

Test Targets:
 AmneziaVPN Security
 AmneziaVPN Privacy
 AmneziaVPN Code Changes
 AmneziaVPN Supply Chain
 AmneziaVPN Threat Model

Pentest Report

Client:
AmneziaVPN

7ASecurity Test Team:

●​ Abraham Aranguren, MSc.
●​ Daniel Ortiz, MSc.
●​ Miroslav Štampar, PhD.
●​ Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction​ 3
Scope​ 4
Identified Vulnerabilities​ 5

AVP-03-004 WP1: DoS via Insecure Communication in AmneziaVPN Client (High)​ 5
AVP-03-005 WP1/3: VPN Config Tampering via Exposed Admin API (Critical)​ 9
AVP-03-006 WP1: Arbitrary RCE via OpenVPN Config Import (Critical)​ 12

Hardening Recommendations​ 15
AVP-03-001 WP1: Lack of Perfect Forward Security (Medium)​ 15
AVP-03-002 WP1: Multiple Vulnerabilities in Go Versions Used (Low)​ 18
AVP-03-003 WP1: Traffic Masking Weakness via Insecure PRNG (Low)​ 19

WP2: AmneziaVPN Supply Chain Implementation​ 21
Introduction and General Analysis​ 21
Current SLSA practices of AmneziaVPN​ 21
SLSA v1.0 Framework Analysis​ 22
SLSA v1.0 Assessment Results​ 23
SLSA v1.0 Assessment Justification​ 23

Producer requirements​ 23
Build requirements​ 24

SLSA v0.1 Results​ 25
SLSA v0.1 & v1.0 Conclusion​ 26

WP3: AmneziaVPN Lightweight Threat Model​ 27
Introduction​ 27
Relevant assets and threat actors​ 27
Attack surface​ 28
Threat 01: Attacks Against Custom Cryptography Implementation​ 29
Threat 02: Network-based Amnezia Backend Service Impersonation​ 30
Threat 03: Release Binary Tampering​ 31
Threat 04: Connecting to a Malicious VPN Server​ 32
Threat 05: Disrupted Continuity of the Service (Denial of Service)​ 33
Threat 06: Increased Local Attack Surface​ 35
Threat 07: Attacks Against the Backend Infrastructure​ 36
Threat 08: Bug Omission Risk from Missing Automated Security in CI/CD​ 37
Threat 09: Public Relation Failures and Loss of Public Trust​ 38

Conclusion​ 40

7ASecurity © 2025
 2

https://7asecurity.com

Pentest Report

Introduction
“More than a VPN
Access resources blocked in your region or create your own private VPN with ease”

From https://amnezia.org/en

This document outlines the results of a penetration test and whitebox security review
conducted against the AmneziaVPN platform. The project was solicited by AmneziaVPN,
funded by the Open Technology Fund (OTF), and executed by 7ASecurity in December
2024 and January 2025. The audit team dedicated 18 working days to complete this
assignment. Please note that this is the third penetration test for this project.
Consequently, the identification of security weaknesses was expected to be more difficult
during this engagement, as more vulnerabilities are identified and resolved after each
testing cycle.

Due to a recent audit in July 20241, during this iteration the goal was to review a number
of security and privacy features, recent code changes, review the supply chain security
and create a lightweight threat model. The methodology implemented was whitebox:
7ASecurity was provided with access to a staging environment, documentation, and
source code. A team of 4 senior auditors carried out all tasks required for this
engagement, including preparation, delivery, documentation of findings and
communication.

A number of necessary arrangements were in place by December 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Signal
chat group. The AmneziaVPN team was helpful and responsive throughout the audit,
which ensured that 7ASecurity was provided with the necessary access and information
at all times, thus avoiding unnecessary delays. 7ASecurity provided regular updates
regarding the audit status and its interim findings during the engagement.

