic components (like

NotFoundPage & NavigationBar components) to get a gist of how unit testing

actually works. Shown below is a snippet from the NotFoundPage.test.js file that

tests the correct rendering of the page:-

describe('NotFoundPage Component', () => {

 it('Should render without errors', () => {
 const component = shallow(<NotFoundPage />);
 expect(component.find('p').length).toBe(1);

 expect(component.find('p').text()).toBe('Page Not Found');

 });

});

Let’s break down the above example to understand the syntax:

● describe(): An optional method to wrap a group of tests with describe()

allows us to write some text that explains the nature of the group of tests

conducted within it.

● it(): Similar in nature to describe(), it() allows us to write some text describing

what a test should successfully achieve.

● expect() & .toEqual(): Here we carry out the test itself. The expect() method

carries a result of a function, and toEqual(), in this case, carries a value that

expect() should match.

Snapshot Testing with Jest

Snapshot testing is a useful feature to make sure that our markup does not

unexpectedly change, and equally as true, makes sure that render() outputs what

we intended it to.

A snapshot file(.snap) is automatically generated in a __snapshots__ folder when

the toMatchSnapshot() method is called within our tests, often in conjunction with

expect(). The snapshot test for the NotFoundPage is shown below:

it('NotFoundPage should render without errors', () => {
 const component = shallow(<NotFoundPage />);
 const tree = toJson(component);

 expect(tree).toMatchSnapshot();

 });

The contents of a snapshot file mostly consists of markup that represents the

expected output of the NotFoundPage component.

Note: Explained above is just a basic idea on how to start writing unit tests for our

app. There is lot more when it come to testing our entire application like testing

the connected components, the action creators, the reducers, the sagas etc all of

which can not be summarized here. I have gone through a lot of react app testing

tutorials most the their links are provided in the References below.

REFINING LAYOUTS AND ADDING NEW FEATURES/COMPONENTS

For ideas related to layout, I have gone through various widely used web

application testing frameworks like Arachni, Probely etc, read about design

patterns that reduces user efforts. I have also looked at some other commercial

websites that provide wonder user experience like Netflix, Dropbox etc. My

primary aim would be to make the UI user friendly as much as possible without

introducing a bunch of unnecessary new features. I’ll be mainly using

Evergreen-ui (by segment) to style the individual pages along with

React-Bootstrap.

Here are the mockups of some important pages of the app along with the details

of their UI components:

1) Dashboard

Figure 1

The major components of the Dashboard will include:

● NavigationBar which will present on all the pages. The target link will

contain a select menu (evergreen-ui) which will take the user directly to the

recently finished target and allows us to add a new target.

● Breadcrumb (react-bootstrap) present on every page for easy navigation

between pages.

● Pie chart (Pie-react-chart.js) showing the analytics of the previous finished

target.

● Current Vulnerabilities bar chart (Bar-react-chart.js) showing the count of

all target severities.
● Worker Progress bar (doughnut-react-chart.js) for all workers along with a

table showing the current state of each worker.

● Floating live notification panel (Toaster-evergreen-ui) that notifies the

completion/start of target scan or worker.

2) Targets Page

Figure 2

Components on the target page will include:

● Add Target Panel (Collapse-react-bootstrap) which will take a list of target

urls and add it in the target list after validation. I wish to make this

component collapsible.

● Targets Table (Table-evergreen-ui) which contains list of all added targets

.All the headers in the tables will be search boxes so that filter the targets

according to severity & status.

● Each Target Row shows details and actions for all the targets. The details

include - Comments about the targets (key points to remember),

Status(Running or completed), Actions - Delete, Rescan, Edit, Delete from

session. These details will provide users sufficient information/functions

related to the target without navigating to the individual target page.

3) Report Page

 Figure 3

Features/components on the report page include:

● Pie chart (Pie-react-chart.js) representing plugin rankings in a chart form

help in measuring target severity (low, medium etc).

● Progress bar (Doughnut-react-chart.js) showing progress of target scan.

● Plugins section will contain:

○ Various Tab Navigation Panel (Tabs-evergreen-ui) for plugins

filtering.

○ Plugin list component which will show plugin information when

clicked in the form of a side sheet (evergreen-ui).
● There will be Sidebar which contains the following features like add

comment, edit, rescan, run plugins, change sessions, export report (in

different formats) for targets.

