
Test Targets:
AmneziaVPN Android & iOS
AmneziaVPN Desktop clients
AmneziaWG
AmneziaVPN XRay

Pentest Report
Client:
AmneziaVPN

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Jesus Arturo Espinoza Soto
● Miroslav Štampar, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 4
Identified Vulnerabilities 5

AVP-02-001 WP1: Config Access via incorrect Android Keystore Usage (Medium) 5
AVP-02-006 WP2: Possible VPN Traffic Access via TunnelVision (Medium) 6
AVP-02-009 WP1: VPN Config Access via Logcat Messages (Medium) 9
AVP-02-010 WP1: API Key Access via Memory Leak (Medium) 11

Hardening Recommendations 13
AVP-02-002 WP1: Android Config Hardening Recommendations (Info) 13
AVP-02-003 WP1: Missing Android root & iOS Jailbreak Detection (Info) 15
AVP-02-004 WP2/3: Possible Weaknesses via Insecure Function Usage (Medium)16
AVP-02-005 WP1/3: Possible Vulnerabilities via Outdated Go (Low) 18
AVP-02-007 WP2/3: Masking/Config Weaknesses via Insecure PRNGs (Medium) 19
AVP-02-008 WP1: Insecure Local Networking via ATS Exception (Low) 22

Conclusion 23

7ASecurity © 2024
2

https://7asecurity.com

Pentest Report

Introduction
“Create your personal VPN
Amnezia VPN — simple and free app to run a self-hosted VPN with high privacy
requirements”

From https://amnezia.org/en

This document outlines the results of a penetration test and whitebox security review
conducted against the AmneziaVPN platform. The project was solicited by AmneziaVPN
and executed by 7ASecurity in July 2024. The audit team dedicated 16 working days to
complete this assignment. Please note that this is the second penetration test for this
project. Consequently, the identification of security weaknesses was expected to be
more difficult during this engagement, as more vulnerabilities are identified and resolved
after each testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure AmneziaVPN users can be provided with the best possible security. The
methodology implemented was whitebox: 7ASecurity was provided with access to a
staging environment, documentation, test users, and source code. A team of 4 senior
auditors carried out all tasks required for this engagement, including preparation,
delivery, documentation of findings and communication.

A number of necessary arrangements were in place by June 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Signal
chat group. The AmneziaVPN team was helpful and responsive throughout the audit,
which ensured that 7ASecurity was provided with the necessary access and information
at all times, thus avoiding unnecessary delays. 7ASecurity provided regular updates
regarding the audit status and its interim findings during the engagement.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

4 6 10

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

7ASecurity © 2024
3

https://amnezia.org/en
https://7asecurity.com

Pentest Report

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
AmneziaVPN applications.

Scope

The following list outlines the items in scope for this project:

● WP1: Whitebox Tests against AmneziaVPN Android & iOS apps
○ Android:

■ https://github.com/amnezia-vpn/amneziawg-android
■ https://play.google.com/store/apps/details?id=org.amnezia.vpn

○ iOS:
■ https://github.com/amnezia-vpn/amneziawg-apple
■ https://apps.apple.com/us/app/amneziavpn/id1600529900

● WP2: Whitebox Tests against AmneziaVPN Desktop clients
○ https://github.com/amnezia-vpn/amnezia-client

● WP3: Whitebox Tests against AmneziaWG and XRay
○ https://github.com/amnezia-vpn/amneziawg-go
○ https://github.com/amnezia-vpn/amneziawg-windows
○ https://github.com/amnezia-vpn/amneziawg-exporter

7ASecurity © 2024
4

https://github.com/amnezia-vpn/amneziawg-android
https://play.google.com/store/apps/details?id=org.amnezia.vpn
https://github.com/amnezia-vpn/amneziawg-apple
https://apps.apple.com/us/app/amneziavpn/id1600529900
https://github.com/amnezia-vpn/amnezia-client
https://github.com/amnezia-vpn/amneziawg-go
https://github.com/amnezia-vpn/amneziawg-windows
https://github.com/amnezia-vpn/amneziawg-exporter
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. AVP-02-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

AVP-02-001 WP1: Config Access via incorrect Android Keystore Usage (Medium)

Affected version: AmneziaVPN for Android v4.6.0.1.

It was found that the Android app fails to correctly leverage the Android Keystore1, a
hardware-backed security enclave ideal for secure storage of application secrets.
Instead, the app stores VPN configuration information in an unencrypted file. This
approach is insecure because that data could be accessed by a malicious attacker with
physical access, memory access, or filesystem access. Furthermore, given the large
volume of publicly known Android kernel vulnerabilities2 and the high likelihood of users
on unpatched Android devices, it should be assumed that malicious apps may be able to
gain such access via privilege escalation vulnerabilities. At the time of writing, some
sensitive items were found to be unsafely stored outside of the Android KeyStore and
the Android Encrypted Preferences3.

Affected File:
files/settings/AmneziaVPN.ORG/AmneziaVPN.conf

Affected Contents:
\"container\": \"amnezia-awg\"\n }\n],\n

\"defaultContainer\": \"amnezia-awg\",\n \"description\": \"Server 1\",\n

\"hostName\": \"[...].223.178.[...]\",\n \"password\": \"r1F[...]\",\n

\"port\": 22,\n \"userName\": \"root\"\n }\n]\n)"

}

It is recommended to leverage the options provided by the platform to store application
secrets in a safe manner. In this case, the Android Encrypted Preferences4 or the
Android Keystore5 would be suitable for such purposes. The Android Keystore is a
hardware-backed security enclave designed to implement or complete encryption of
application secrets. Further information regarding the Android Keystore and its

5 https://developer.android.com/training/articles/keystore
4 https://developer.android.com/topic/security/data
3 https://developer.android.com/topic/security/data
2 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
1 https://developer.android.com/training/articles/keystore

7ASecurity © 2024
5

https://developer.android.com/training/articles/keystore
https://developer.android.com/topic/security/data
https://developer.android.com/topic/security/data
https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://developer.android.com/training/articles/keystore
https://7asecurity.com

Pentest Report

protection features can be found in the official Android documentation6.