This audit split the scope items into the following work packages, which are referenced
in the ticket headlines as applicable:

●​ WP1: Whitebox tests for AmneziaVPN Security, Privacy & Recent Code Updates
●​ WP2: Whitebox Tests against AmneziaVPN Supply Chain Implementation
●​ WP3: AmneziaVPN Lightweight Threat Model documentation

1 https://7asecurity.com/reports/pentest-report-amneziavpn2.pdf

7ASecurity © 2025
 3

https://amnezia.org/en
https://7asecurity.com/reports/pentest-report-amneziavpn2.pdf
https://7asecurity.com

Pentest Report

The findings of the security audit (WP1) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

3 3 6

Please note that the analysis of the remaining work packages (WP2, WP3) is provided
separately, in the following section of this report:

●​ WP2: AmneziaVPN Supply Chain Implementation
●​ WP3: AmneziaVPN Lightweight Threat Model

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
AmneziaVPN applications.

Scope

The following list outlines the items in scope for this project:

●​ WP1: Whitebox tests for AmneziaVPN Security, Privacy & Recent Updates
○​ https://github.com/amnezia-vpn/amnezia-client
○​ https://github.com/amnezia-vpn/amneziawg-go
○​ https://github.com/amnezia-vpn/amneziawg-windows
○​ https://github.com/amnezia-vpn/amneziawg-windows-client
○​ https://github.com/amnezia-vpn/amneziawg-exporter
○​ https://github.com/amnezia-vpn/amneziawg-android
○​ https://github.com/amnezia-vpn/amneziawg-apple

●​ WP2: Whitebox Tests against AmneziaVPN Supply Chain Implementation
○​ As above

●​ WP3: AmneziaVPN Lightweight Threat Model documentation
○​ As above

7ASecurity © 2025
 4

https://github.com/amnezia-vpn/amnezia-client
https://github.com/amnezia-vpn/amneziawg-go
https://github.com/amnezia-vpn/amneziawg-windows
https://github.com/amnezia-vpn/amneziawg-windows-client
https://github.com/amnezia-vpn/amneziawg-exporter
https://github.com/amnezia-vpn/amneziawg-android
https://github.com/amnezia-vpn/amneziawg-apple
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. AVP-03-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

AVP-03-004 WP1: DoS via Insecure Communication in AmneziaVPN Client (High)

Retest Notes: Resolved2 by AmneziaVPN and confirmed by 7ASecurity.

The AmneziaVPN client has a Denial-of-Service (DoS) vulnerability affecting both free
and paid VPN services. This issue arises from insecure communication within the
function chain getServicesList() → shouldBypassProxy() → getProxyUrls(). The
getServicesList() function sends an unencrypted HTTP request to
http://gw.amnezia.org/v1/services, making it susceptible to manipulation. If
shouldBypassProxy() returns true due to redirections or timeouts, getProxyUrls()
retrieves proxy endpoints. Although the response is encrypted, it can be easily decrypted
using a known key and IV, leaving the proxy list vulnerable to blocking.

This allows attackers to disrupt gateway and proxy resolution, leading to connectivity
failures. No evidence suggests data exposure or unauthorized access, but affected
users may be unable to connect to AmneziaVPN services. Even though this covers both
the gateway and failback proxy communication, During proof-of-concept testing, it was
confirmed that redirecting the DNS resolution of gw.amnezia.org to 127.0.0.1 is sufficient
to disrupt both free and paid VPN services.

Issue 1: DoS via Gateway DNS spoofing

To demonstrate this issue, the dnschef3 tool was used to spoof the DNS response for the
gateway domain, redirecting it to 127.0.0.1, effectively disrupting the connectivity.

Command:
dnschef.py -i 192.168.0.107 --fakeip 127.0.0.1 --fakedomains gw.amnezia.org

Output:
[...]​
(00:47:04) [*] Cooking A replies to point to 127.0.0.1 matching: gw.amnezia.org​
[...]