● Show Comments button showing all the comments for target using a

dialog(evergreen-ui).

4) Plugin Side Sheet

Figure 4

Plugin Side sheets (evergreen-ui) are going to be collapsible components which

will appear when a plugin is clicked in the plugins list. In the side sheet we have:

● Labels like plugin severity, type, group etc.

● Ranking Panel button-group to set the plugin ranking.

● Plugin details table (table-evergreen-ui)

● More information about plugin like test commands, output script etc.

5) Workers Page

Workers page will consists of:

● Panels/Cards (pane-evergreen-ui) for each worker containing information

like Id, Target, Plugin etc.

● Buttons (button-evergreen-ui) to pause or delete a worker.

Note: I have few more ideas in my mind which needs some more thinking and

discussion with the community.

DELIVERABLES

PRIMARY GOALS

● Implement a full functional and responsive React based web interface with

Redux as its state manager while following recommended design patterns.

● Enhancing the performance of the app by introducing reusability/flexibility

and removing redundant code (Ex- Using Reselect to retrieve data from the

store.

● Refining the page layouts in order to reduce user effort and make the tool

more user friendly (reducing poor click flow, unnecessary scrolling etc).

● Improving the styling by replacing the old vanilla-bootstrap with the latest

and more responsive Evergreen-UI with some components written in

react-bootstrap.

● Introducing new UI components/features in the app while removing the

outdated ones along with proper documentation of the code.

● Provide an automated and easy to build testing environment having good

test coverage with Unit and Integration tests written in Jest and Enzyme for

each component of the app.

● Implement automated linting using tools like ESlint and Prettier which helps

us catch mistakes by enforcing consistent standards and best practices and

also maintains the quality of our code.

SECONDARY GOALS

● Adding TypeScript in our app to reduce the no. of errors and improve

maintainability of our code.

● Performance tuning and benchmarking of the app components using Perf (a

profiling tool to enhance the performance of a react code).

● Write code implementing the Login page.

PROJECT TIMELINE

Span Task

May 6, 2019 - May 13, 2019 ● Bonding with the community.
● Start writing tests for the static

components.

May 13, 2019 - May 20, 2019 ● Clear ambiguities and get a better
understanding about the project by
discussing it with the community.

● Start working on the targets page, fix
bugs, complete the session
functionality.

May 20, 2019 - May 27, 2019 ● Redesigning the page layouts by going
through different react UI component
libraries.

May 27, 2019 - June 3,2019 ● Finish porting the Targets page to
Evergreen-ui.

● Work on refining and designing page
layouts by creating mockups and
getting feedback from the community.

June 3,2019 - June 10,2019 ● Add tests for the Targets and
Transaction pages.

June 10,2019 - June 17,2019 ● Refine the page layouts and code by
getting feedback from mentors.

● Side by Side adding documentation for
the written code.

June 17,2019 - June 24,2019 ● Make up week.
● Start implementing the reports page in

react.
● Submit work for phase-1 evaluation.

Mid evaluation: June 24 - 28, 2019

June 28,2019 - July 5,2019 ● Complete the remaining reports
page(components, reducers, actions,
sagas, selectors, documentation,
styling).

● Write test for reports page.

July 5,2019 - July 15,2019 ● Start working on Dashboard.
● Parallely writing tests and

documentation for Dashboard.

July 15,2019 - July 22,2019 ● Make-up week.
● Finish the remaining Dashboard Page.
● Submit work for phase-2 evaluation.

Mid evaluation: July 22 - 26, 2019

July 26,2019 - August 10,2019
● Implement the workers and worklist

page to react with styling using
evergreen-ui.

● Start writing tests & documentation for
these pages.

August 10,2019 - August 20,2019 ● Finish implementing workers and
worklist pages.

● Refine the UI as suggested by the
community.

July 20,2019 - August 26,2019 ● Review and catch-up weeks.
● Fix bugs and wrap up the work.
● Start working on the secondary goals.
● Work on more features if time permits.

Final evaluation: August 26 - May 2, 2019

Note: The time given to a specific part of the project is flexible and can be easily
scaled up/down as required.