AVP-02-006 WP2: Possible VPN Traffic Access via TunnelVision (Medium)

Retest Notes: Due to the killswitch AmneziaVPN features, which blocks all traffic routed
outside the VPN, this issue may only be leveraged for selective Denial of Service
purposes.

It was found that AmneziaVPN Windows, macOS and iOS clients are susceptible to the
TunnelVision7 attacking technique (CVE-2024-36618). An attacker can bypass VPN
encapsulation and route traffic outside the VPN tunnel to obtain the unencrypted VPN
traffic from victim users, de-anonymize the traffic destination and leak the real IP
addresses. This technique uses the Dynamic Host Configuration Protocol (DHCP),
specifically exploiting DHCP option 1219, which manages classless static routes in a
client routing table. Please note Android VPN clients are unaffected by this issue, as
they do not support DHCP option 12110.

The TunnelVision technique can be used in various scenarios where an attacker can set
up a rogue DHCP server and inject malicious routes into a target routing table. Here are
some potential scenarios:

● Public Wi-Fi networks: Attackers can set up rogue access points in public areas
like cafes, airports, or libraries. Unsuspecting users who connect to these networks
may receive DHCP configurations from the attacker server, including the malicious
DHCP option 121. This would redirect the user traffic outside their VPN tunnel,
allowing the attacker to intercept sensitive data.

● Compromised Local Networks: In scenarios where an attacker has gained access
to a local network, such as a corporate or home network, they can set up a rogue
DHCP server. This server can issue DHCP responses with option 121, creating
routes that bypass the VPN tunnel. This allows the attacker to monitor and
manipulate the internet traffic from the victim.

● Man-in-the-Middle (MitM) Attacks: In MitM attack scenarios, attackers position
themselves between the victim and the VPN server. By controlling the DHCP
responses, the attacker can inject malicious routes, forcing traffic to be routed
outside the encrypted VPN tunnel. This would effectively nullify the privacy and
security benefits of the VPN.

10 https://www.wired.com/story/tunnelvision-vpn-attack/
9 https://datatracker.ietf.org/doc/html/rfc3442
8 https://nvd.nist.gov/vuln/detail/CVE-2024-3661
7 https://www.leviathansecurity.com/blog/tunnelvision
6 https://developer.android.com/training/articles/keystore

7ASecurity © 2024
6

https://www.wired.com/story/tunnelvision-vpn-attack/
https://datatracker.ietf.org/doc/html/rfc3442
https://nvd.nist.gov/vuln/detail/CVE-2024-3661
https://www.leviathansecurity.com/blog/tunnelvision
https://developer.android.com/training/articles/keystore
https://7asecurity.com

Pentest Report

Proof of Concept (PoC):
This issue was confirmed using a rogue DHCP server in a lab environment. The
TunnelVision GitHub page11 contains all setup details. Here is a summary of the steps
involved during the attack. Please note that the steps below belong to the Windows
operating system but were also confirmed on macOS and iOS.

Steps to reproduce:
1. The attacker sets up a rogue DHCP Server in a Public Wi-Fi network or

compromised local network.
2. The attacker configures DHCP option 121, a classless static route option to inject

route entries in the routing table of victims.
3. A victim connects to the compromised Public Wi-Fi network or local network and

receives an IP address from the DHCP server with the desired 121 option. Here
is an example of a packet received by DHCP clients:

Fig.: Example DHCP packet with option 121, including a Classless Static Route

The route entry injected by the attacker can be confirmed on the victim routing
table by executing the following commands.

Command:
route print | findstr /i "8.8.8.8"

Output:
8.8.8.8 255.255.255.255 192.168.1.24 192.168.1.10 26

4. The victim connects to the VPN using the desired client.
5. Using the route entry injected to the victim via a rogue DHCP, the attacker can

leak VPN traffic or cause a selective Denial of Service (DoS):

Command (on victim machine):
ping 8.8.8.8

11 https://github.com/leviathansecurity/TunnelVision?tab=readme-ov-file

7ASecurity © 2024
7

https://github.com/leviathansecurity/TunnelVision?tab=readme-ov-file
https://7asecurity.com

Pentest Report

Output (on victim machine):
Pinging 8.8.8.8 with 32 bytes of data:

Reply from 8.8.8.8: bytes=32 time=9ms TTL=127

Reply from 8.8.8.8: bytes=32 time=9ms TTL=127

Reply from 8.8.8.8: bytes=32 time=8ms TTL=127

Reply from 8.8.8.8: bytes=32 time=9ms TTL=127

Ping statistics for 8.8.8.8:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)

[...]

Please note that the traffic goes outside the VPN interface and is sent to the
rogue DHCP server via injected route entry.