3 https://github.com/iphelix/dnschef
2 https://github.com/amnezia-vpn/amnezia-client/releases/tag/4.8.7.2

7ASecurity © 2025
 5

https://github.com/iphelix/dnschef
https://github.com/amnezia-vpn/amnezia-client/releases/tag/4.8.7.2
https://7asecurity.com

Pentest Report

Result:
Attempting to initiate a "VPN by Amnezia" connection within the AmneziaVPN client
results in an error message, preventing the user from connecting to the VPN service.

Fig.: Service Disruption in AmneziaVPN Client Due to DoS Attack

Issue 2: DoS via DNS spoofing of Failback Proxies

An attacker could escalate the attack by enumerating the failback proxy list used by the
AmneziaVPN client and blocking their DNS resolution to disrupt connectivity. The
following script demonstrates how to retrieve these failback proxies, which could then be
rendered inaccessible through targeted DNS manipulation:

PoC Script:
https://7as.es/AmneziaVPN_uEuw9k6N/fetch_proxies.py

Command:
python3 fetch_proxies.py

7ASecurity © 2025
 6

https://7as.es/AmneziaVPN_uEuw9k6N/fetch_proxies.py
https://7asecurity.com

Pentest Report

Output:
[

 "https://sbeo7y6ouqvhhxviizzbfvxale0lyhsz.lambda-url.eu-north-1.on.aws:443/"

]

The root cause for this issue can be observed in the following code paths:

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/client/settings.cpp

Affected Code:
namespace​
{​
 const char cloudFlareNs1[] = "1.1.1.1";​
 const char cloudFlareNs2[] = "1.0.0.1";​
​
 constexpr char gatewayEndpoint[] = "http://gw.amnezia.org:80/";​
}

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/core/controllers/apiController.cpp

Affected Code:
ErrorCode ApiController::getServicesList(QByteArray &responseBody)​
{​
 [...]​
 request.setUrl(QString("%1v1/services").arg(m_gatewayEndpoint));​
 [...]​
 if (sslErrors.isEmpty() && shouldBypassProxy(reply, responseBody, false)) {​
 m_proxyUrls = getProxyUrls();

 [...]​
 for (const QString &proxyUrl : m_proxyUrls) {​
 ​ request.setUrl(QString("%1v1/services").arg(proxyUrl));​
 [...]​
}​
​
bool shouldBypassProxy(QNetworkReply *reply, const QByteArray &responseBody, bool

 checkEncryption, const QByteArray &key = "",​
 const QByteArray &iv = "", const QByteArray &salt = "")​
{​
 if (reply->error() == QNetworkReply::NetworkError::OperationCanceledError​
 || reply->error() == QNetworkReply::NetworkError::TimeoutError) {​
 qDebug() << "Timeout occurred";​
 return true;​
 } else if (responseBody.contains("html")) {​
 qDebug() << "The response contains an html tag";​
 return true;​
 }

7ASecurity © 2025
 7

https://github.com/amnezia-vpn/amnezia-client/blob/e7fa160c9c51f829d93e837d44e4b1ab7d8217b7/client/settings.cpp#L17
https://github.com/amnezia-vpn/amnezia-client/blob/da5fe1d766e6402a365d08a440705a2a99fe82f6/client/core/controllers/apiController.cpp
https://7asecurity.com

Pentest Report

 [...]

}​
​
QStringList ApiController::getProxyUrls()​
{​
 [...]​
 QStringList proxyStorageUrl;​
 if (m_isDevEnvironment) {​
 proxyStorageUrl = QStringList { DEV_S3_ENDPOINT };​
 } else {​
 proxyStorageUrl = QStringList { PROD_S3_ENDPOINT };​
 }​
​
 QByteArray key = m_isDevEnvironment ? DEV_AGW_PUBLIC_KEY : PROD_AGW_PUBLIC_KEY;​
​
 for (const auto &proxyStorageUrl : proxyStorageUrl) {​
 request.setUrl(proxyStorageUrl);​
 reply = amnApp->manager()->get(request);​
​
 auto encryptedResponseBody = reply->readAll();​
 ​
 if (!m_isDevEnvironment) {​
 QCryptographicHash hash(QCryptographicHash::Sha512);​
 hash.addData(key);​
 QByteArray hashResult = hash.result().toHex();​
​
 QByteArray key = QByteArray::fromHex(hashResult.left(64));​
 QByteArray iv = QByteArray::fromHex(hashResult.mid(64, 32));​
 QByteArray ba = QByteArray::fromBase64(encryptedResponseBody);​
​
 QSimpleCrypto::QBlockCipher blockCipher;​
 responseBody = blockCipher.decryptAesBlockCipher(ba, key, iv);​
 [...]​
}