PERSONAL INFO

Name - Mohit Sharma

College/University - International Institute of Information Technology, Hyderabad,

India

Degree Program - B.Tech in CSE and M.S in Computational Natural Sciences

Email - ms892075@gmail.com

http://iiit.ac.in/
http://iiit.ac.in/
mailto:ms892075@gmail.com

Github Profile Link - https://github.com/sharmamohit123

AVAILABILITY

I will work 5 - 6 hours on weekdays and at least 7-8 hours on weekends (Saturday

and Sunday). So I will be able to devote at least 42 hours per week for the project

(5.5 * 5 + 7.5 * 2 = 42.5 hours).

BACKGROUND INFORMATION

I started coding since my 11th standard out of interest, I enjoy developing

something that can be of direct use to us. My skills got their required polishing

after coming to college. I have been developing various web-apps.

I have also done a project in my second year under a startup FitAi, where my task

is to develop an android application which works as an online fitness platform. I

have also created some webapps using languages like php, ruby on rails. Some of

these applications care of various security aspects such as CSRF , SQL Injection

and XSS. I have used C++ in my Computer Graphics course to make games using

OpenGL3.

I open-source most of my assignments and course projects which can be found on

my github profile. The following are some of the relevant courses I have

completed:

● Computer Programming

● Data Structures

● Algorithms

● Database Systems

● Structured Systems Analysis and Design

● IT workshop

● Statistical Methods in AI

● Computer Graphics

● Operating Systems

● Principles of Information security

https://github.com/sharmamohit123

REFERENCES

OWASP OWTF - https://www.owasp.org/index.php/OWASP_OWTF
OWASP OWTF repository: https://github.com/owtf/owtf
Compatibility of py2 and 3: https://docs.python.org/3.4/howto/pyporting.html
PEP-8: http://legacy.python.org/dev/peps/pep-0008/
Arachni: http://www.arachni-scanner.com/
Probely web application vulnerability scanner: https://probely.com/
Mockup projects:

● https://app.moqups.com/ms892075@gmail.com/TtMh5BMCJ6/view/page/a
bac47c60

●
Webapps in react and information about react-redux framework:

● https://medium.com/@krithix/multi-page-website-with-react-in-2017-f6f2af32
6526

● https://medium.com/@rajaraodv/step-by-step-guide-to-building-react-redux-
apps-using-mocks-48ca0f47f9a

● http://www.thegreatcodeadventure.com/react-redux-tutorial-part-iii-async-re
dux/

● https://www.sourcetoad.com/app-development/the-benefits-of-using-react/
● https://www.valentinog.com/blog/react-redux-tutorial-beginners/#React_Re

dux_tutorial_what_problem_does_Redux_solve
●

Best Practices with React-Redux Application:
● https://medium.com/@alexmngn/how-to-better-organize-your-react-applicati

ons-2fd3ea1920f1
● https://dzone.com/articles/best-practices-with-react-and-redux-web-applicati

o
Redux-Saga:

● https://redux-saga.js.org/docs/api/
● https://medium.com/@lavitr01051977/make-your-first-call-to-api-using-redux-

saga-15aa995df5b6
Reselect:

● https://medium.com/@pearlmcphee/selectors-react-redux-reselect-9ab9846
88dd4

● https://rangle.io/blog/react-and-redux-performance-with-reselect/
Testing with jest and Enzyme:

● https://hackernoon.com/implementing-basic-component-tests-using-jest-an
d-enzyme-d1d8788d627a