Command (on rogue DHCP server):
sudo tcpdump -i ens33 icmp

Output (on rogue DHCP server):
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ens33, link-type EN10MB (Ethernet), capture size 262144 bytes

09:49:43.997912 IP 192.168.1.10 > dns.google: ICMP echo request, id 1, seq 92,

length 40

09:49:44.006659 IP dns.google > 192.168.1.10: ICMP echo reply, id 1, seq 92,

length 40

09:49:45.020195 IP 192.168.1.10 > dns.google: ICMP echo request, id 1, seq 93,

length 40

09:49:45.028975 IP dns.google > 192.168.1.10: ICMP echo reply, id 1, seq 93,

length 40

09:49:46.026615 IP 192.168.1.10 > dns.google: ICMP echo request, id 1, seq 94,

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● To ensure secure VPN usage on hostile networks, educate users to:
○ Follow the WireGuard documentation12 to implement network

namespaces on Linux to completely fix this behavior.
○ Use a personal hotspot with their VPN
○ Run their VPN inside a virtual machine without a bridged network adapter
○ Where possible, avoid untrusted networks like public Wi-Fi
○ Use ad-blockers and privacy-focused browsers that reject tracking

cookies to enhance online privacy and protect against tracking and
surveillance.

● In situations where VPN clients control their local network, the following
additional mitigation measures could be implemented:

12 https://www.wireguard.com/netns/#the-new-namespace-solution

7ASecurity © 2024
8

https://www.wireguard.com/netns/#the-new-namespace-solution
https://7asecurity.com

Pentest Report

○ Enabling DHCP Snooping13 and ARP Protection14 to prevent rogue DHCP
servers from operating on the network.

○ Using Port Security15 on Switches to limit the number of MAC addresses
that can connect through a single port, preventing unauthorized devices
from injecting malicious DHCP responses.

○ Ignoring DHCP Option 121 on VPN clients. However, this may lead to
connectivity issues and should be tested thoroughly.

AVP-02-009 WP1: VPN Config Access via Logcat Messages (Medium)

Affected version: AmneziaVPN for Android v4.6.0.1.

It was found that the AmneziaVPN Android app leaks the entire VPN configuration via
logcat messages. A malicious attacker with access to an unlocked device could enable
USB debugging and retrieve the VPN configuration from the logcat buffer16, revealing
both recent and previous messages that may contain sensitive information.

Proof of Concept:
This issue was identified while looking for logcat leaks, when an intent is sent to the
ImportConfigActivity this leaks VPN configuration like the following:

Step 1: Send an intent to AmneziaVPN Android app with the VPN configuration

Command:
adb shell am start -W -a android.intent.action.VIEW -d

"vpn://eyJjb25maWdfdmVyc2lvbiI6IDEuMCwgImFwaV9lbmRwb2ludCI6ICJodHRwczovLzEzLjI0OC4xMzku

NDQvYXBpL3YxL3JlcXVlc[....]" org.amnezia.vpn

Step 2: Execute the following command on a USB debugging device

Command:
adb logcat -d | grep -i "ImportConfigActivity"

Output:
07-23 10:20:19.322 4908 7039 I ActivityTaskManager: START u0

{act=android.intent.action.VIEW

dat=vpn://eyJjb25maWdfdmVyc2lvbiI6IDEuMCwgImFwaV9lbmRwb2ludCI6ICJodHRwczovLzEzLjI0OC4xM

zkuNDQvYXBpL3YxL3JlcXVlc[....] flg=0x10000000 pkg=org.amnezia.vpn

cmp=org.amnezia.vpn/.ImportConfigActivity} from uid 2000

16 https://developer.android.com/studio/command-line/logcat
15 https://kb.netgear.com/21786/What-is-port-security-and-how-does-it-work-with-my-managed-switch
14 https://en.wikipedia.org/wiki/ARP_spoofing
13 https://en.wikipedia.org/wiki/DHCP_snooping

7ASecurity © 2024
9

https://developer.android.com/studio/command-line/logcat
https://kb.netgear.com/21786/What-is-port-security-and-how-does-it-work-with-my-managed-switch
https://en.wikipedia.org/wiki/ARP_spoofing
https://en.wikipedia.org/wiki/DHCP_snooping
https://7asecurity.com

Pentest Report

As seen above, ActivityTaskManager17 logs the VPN configuration in logcat. This
Android class provides APIs for managing activities and tasks, and is controlled by the
operating system. The intent filter involved is defined in the following file:

Affected File:
https://github.com/amnezia-vpn/[...]client/android/AndroidManifest.xml

Affected Code:
<activity

android:name=".ImportConfigActivity"

android:excludeFromRecents="true"

android:launchMode="singleTask"

android:taskAffinity=""

android:exported="true"

android:theme="@style/Translucent">

[...]

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<data android:scheme="file" />

<data android:scheme="content" />

<data android:mimeType="*/*" />

<data android:host="*" />

<data android:pathPattern=".*\\.vpn" />

<data android:pathPattern=".*\\..*\\.vpn" />

<data android:pathPattern=".*\\..*\\..*\\.vpn" />

<data android:pathPattern=".*\\..*\\..*\\..*\\.vpn" />

<data android:pathPattern=".*\\..*\\..*\\..*\\..*\\.vpn" />

[...]

</intent-filter>

</activity>

Limiting deep link leakage in logcat due to ActivityTaskManager is challenging because it
is controlled by Android. However, the risk can still be mitigated using some of the
following options:

1. Eliminate the option for sending VPN information via DeepLinks, or replace it with
an alternative.

2. Limit Sensitive Data in URLs: Avoid passing sensitive information via deep links.
Use tokens or session IDs verified server-side.

3. Encrypt Deep Link Parameters: Encrypt parameters to protect sensitive data,
even if URLs are logged.

17 https://android.googlesource.com/platform/.../core/java/android/app/ActivityTaskManager.java

7ASecurity © 2024
10

https://github.com/amnezia-vpn/amnezia-client/blob/dev/client/android/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/ActivityTaskManager.java
https://7asecurity.com

Pentest Report

More broadly, it is further advised to avoid logging sensitive information, especially when
the debug flag is not set in the APK, as was the case in this assessment. Common
approaches to implement this are:

● To create a log wrapper, check if the build is a debug build there, only log debug
and verbose messages for a debug build18.