To resolve this issue, all gateway communications must be enforced over HTTPS to
prevent interception and manipulation. Error handling in shouldBypassProxy() should be
strengthened to resist exploitation through forced timeouts or crafted responses,
ensuring secure proxy resolution.

Since the proxy list must remain accessible without authentication, encryption with a
known key and IV provides no meaningful protection and should not be relied upon.
Instead, resilience should be prioritized through the following measures:

●​ Regularly rotate proxy endpoints to reduce the impact of DNS-based blocking.
●​ Distribute proxy lists via multiple channels, including hardcoded fallback

endpoints and dynamically updated lists.

7ASecurity © 2025
 8

https://7asecurity.com

Pentest Report

●​ Protect DNS resolution using DNS-over-HTTPS (DoH)4 or DNS-over-TLS (DoT)5
to prevent interception and manipulation.

●​ Explore decentralized, peer-assisted and deliberately slow proxy discovery
mechanisms to reduce reliance on a single retrieval method, and make proxy
identification as difficult as possible, without compromising the user experience.

As attackers can inevitably retrieve the proxy list, the focus should be on resilience
rather than obfuscation. Nevertheless, Psiphon6 employs a strategy to prevent censors
from easily obtaining and blocking its entire proxy or node list, which could be explored
by AmneziaVPN for further resilience against censorship.

AVP-03-005 WP1/3: VPN Config Tampering via Exposed Admin API (Critical)

Retest Notes: Resolved by AmneziaVPN and confirmed by 7ASecurity.

The AmneziaVPN Premium service was found to expose the amnezia-backend service
to the Internet with only basic authorization. Any user purchasing the premium service
via platforms such as vpnpay.io can extract a valid API key and the API backend IP
address from the vpn://textkey used to import VPN configurations into the AmneziaVPN
client, allowing manual queries to administrative backend endpoints hosted in AWS.

A source code review revealed that predictable S3 bucket names storing configuration
files could enable unauthorized creation or modification of VPN configurations for
premium users. This could result in a full compromise of all service users, allowing an
attacker to redirect traffic to attacker-controlled machines or deliver malicious VPN
configurations to end-user devices.

Issue 1: Creation of arbitrary VPN configuration in existing bucket

The following cURL command, using a valid regular-user api-key extracted from the
Amnezia Premium VPN configuration, creates an empty VPN host configuration pointing
to a bogus localhost, confirming backend resource creation.

Command:
curl -i -H "content-type: application/json" -H "Authorization: Api-Key Def[...]"

https://52.223.54.40/api/v1/worker/create-or-update -d

'{"host":"127.0.0.1","bucket_name":"pl","config":""}'

Output:
HTTP/2 201 ​

6 https://psiphon.ca/
5 https://www.cloudflare.com/learning/dns/dns-over-tls/
4 https://developers.cloudflare.com/1.1.1.1/encryption/dns-over-https/

7ASecurity © 2025
 9

https://psiphon.ca/
https://www.cloudflare.com/learning/dns/dns-over-tls/
https://developers.cloudflare.com/1.1.1.1/encryption/dns-over-https/
https://7asecurity.com

Pentest Report

date: Thu, 30 Jan 2025 20:09:42 GMT​
content-type: application/json​
[...]​
​
"A new Worker [76][127.0.0.1] was created."