https://www.owasp.org/index.php/OWASP_OWTF
https://github.com/owtf/owtf
https://docs.python.org/3.4/howto/pyporting.html
http://legacy.python.org/dev/peps/pep-0008/
http://www.arachni-scanner.com/
https://probely.com/
https://app.moqups.com/ms892075@gmail.com/TtMh5BMCJ6/view/page/abac47c60
https://app.moqups.com/ms892075@gmail.com/TtMh5BMCJ6/view/page/abac47c60
https://medium.com/@krithix/multi-page-website-with-react-in-2017-f6f2af326526
https://medium.com/@krithix/multi-page-website-with-react-in-2017-f6f2af326526
https://medium.com/@rajaraodv/step-by-step-guide-to-building-react-redux-apps-using-mocks-48ca0f47f9a
https://medium.com/@rajaraodv/step-by-step-guide-to-building-react-redux-apps-using-mocks-48ca0f47f9a
http://www.thegreatcodeadventure.com/react-redux-tutorial-part-iii-async-redux/
http://www.thegreatcodeadventure.com/react-redux-tutorial-part-iii-async-redux/
https://www.sourcetoad.com/app-development/the-benefits-of-using-react/
https://www.valentinog.com/blog/react-redux-tutorial-beginners/#React_Redux_tutorial_what_problem_does_Redux_solve
https://www.valentinog.com/blog/react-redux-tutorial-beginners/#React_Redux_tutorial_what_problem_does_Redux_solve
https://medium.com/@alexmngn/how-to-better-organize-your-react-applications-2fd3ea1920f1
https://medium.com/@alexmngn/how-to-better-organize-your-react-applications-2fd3ea1920f1
https://dzone.com/articles/best-practices-with-react-and-redux-web-applicatio
https://dzone.com/articles/best-practices-with-react-and-redux-web-applicatio
https://redux-saga.js.org/docs/api/
https://medium.com/@lavitr01051977/make-your-first-call-to-api-using-redux-saga-15aa995df5b6
https://medium.com/@lavitr01051977/make-your-first-call-to-api-using-redux-saga-15aa995df5b6
https://medium.com/@pearlmcphee/selectors-react-redux-reselect-9ab984688dd4
https://medium.com/@pearlmcphee/selectors-react-redux-reselect-9ab984688dd4
https://rangle.io/blog/react-and-redux-performance-with-reselect/
https://hackernoon.com/implementing-basic-component-tests-using-jest-and-enzyme-d1d8788d627a
https://hackernoon.com/implementing-basic-component-tests-using-jest-and-enzyme-d1d8788d627a

● https://hackernoon.com/unit-testing-redux-connected-components-692fa3c
4441c

● https://airbnb.io/enzyme/docs/api/shallow.html
● https://medium.com/netscape/testing-a-react-redux-app-using-jest-and-enzy

me-b349324803a9
● https://www.codementor.io/vijayst/unit-testing-react-components-jest-or-enz

yme-du1087lh8
● https://www.youtube.com/watch?v=EgJZv9Iyj-E&list=PL-Db3tEF6pB8Am-IhC

RgyGSxTalkDpUV_
● https://medium.com/@rossbulat/testing-in-react-with-jest-and-enzyme-an-int

roduction-99ce047dfcf8
Using react-redux with typescript:
https://blog.usejournal.com/using-react-with-redux-and-typescript-c7ec48c211f6
JS linting with ESlint and Prettier:
https://medium.com/@joshuacrass/javascript-linting-and-formatting-with-eslint-pret
tier-and-airbnb-30eb746db862

https://hackernoon.com/unit-testing-redux-connected-components-692fa3c4441c
https://hackernoon.com/unit-testing-redux-connected-components-692fa3c4441c
https://airbnb.io/enzyme/docs/api/shallow.html
https://medium.com/netscape/testing-a-react-redux-app-using-jest-and-enzyme-b349324803a9
https://medium.com/netscape/testing-a-react-redux-app-using-jest-and-enzyme-b349324803a9
https://www.codementor.io/vijayst/unit-testing-react-components-jest-or-enzyme-du1087lh8
https://www.codementor.io/vijayst/unit-testing-react-components-jest-or-enzyme-du1087lh8
https://www.youtube.com/watch?v=EgJZv9Iyj-E&list=PL-Db3tEF6pB8Am-IhCRgyGSxTalkDpUV_
https://www.youtube.com/watch?v=EgJZv9Iyj-E&list=PL-Db3tEF6pB8Am-IhCRgyGSxTalkDpUV_
https://medium.com/@rossbulat/testing-in-react-with-jest-and-enzyme-an-introduction-99ce047dfcf8
https://medium.com/@rossbulat/testing-in-react-with-jest-and-enzyme-an-introduction-99ce047dfcf8
https://blog.usejournal.com/using-react-with-redux-and-typescript-c7ec48c211f6
https://medium.com/@joshuacrass/javascript-linting-and-formatting-with-eslint-prettier-and-airbnb-30eb746db862
https://medium.com/@joshuacrass/javascript-linting-and-formatting-with-eslint-prettier-and-airbnb-30eb746db862