● To create ProGuard rules so that Log.d and Log.v are removed when the build is
for production19.

● Avoid the usage of intent filters that may leak sensitive information to logcat.

AVP-02-010 WP1: API Key Access via Memory Leak (Medium)

Affected version: AmneziaVPN for Android v4.6.0.1.

It was found that the AmneziaVPN Android app keeps the configuration in memory. This
approach is insecure because that information could be accessed by a malicious
attacker with physical access or memory access. Furthermore, given the large volume of
publicly known Android kernel vulnerabilities20 and the high likelihood of users on
unpatched Android devices, it should be assumed that malicious apps may be able to
gain such access via privilege escalation vulnerabilities.

To confirm this issue, filesystem usage was reviewed but no sensitive information was
found. Hence, subsequently, the app process memory was dumped and the contents
were reviewed for possible leaks. In particular, a search for the API key discovered an
occurrence in memory.

Command 1: Search api_key in memdump file.
grep -ir "api_key" ./0x6fcd264000_dump.data –text

Output:
./0x6fcd264000_dump.data: "api_key": "Ez39deUm.e[...]ZIqlW2kYYb3Wi2P1A2JKd",

Command 2: Usage of api_key via cURL.
curl -X OPTIONS -H "Authorization: Api-Key Ez39deUm.e[...]ZIqlW2kYYb3Wi2P1A2JKd"

https://13.248.139.44/api/v1/request/awg/

Output:
{"name":"Awg Config Request","description":"Generates an AWG

config...","renders":["application/json","text/html"],"parses":["application/json","app

lication/x-www-form-urlencoded","multipart/form-data"],"actions":{"POST":{"public_key":

20 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
19 https://stackoverflow.com/a/2466662
18 https://stackoverflow.com/a/4592958

7ASecurity © 2024
11

https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://stackoverflow.com/a/2466662
https://stackoverflow.com/a/4592958
https://7asecurity.com

Pentest Report

{"type":"string","required":true,"read_only":false,"label":"Public

key"},"installation_uuid":{"type":"string","required":false,"read_only":false,"label":"

Installation

uuid"},"config":{"type":"string","required":false,"read_only":true,"label":"Config"},"o

s_version":{"type":"string","required":false,"read_only":false,"label":"Os

version"},"app_version":{"type":"string","required":false,"read_only":false,"label":"Ap

p version"}}}}

The root cause for this issue may appear to be in the following code path, which uses a
QString object to store the configuration data in memory without clearing it:

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/client/amnezia_application.cpp

Affected Code:
connect(AndroidController::instance(), &AndroidController::importConfigFromOutside,

[this](QString data) {

m_pageController->replaceStartPage();

m_importController->extractConfigFromData(data);

m_pageController->goToPageViewConfig();

});

To resolve this issue, at a minimum, sensitive configuration information should be
regularly wiped from memory to avoid potential leaks. Additionally, sensitive data like
encryption keys, should only be retained in RAM briefly. Variables storing keys ought to
be nullified after use. Also, when using Qt containers (like QByteArray21, QString22, etc.),
ensure they are cleared explicitly using the clear()23 function. Even after removing or
nullifying references to immutable objects, they might persist in memory until garbage
collection, which apps are unable to enforce. For additional mitigation guidance, please
see the Testing Memory for Sensitive Data section of the Mobile Application Security
Testing Guide (MASTG)24.

24 https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
23 https://doc.qt.io/qt-6/qbytearray.html#clear
22 https://doc.qt.io/qt-6/qstring.html
21 https://doc.qt.io/qt-6/qbytearray.html

7ASecurity © 2024
12

https://github.com/amnezia-vpn/amnezia-client/blob/c22f9ff08af880d8d6020c8fe5001215e18228bc/client/amnezia_application.cpp#L120
https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
https://doc.qt.io/qt-6/qbytearray.html#clear
https://doc.qt.io/qt-6/qstring.html
https://doc.qt.io/qt-6/qbytearray.html
https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

AVP-02-002 WP1: Android Config Hardening Recommendations (Info)

Affected version: AmneziaVPN for Android v4.6.0.1.

It was found that the AmneziaVPN Android app fails to leverage optimal values for a
number of security-related settings. This unnecessarily weakens the overall security
posture of the application. For example, the application fails to mitigate potential
Tapjacking attacks. These weaknesses are documented in more detail next.

Issue 1: Missing Tapjacking Protection

The Android app accepts user taps while other apps render anything on top of it.
Malicious attackers might leverage this weakness to impersonate users using a crafted
app, which launches the victim app in the background while something else is rendered
on top. Please note that this attack vector is mitigated in Android 1225. Since the app
supports Android 7.0, this leaves users on Android 7.0-11 vulnerable to this attack. The
following command confirms that Tapjacking protections are missing on the source code
provided and the decompiled app:

Command:
egrep -r

'(filterTouchesWhenObscured|FLAG_WINDOW_IS_OBSCURED|FLAG_WINDOW_IS_PARTIALLY_OBSCURED)'

* | wc -l

Output:
0

Since Android API level 9 (Android 2.3), it is possible to mitigate Tapjacking attacks
utilizing at least one of the following approaches:

25 https://developer.android.com/topic/security/risks/tapjacking#mitigations

7ASecurity © 2024
13

https://developer.android.com/topic/security/risks/tapjacking#mitigations
https://7asecurity.com

Pentest Report

Approach 1: The filterTouchesWhenObscured2627 attribute could be set at the Android
root view level28. This will ensure that taps will be ignored when the Android app is not
displayed on top.
Approach 2: Alternatively, MotionEvents could be checked against the following flags to
present a protection screen on top:

1. FLAG_WINDOW_IS_OBSCURED29 (since Android 2.3)
2. FLAG_WINDOW_IS_PARTIALLY_OBSCURED30 (since Android 10)

Issue 2: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the android:hasFragileUserData attribute. When set to true, the
user will be prompted to keep the app information despite uninstallation.