Code inspection indicated that existing configurations could be modified, but this was not
tested to avoid service disruption.

Affected File:
amnezia-backend/app/amnezia/views/upload.py

Affected Code:
class WorkerCreateUpdateView(CreateAPIView):​
 """Updates the config in the provided bucket-worker pair..."""​
[...]​
 worker_query = {'host': worker_host, 'bucket_id': bucket.id}​
 if country_code:​
 worker_query['country_code'] = country_code​
 try:​
 worker = Worker.objects.filter(**worker_query).get()​
​
 if worker.config == config:​
 response_messages.append(f'The `config` field is the same as in the

Worker [{worker.host}].')​
 return Response(​
 data='\n'.join(response_messages),​
 status=status.HTTP_304_NOT_MODIFIED,​
)​
 worker.config = config​
 worker.save()​
​
 response_messages.append(f'Worker [{worker.id}][{worker.host}] was

updated.')​
 return Response(​
 data='\n'.join(response_messages),​
 status=status.HTTP_204_NO_CONTENT,​
)​
​
 # Create a new Worker...​
 except Worker.DoesNotExist:​
 worker_query['config'] = config​
 worker = Worker.objects.create(**worker_query)​
 worker.save()​
[...]

7ASecurity © 2025
 10

https://7asecurity.com

Pentest Report

Issue 2: Extraction of Worker IP addresses via admin API endpoint

The following command confirms broken authorization, enabling the listing of worker IP
addresses for a guessable bucket_id via an administrative endpoint:

Command:
curl -i -H "content-type: application/json" -H "Authorization: Api-Key Def[...]"

https://52.223.54.40/api/v1/admin/get_workers/?bucket_id=1

Output:
HTTP/2 200 ​
date: Fri, 31 Jan 2025 18:18:28 GMT​
content-type: application/json​
content-length: 303​
server: nginx​
vary: Accept, Cookie​
allow: GET, HEAD, OPTIONS​
x-frame-options: DENY​
x-content-type-options: nosniff​
referrer-policy: same-origin​
cross-origin-opener-policy: same-origin​
​
{"1": "185.88.141.48", "7": "185.200.106.68", "21": "51.158.237.213", "26":

"185.200.105.13", "33": "51.159.224.137", "38": "51.159.224.212", "42":

"51.159.224.209", "49": "51.159.225.1", "47": "51.159.224.208", "52": "176.56.182.155",

"58": "176.56.182.121", "67": "62.197.45.18", "70": "89.41.181.69"}

To avoid disrupting production, other administrative API endpoints were not tested.
However, proof-of-concept analysis strongly indicates incorrect authorization
implementation, exposing administrative features to any Amnezia Premium user for $21.

Role-based authorization should be implemented to distinguish administrative users
from regular users. The administrative API should not be exposed to the Internet, should
be hosted on a separate port, and should only be accessible via an internal IP after
establishing a VPN connection. A full security assessment of the backend infrastructure
and services is strongly recommended.

Given the severity of this issue, all logs should be collected, and a forensic investigation
should determine if exploitation has occurred. Findings should guide further actions to
assess the impact and potential infrastructure compromise.

7ASecurity © 2025
 11

https://7asecurity.com

Pentest Report

AVP-03-006 WP1: Arbitrary RCE via OpenVPN Config Import (Critical)

Retest Notes: Resolved7 by AmneziaVPN and confirmed by 7ASecurity.

The configuration import functionality of the AmneziaVPN client is vulnerable to arbitrary
code execution due to insufficient validation of dangerous OpenVPN directives. The
checkForMaliciousStrings() function fails to block configurations containing
script-triggering tags, allowing attackers to execute arbitrary commands with root
privileges.

Two core issues exist:

1.​ dangerousTagsMaxCount = 3 permits configurations with up to two dangerous
tags (e.g., up, tls-verify) without warnings, allowing malicious tags to bypass
detection.

2.​ The \w+-\w+|\w+ regex fails to capture multi-hyphenated tags (e.g.,
route-pre-down, auth-user-pass-verify), enabling attackers to evade detection
using tags with multiple hyphens.

The following AmneziaVPN configuration contains a route-up directive executing
/usr/bin/touch /tmp/7a.poc. Upon VPN connection, this command runs with root
privileges, creating /tmp/7a.poc. This demonstrates arbitrary command execution on the
client system through a malicious configuration import.

PoC Malicious Configuration:
https://7as.es/AmneziaVPN_uEuw9k6N/malicious_vpn_config.txt

Result:
$ ls -la /tmp/7a.poc

-rw-r--r-- 1 root root 0 velj 1 01:32 /tmp/7a.poc

The root cause for this issue can be observed in the following code path:

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[…]/ui/controllers/importController.cpp

Affected Code:
bool ImportController::extractConfigFromData(QString data)​
{​
 [...]​
 m_configType = checkConfigFormat(config);​
 if (m_configType == ConfigTypes::Invalid) {​
 data.replace("vpn://", "");​

7 https://github.com/amnezia-vpn/amnezia-client/pull/1571

7ASecurity © 2025
 12

https://7as.es/AmneziaVPN_uEuw9k6N/malicious_vpn_config.txt
https://github.com/amnezia-vpn/amnezia-client/blob/da5fe1d766e6402a365d08a440705a2a99fe82f6/client/ui/controllers/importController.cpp
https://github.com/amnezia-vpn/amnezia-client/pull/1571
https://7asecurity.com

Pentest Report

 QByteArray ba = QByteArray::fromBase64(data.toUtf8(),

QByteArray::Base64UrlEncoding | QByteArray::OmitTrailingEquals);​
 QByteArray ba_uncompressed = qUncompress(ba);​
 if (!ba_uncompressed.isEmpty()) {​
 ba = ba_uncompressed;​
 }​
​
 config = ba;​
 m_configType = checkConfigFormat(config);​
 }​
​
 switch (m_configType) {​
 case ConfigTypes::OpenVpn: {​
 m_config = extractOpenVpnConfig(config);​
 if (!m_config.empty()) {​
 checkForMaliciousStrings(m_config);​
 return true;​
 }​
 return false;​
 }​
 [...]​
}​
​
void ImportController::checkForMaliciousStrings(const QJsonObject &serverConfig)​
{​
 [...]​
 QString protocolConfig =

containerConfig[ProtocolProps::protoToString(Proto::OpenVpn)].toObject()[config_key::la

st_config].toString();​
 QString protocolConfigJson =

QJsonDocument::fromJson(protocolConfig.toUtf8()).object()[config_key::config].toString(

);​
​
 const QRegularExpression regExp { "(\\w+-\\w+|\\w+)" };​
 const size_t dangerousTagsMaxCount = 3;​
​
 QStringList dangerousTags {​
 "up", "tls-verify", "ipchange", "client-connect", "route-up", "route-pre-down",

"client-disconnect", "down", "learn-address", "auth-user-pass-verify"​
 };​
​
 QStringList maliciousStrings;​
 QStringList lines = protocolConfigJson.replace("\r", "").split("\n");​
 for (const QString &l : lines) {​
 QRegularExpressionMatch match = regExp.match(l);​
 if (dangerousTags.contains(match.captured(0))) {​
 maliciousStrings << l;​
 }​
 }​
​
 if (maliciousStrings.size() >= dangerousTagsMaxCount) {​

7ASecurity © 2025
 13

https://7asecurity.com

Pentest Report

 m_maliciousWarningText = tr("In the imported configuration, potentially

dangerous lines were found:");​
 for (const auto &string : maliciousStrings) {​
 ​ m_maliciousWarningText.push_back(QString("
<i>%1</i>").arg(string));​
 }​
 }​
[...]

To address this issue, the checkForMaliciousStrings() function must reduce
dangerousTagsMaxCount to 1, flagging any non-whitelisted dangerous tag to ensure a
single malicious directive triggers a warning. The regExp must be replaced with logic
that splits configuration lines by whitespace and validates the first token against the
dangerous tags list, preventing evasion via multi-hyphenated or malformed tags.