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

30 https://developer.android.com/reference/android/view/MotionEvent#FLAG_WINDOW_IS_PARTIALLY...
29 https://developer.android.com/reference/android/view/MotionEvent#FLAG_WINDOW_IS_OBSCURED
28 https://developer.android.com/reference/android/view/View#security
27 http://developer.android.com/reference/[...]/View.html#attr_android:filterTouchesWhenObscured
26 http://developer.android.com/reference/[...]/View.html#setFilterTouchesWhenObscured(boolean)

7ASecurity © 2024
14

https://developer.android.com/reference/android/view/MotionEvent#FLAG_WINDOW_IS_PARTIALLY_OBSCURED
https://developer.android.com/reference/android/view/MotionEvent#FLAG_WINDOW_IS_OBSCURED
https://developer.android.com/reference/android/view/View#security
http://developer.android.com/reference/android/view/View.html#attr_android:filterTouchesWhenObscured
http://developer.android.com/reference/android/view/View.html#setFilterTouchesWhenObscured(boolean)
https://7asecurity.com

Pentest Report

AVP-02-003 WP1: Missing Android root & iOS Jailbreak Detection (Info)

Affected versions: AmneziaVPN for Android v4.6.0.1, AmneziaVPN for iOS v4.5.4.

It was found that the Android and iOS apps do not currently implement any form of root
or Jailbreak detection features at the time of writing. Hence, the applications fail to alert
users about the security implications of running the app in such an environment. This
issue can be confirmed by installing the application on a rooted/jailbroken device and
validating the complete lack of application warnings.

It is recommended to implement a root/jailbreak detection solution to address this
problem. Please note that, since the user has root access and the application does not,
the application is always at a disadvantage. Mechanisms like these should always be
considered bypassable when enough dedication and skill characterize the attacker.

Some freely available libraries for iOS are IOSSecuritySuite31 and
DTTJailbreakDetection32, although custom checks are also possible in Swift
applications33. Such solutions should be considered bypassable but sufficient to warn
users about the dangers of running the application on a jailbroken device. For best
results, it is recommended to test some commercial and open source3435 solutions
against well-known Cydia tweaks like LibertyLite36, Shadow37, tsProtector 8+38 or
A-Bypass39. Based on this, the development team could determine the most solid
approach.

The freely available rootbeer library40 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

40 https://github.com/scottyab/rootbeer
39 https://repo.rpgfarm.com/
38 http://apt.thebigboss.org/repofiles/cydia/
37 https://ios.jjolano.me/
36 http://ryleyangus.com/repo/
35 https://github.com/securing/IOSSecuritySuite
34 https://github.com/thii/DTTJailbreakDetection
33 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
32 https://github.com/thii/DTTJailbreakDetection
31 https://cocoapods.org/pods/IOSSecuritySuite

7ASecurity © 2024
15

https://github.com/scottyab/rootbeer
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
https://7asecurity.com

Pentest Report

AVP-02-004 WP2/3: Possible Weaknesses via Insecure Function Usage (Medium)

During the code review, multiple instances of insecure coding practices were identified
across several application components. These involve using functions known to be
potentially unsafe or banned due to their susceptibility to memory corruption
vulnerabilities, buffer overflows, or undefined behavior. These functions should be
avoided or replaced with safer alternatives. The following examples illustrate this issue:

Issue 1: Unsafe usage of strncpy

strncpy may not null-terminate the destination string if the source string length equals or
exceeds the destination size, potentially causing buffer overflow issues.

Affected Files:
https://github.com/amnezia-vpn/amnezia-client/[...]/linux/daemon/iputilslinux.cpp
https://github.com/amnezia-vpn/amnezia-client/[...]/macos/daemon/iputilsmacos.cpp

Affected Code:
strncpy(ifr.ifr_name, WG_INTERFACE, IFNAMSIZ);

[...]

strncpy(ifr.ifra_name, qPrintable(ifname), IFNAMSIZ);

It is advised to replace strncpy with strncpy_s41 or strlcpy42: These functions ensure
proper null-termination and prevent buffer overflows by limiting the number of characters
copied.

Issue 2: Unsafe usage of strcpy

strcpy does not check the buffer size and can lead to buffer overflows, if the destination
buffer is not large enough to hold the source string.

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/service/server/router_mac.cpp

Affected Code:
strcpy(argv[i], parts.at(i).toStdString().c_str());

It is recommended to replace strcpy with strcpy_s43 or strlcpy44: These functions perform
bounds checking and provide a safer alternative to strcpy.

44 https://stackoverflow.com/questions/6987217/strncpy-or-strlcpy-in-my-case
43 https://stackoverflow.com/questions/59239734/why-strcpy-s-is-safer-than-strcpy
42 https://what.thedailywtf.com/post/77038
41 https://what.thedailywtf.com/topic/4012/more-secure-than-strncpy-strncpy_s

7ASecurity © 2024
16

https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/client/platforms/linux/daemon/iputilslinux.cpp
https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/client/platforms/macos/daemon/iputilsmacos.cpp
https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/service/server/router_mac.cpp
https://stackoverflow.com/questions/6987217/strncpy-or-strlcpy-in-my-case
https://stackoverflow.com/questions/59239734/why-strcpy-s-is-safer-than-strcpy
https://what.thedailywtf.com/post/77038
https://what.thedailywtf.com/topic/4012/more-secure-than-strncpy-strncpy_s
https://7asecurity.com

Pentest Report

Issue 3: Insecure use of memset

memset can be optimized out by the compiler in certain scenarios, especially when used
to clear sensitive data, leading to potential security risks.