Trusted directives like up and down with predefined scripts should be explicitly
whitelisted, while all others must be blocked. Input validation must be hardened to strip
or sanitize inline comments and unexpected characters that could bypass detection. For
additional guidance, please see the OWASP Input Validation Cheat Sheet8.

8 https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

7ASecurity © 2025
 14

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

AVP-03-001 WP1: Lack of Perfect Forward Security (Medium)

Retest Notes: Resolved9 by AmneziaVPN and confirmed by 7ASecurity.

Perfect Forward Security (PFS)10 ensures that session keys in VPN connections remain
secure even if the private key of the server is compromised. Without PFS, an attacker
with access to the private key can decrypt previously captured VPN traffic,
compromising data confidentiality. During the code audit, instances were identified
where PFS was explicitly disabled in the implementation of AmneziaVPN. This was
confirmed as follows:

Example 1: Windows Client C++ Implementation

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/ikev2_vpn_protocol_windows.cpp

Affected Code:
QString arguments = QString("-command \"Set-VpnConnectionIPsecConfiguration\" "​
 ​ "-ConnectionName '%1' "​
 ​ "-AuthenticationTransformConstants GCMAES128 "​
 ​ "-CipherTransformConstants GCMAES128 "​
 ​ "-EncryptionMethod AES256 "​
 ​ "-IntegrityCheckMethod SHA256 "​
 ​ "-PfsGroup None "​
 ​ "-DHGroup Group14 "​
 ​ "-PassThru -Force\"")​
 ​ .arg(tunnelName());

Example 2: Server Configuration Scripts

Affected File:
https://github.com/amnezia-vpn/amnezia-client/[...]/ipsec/configure_container.sh

10 https://en.wikipedia.org/wiki/Forward_secrecy
9 https://github.com/amnezia-vpn/amnezia-client/pull/1382

7ASecurity © 2025
 15

https://github.com/amnezia-vpn/amnezia-client/blob/0a5b54a2e4cb07b8b6d3610e57bad0b32514cfaf/client/protocols/ikev2_vpn_protocol_windows.cpp
https://github.com/amnezia-vpn/amnezia-client/blob/0a5b54a2e4cb07b8b6d3610e57bad0b32514cfaf/client/server_scripts/ipsec/configure_container.sh
https://en.wikipedia.org/wiki/Forward_secrecy
https://github.com/amnezia-vpn/amnezia-client/pull/1382
https://7asecurity.com

Pentest Report

Affected Code:
cat > /etc/ipsec.conf <<EOF​
[...]​
conn shared​
 left=%defaultroute​
 leftid=$SERVER_IP_ADDRESS​
 right=%any​
 encapsulation=yes​
 authby=secret​
 pfs=no

[...]

cat > /etc/ipsec.d/ikev2.conf <<EOF​
conn ikev2-cp​
 left=%defaultroute​
 leftcert=$SERVER_IP_ADDRESS​
 leftid=$SERVER_IP_ADDRESS​
 leftsendcert=always​
 leftsubnet=0.0.0.0/0​
 leftrsasigkey=%cert​
 right=%any​
 rightid=%fromcert​
 rightaddresspool=192.168.43.10-192.168.43.250​
 rightca=%same​
 rightrsasigkey=%cert​
 narrowing=yes​
 dpddelay=30​
 dpdtimeout=120​
 dpdaction=clear​
 auto=add​
 ikev2=insist​
 rekey=no​
 pfs=no

It is advised to enable PFS in all configurations to protect the confidentiality of past VPN
sessions, even if the private key of the server is compromised. In the C++
implementation, update the PowerShell command by replacing -PfsGroup None with a
secure PFS group, such as PFS204811, to enable PFS for client-side VPN
configurations.