Affected Files:
https://github.com/amnezia-vpn/amnezia-client/[...]/service/server/helper_route_mac.c
https://github.com/amnezia-vpn/amneziawg-apple/[...]/Shared/Logging/ringlogger.c
https://github.com/amnezia-vpn/amneziawg-apple/[...]/macOS/View/highlighter.c

Affected Code:
memset((void *)&so_mask, 0, sizeof(so_mask));

[...]

memset(&in6, 0, sizeof(in6));

[...]

memset(&hints, 0, sizeof(hints));

It is encouraged to replace memset with memset_s45: This ensures the memory set
operation is not optimized out, which is particularly useful for clearing sensitive data.

Issue 4: Unsafe usage of sprintf

sprintf does not perform bounds checking, making it susceptible to buffer overflows, if
the destination buffer is too small.

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/service/server/helper_route_mac.c

Affected Code:
#define C(x) (unsigned)((x) & 0xff)

if (cp != NULL)

strlcpy(line, cp, sizeof(line));

else if ((in.s_addr & 0xffffff) == 0)

(void) sprintf(line, "%u", C(in.s_addr >> 24));

else if ((in.s_addr & 0xffff) == 0)

(void) sprintf(line, "%u.%u", C(in.s_addr >> 24),

C(in.s_addr >> 16));

else if ((in.s_addr & 0xff) == 0)

(void) sprintf(line, "%u.%u.%u", C(in.s_addr >> 24),

C(in.s_addr >> 16), C(in.s_addr >> 8));

else

(void) sprintf(line, "%u.%u.%u.%u", C(in.s_addr >> 24),

C(in.s_addr >> 16), C(in.s_addr >> 8),

45 https://stackoverflow.com/questions/…/memset-s-what-does-the-standard-mean-with-this-piece-of-text

7ASecurity © 2024
17

https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/service/server/helper_route_mac.c
https://github.com/amnezia-vpn/amneziawg-apple/blob/ef929efeced5bea46f16e6b4404c658995d2c1a9/Sources/Shared/Logging/ringlogger.c
https://github.com/amnezia-vpn/amneziawg-apple/blob/ef929efeced5bea46f16e6b4404c658995d2c1a9/Sources/WireGuardApp/UI/macOS/View/highlighter.c
https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/service/server/helper_route_mac.c
https://stackoverflow.com/questions/56565539/memset-s-what-does-the-standard-mean-with-this-piece-of-text
https://7asecurity.com

Pentest Report

C(in.s_addr));

#undef C

It is suggested to replace sprintf with sprintf_s46 or snprintf47: These functions include
bounds checking to prevent buffer overflows.

Issue 5: Incorrect use of atoi

atoi does not handle errors gracefully and can lead to undefined behavior, if the input is
not a valid integer.

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/service/server/helper_route_mac.c

Affected Code:
*valp = atoi(value);

[...]

int len = atoi(s), q, r;

It is advised to replace atoi with strtol48: This offers better error handling and avoids
undefined behavior by checking the input string validity.

By addressing these issues, the resilience against potential memory-based attacks and
undefined behavior can be significantly improved.

AVP-02-005 WP1/3: Possible Vulnerabilities via Outdated Go (Low)

The net/netip library in Go 1.22.3 is affected by GO-2024-288749 (CVE-2024-2479050),
impacting the behavior of Is-prefixed methods for IPv4-mapped IPv6 addresses.
Methods like IsPrivate, IsLoopback, etc. return false for IPv4-mapped IPv6 addresses,
which would return true in their IPv4 forms. This may lead to incorrect network address
classification, potentially affecting security decisions and improper handling of
IPv4-mapped IPv6 addresses in network operations.

Affected Files:
https://github.com/amnezia-vpn/amneziawg-go/[...]/go.mod
https://github.com/amnezia-vpn/amneziawg-go/[...]/Dockerfile
https://github.com/amnezia-vpn/amneziawg-apple/[...]/Sources/WireGuardKitGo/go.mod

50 https://nvd.nist.gov/vuln/detail/CVE-2024-24790
49 https://pkg.go.dev/vuln/GO-2024-2887
48 https://blog.mozilla.org/nnethercote/2009/03/13/atol-considered-harmful/
47 https://github.com/libarchive/libarchive/issues/1743
46 https://www.reddit.com/r/learnprogramming/comments/t9s3ia/is_cs_sprintf_function_actually_unsafe/

7ASecurity © 2024
18

https://github.com/amnezia-vpn/amnezia-client/blob/e646b85e5657490467f67e50ce376f9867c09dbb/service/server/helper_route_mac.c
https://github.com/amnezia-vpn/amneziawg-go/blob/2e3f7d122ca8ef61e403fddc48a9db8fccd95dbf/go.mod
https://github.com/amnezia-vpn/amneziawg-go/blob/2e3f7d122ca8ef61e403fddc48a9db8fccd95dbf/Dockerfile
https://github.com/amnezia-vpn/amneziawg-apple/blob/ef929efeced5bea46f16e6b4404c658995d2c1a9/Sources/WireGuardKitGo/go.mod
https://nvd.nist.gov/vuln/detail/CVE-2024-24790
https://pkg.go.dev/vuln/GO-2024-2887
https://blog.mozilla.org/nnethercote/2009/03/13/atol-considered-harmful/
https://github.com/libarchive/libarchive/issues/1743
https://www.reddit.com/r/learnprogramming/comments/t9s3ia/is_cs_sprintf_function_actually_unsafe/
https://7asecurity.com

Pentest Report

https://github.com/amnezia-vpn/amneziawg-android/[...]/tunnel/tools/libwg-go/Makefile
https://github.com/amnezia-vpn/amneziawg-android/[...]/tunnel/tools/libwg-go/go.mod

Example Code:
module github.com/amnezia-vpn/amneziawg-go

go 1.22.3

require (

github.com/tevino/abool/v2 v2.1.0

golang.org/x/crypto v0.21.0

golang.org/x/net v0.21.0

golang.org/x/sys v0.18.0

golang.zx2c4.com/wintun v0.0.0-20230126152724-0fa3db229ce2

gvisor.dev/gvisor v0.0.0-20230927004350-cbd86285d259

)

require (

github.com/google/btree v1.0.1 // indirect

golang.org/x/time v0.0.0-20220210224613-90d013bbcef8 // indirect

)

It is recommended to update the Go version to 1.22.4 or later in all affected components,
which contains the fix for this vulnerability. Furthermore, additional vulnerabilities were
found in other modules, but the code does not appear to invoke the code affected by
these vulnerabilities directly. Thus, running the following command will ensure all
dependencies are updated and the affected components are rebuilt. Please note
everything ought to be thoroughly tested prior to deployment.

Proposed Fix Command:
go mod tidy

AVP-02-007 WP2/3: Masking/Config Weaknesses via Insecure PRNGs (Medium)

Two instances of insecure Pseudo-Random Number Generator (PRNG)51 usage were
identified, potentially compromising traffic masking effectiveness and configuration data
security.

Issue 1: Usage of Insecure PRNG in Junk Packet Creation

The junk packet creation mechanism uses a non-cryptographically secure random
number generator provided by the math/rand package, which could lead to predictable
outcomes and compromise the traffic masking mechanism52.

52 https://docs.amnezia.org/documentation/how-amnezia-works/
51 https://en.wikipedia.org/wiki/Pseudorandom_number_generator

7ASecurity © 2024
19

https://github.com/amnezia-vpn/amneziawg-android/blob/5bffd565832f6c954398663b96b57d47e7705ec3/tunnel/tools/libwg-go/Makefile
https://github.com/amnezia-vpn/amneziawg-android/blob/5bffd565832f6c954398663b96b57d47e7705ec3/tunnel/tools/libwg-go/go.mod
https://docs.amnezia.org/documentation/how-amnezia-works/
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://7asecurity.com

Pentest Report

Affected File:
https://github.com/amnezia-vpn/amneziawg-go/[...]/device/send.go

Affected Code:
import (

"math/rand"

[...]

func (peer *Peer) createJunkPackets() ([][]byte, error) {

[...]

junks := make([][]byte, 0, peer.device.aSecCfg.junkPacketCount)

for i := 0; i < peer.device.aSecCfg.junkPacketCount; i++ {

packetSize := rand.Intn(

peer.device.aSecCfg.junkPacketMaxSize-peer.device.aSecCfg.junkPacketMinSize,

) + peer.device.aSecCfg.junkPacketMinSize

junk, err := randomJunkWithSize(packetSize)

[...]

junks = append(junks, junk)

}

return junks, nil

}

The use of math/rand.Intn() for determining junk packet size is not cryptographically
secure. This can lead to predictable packet sizes, potentially allowing an attacker to
distinguish junk packets from real ones through traffic analysis.

It is worth noting that the subsequently called function randomJunkWithSize is not
affected by this same vulnerability, as it properly utilizes crypto/rand for generating the
actual content of the junk packets. However, the predictability of packet sizes could still
compromise the effectiveness of the obfuscation mechanism.

It is recommended to replace the use of math/rand with crypto/rand. This ensures
cryptographically secure random number generation, significantly enhancing the
unpredictability of junk packet sizes.

Proposed Fix:
import (

"crypto/rand"

"encoding/binary"

[...]

func (peer *Peer) createJunkPackets() ([][]byte, error) {

[...]

randomBytes := make([]byte, 8)

_, err := rand.Read(randomBytes)

if err != nil {

return nil, err

}

7ASecurity © 2024
20

https://github.com/amnezia-vpn/amneziawg-go/blob/2e3f7d122ca8ef61e403fddc48a9db8fccd95dbf/device/send.go
https://7asecurity.com

Pentest Report

packetSize := int(binary.BigEndian.Uint64(randomBytes) % uint64(peer.device.

aSecCfg.junkPacketMaxSize-peer.device.aSecCfg.junkPacketMinSize)) + peer.device.

aSecCfg.junkPacketMinSize

[...]

}

Issue 2: Usage of Insecure PRNG in Configuration Generation

The random string generation mechanism used for filling configuration values uses
QRandomGenerator::global(), which is not suitable for security-sensitive purposes.

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/client/utilities.cpp

Affected Code:
QString Utils::getRandomString(int len)

{

const QString possibleCharacters("

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");

QString randomString;

for (int i = 0; i < len; ++i) {

quint32 index = QRandomGenerator::global()->generate() % possibleCharacters.

length();

QChar nextChar = possibleCharacters.at(index);

randomString.append(nextChar);

}

return randomString;

}

The use of QRandomGenerator::global() for generating random values could lead to
predictable outcomes or non-random values53, potentially compromising the security of
secret connection data configuration values.

It is recommended to replace the QRandomGenerator::global() with a cryptographically
secure random number generator, such as QRandomGenerator::system()54.

Addressing these issues will significantly improve the resilience against potential traffic
analysis attacks and enhance the overall security of the junk packet generation and
configuration data in the system.

54 https://doc.qt.io/qt-6/qrandomgenerator.html#system
53 https://forums.gentoo.org/viewtopic-p-8647783.html?sid=29d2dcdf93977b3a96d1b7e2118359ba

7ASecurity © 2024
21

https://github.com/amnezia-vpn/amnezia-client/blob/1754a82f67e358fd626149048c7d51fdbddf32ed/client/utilities.cpp
https://doc.qt.io/qt-6/qrandomgenerator.html#system
https://forums.gentoo.org/viewtopic-p-8647783.html?sid=29d2dcdf93977b3a96d1b7e2118359ba#8647783
https://7asecurity.com

Pentest Report

AVP-02-008 WP1: Insecure Local Networking via ATS Exception (Low)

Note: While TLS over port 443 is used by default, the ATS exception is needed for a
fallback mechanism that does not rely on public certificate infrastructure, but still uses
encryption.

Affected version: AmneziaVPN for iOS v4.5.4.

Since iOS 9, iOS disabled clear-text HTTP communications by default. However,
developers can define exceptions to these secure defaults. It was found that the iOS app
implements a local networking exception55, which allows insecure communications on
local networks. This may result in malicious Man-In-The-Middle (MitM) scenarios in
situations where the application makes an insecure local network request while an
attacker is able to modify clear-text HTTP communications.

This issue can be confirmed by reviewing the Info.plist file of the application:

Affected File:
Info.plist

Affected Setting:
<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<false/>

<key>NSAllowsLocalNetworking</key>

<true/>

</dict>

Please note that NSAllowsLocalNetworking is set to NO by default. Setting it to YES will
disable ATS for connections over a local network56.

It is recommended to remove all ATS exceptions in order to provide the best protection
to application end users.

56 https://www.nowsecure.com/...-nsallowsarbitraryloads-app-transport-security-ats-exceptions/
55 https://developer.apple.com/.../nsapptransportsecurity/nsallowslocalnetworking

7ASecurity © 2024
22

https://www.nowsecure.com/blog/2017/08/31/security-analysts-guide-nsapptransportsecurity-nsallowsarbitraryloads-app-transport-security-ats-exceptions/
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nsallowslocalnetworking
https://7asecurity.com

Pentest Report

Conclusion

Despite the number of findings encountered in this exercise, the AmneziaVPN solution
defended itself well against a broad range of attack vectors. The solution will become
increasingly difficult to attack as additional cycles of security testing and subsequent
hardening continue.

The AmneziaVPN solution provided a number of positive impressions during this
assignment that must be mentioned here:

● The source code is very well-written, easy to read, and generally adheres to a
number of security best practices.

● The Android and iOS mobile applications offer a minimal attack surface, reducing
the potential for security vulnerabilities.

● The apps prevent screenshot leaks. This enhances security by safeguarding
confidential information from being captured and shared without authorization.

● The Android app prevents backups, debugging, and task hijacking, which
protects user privacy and eliminates entire attack vectors.

● The Android app exports only secure components with appropriate permissions,
implements adequate exception handling and was found to be resilient against a
number of intent-based attacks. It also avoids hardcoded API keys and enforces
encryption for all traffic.

● Access control was found to be well-implemented, whereby users cannot read,
modify, or delete data from other users.

● It was observed that the solution does not reveal any sensitive data or cookies to
third-party websites.

The security of the AmneziaVPN solution will improve substantially with a focus on the
following areas:

● Hardware-backed Security Enclave Usage: The Android application should
leverage the hardware-backed security enclave available in the Android Keystore
for the best protection of sensitive data at rest, such as PII, credentials, tokens,
and alternative information (AVP-02-001).

● User Education: While mitigation of the TunnelVision attack is difficult, some
countermeasures are possible via user education (AVP-02-006). This will protect
users against de-anonymization and VPN traffic interception attacks from
high-profile adversaries.

● Information leakage: The Android application should implement measures to
mitigate risks associated with sensitive information leakage through logcat
messages (AVP-02-009), and to prevent exposure of sensitive data in memory
(AVP-02-010).

● Software Patching: The AmneziaVPN solution should implement appropriate
software patching procedures that regularly apply security patches in a timely

7ASecurity © 2024
23

https://7asecurity.com

Pentest Report

manner (AVP-02-005). In a day and age when most lines of code come from
underlying software dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible
automation for this could include tools like Snyk.io57 or Renovate Bot58.

● Removal of Unsafe Functions: The AmneziaVPN codebase should eliminate
functions with known security weaknesses, as much as possible. The
development team should instead leverage safe functions for adequate
protection against memory corruption vulnerabilities, improve resilience against
potential traffic analysis attacks, and enhance overall security (AVP-02-004,
AVP-02-007).

● General Hardening: Other less important hardening recommendations include
implementing a root/jailbreak detection mechanism to alert users about security
risks prior to using the applications (AVP-02-003), removing all ATS exceptions to
protect users from Man-In-The-Middle (MitM) attacks (AVP-02-008), and
hardening several configuration options (AVP-02-002) to protect AmneziaVPN
users.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing AmneziaVPN
resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

58 https://github.com/renovatebot/renovate
57 https://snyk.io/

7ASecurity © 2024
24

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

7ASecurity would like to take this opportunity to sincerely thank Mazay Banzaev and the
rest of the AmneziaVPN team, for their exemplary assistance and support throughout
this audit.

7ASecurity © 2024
25

https://7asecurity.com