On the server side, update ipsec.conf and ikev2.conf by setting pfs=yes instead of
pfs=no. Additionally, specify secure Diffie-Hellman groups, such as modp2048, under the
ike and phase2alg parameters. These changes will align the IPsec server configuration
with modern security best practices, significantly enhancing VPN cryptographic strength.

11 https://docs.azure.cn/en-us/vpn-gateway/vpn-gateway-ipsecikepolicy-rm-powershell

7ASecurity © 2025
 16

https://docs.azure.cn/en-us/vpn-gateway/vpn-gateway-ipsecikepolicy-rm-powershell#diffie-hellman-groups
https://7asecurity.com

Pentest Report

AVP-03-002 WP1: Multiple Vulnerabilities in Go Versions Used (Low)

Retest Notes: Resolved12131415 by AmneziaVPN and confirmed by 7ASecurity.

Outdated or vulnerable Go versions16 are used in several components of the
AmneziaVPN software, introducing potential security risks. Although these vulnerabilities
are limited to the application runtime and do not directly impact host systems, updating
Go versions is strongly recommended to mitigate these risks.

Affected File Go Version Vulnerabilities

amnezia-client/.github/workflows/deploy.yml 1.22.1 917

amneziawg-go/Dockerfile 1.20 1118 / 9819

amneziawg-windows/build.cmd 1.20.8 1820

amneziawg-android/tunnel/tools/libwg-go/Makefile 1.22.3 621

All instances of Go used in the project should be updated to the latest stable version22 to
address known vulnerabilities. Hardcoding specific minor versions in files such as
Dockerfiles and build scripts should be avoided, as it can result in reliance on outdated
versions. Semantic versioning ranges or referencing the latest minor revisions with
appropriate tags (e.g., :latest) should be used to facilitate updates while ensuring
compatibility.

Automated tools such as Dependabot23 or Trivy24 should be integrated into the
development workflow to identify outdated or vulnerable components proactively,
enhancing security and simplifying dependency management. Although the current
vulnerabilities are of low severity due to the isolation of the Go runtime, prompt
resolution is essential to minimize the attack surface and ensure robust software

24 https://github.com/aquasecurity/trivy
23 https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
22 https://go.dev/doc/devel/release
21 https://www.cvedetails.com/vulnerability-list/vendor_id-14185/…/Golang-GO-1.22.3.html
20 https://www.cvedetails.com/vulnerability-list/…/Golang-GO-1.20.8.html
19 https://hub.docker.com/layers/library/golang/1.20/images/sha256-c1a…b5
18 https://www.cvedetails.com/vulnerability-list/vendor_id-14185/…/Golang-GO-1.20.12.html
17 https://www.cvedetails.com/vulnerability-list/vendor_id-14185/…/Golang-GO-1.22.1.html
16 https://www.cvedetails.com/version-list/14185/29205/1/Golang-GO.html
15 https://github.com/amnezia-vpn/amneziawg-android/pull/30
14 https://github.com/amnezia-vpn/amneziawg-windows/pull/13
13 https://github.com/amnezia-vpn/amnezia-client/pull/1517
12 https://github.com/amnezia-vpn/amneziawg-go/commit/71b…52dc27

7ASecurity © 2025
 17

https://github.com/amnezia-vpn/amnezia-client/blob/956dd6e37a101d30a47f4b3061afb0b2308fa8ee/.github/workflows/deploy.yml#L193
https://github.com/amnezia-vpn/amneziawg-go/blob/2e7780471af8efd13345692c11dac0cdb9cd8d35/Dockerfile#L1
https://github.com/amnezia-vpn/amneziawg-windows/blob/db18f2297e5e92cf90c60bc04e469f889fc0dc5f/build.cmd#L16
https://github.com/amnezia-vpn/amneziawg-android/blob/5bffd565832f6c954398663b96b57d47e7705ec3/tunnel/tools/libwg-go/Makefile#L23
https://github.com/aquasecurity/trivy
https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
https://go.dev/doc/devel/release
https://www.cvedetails.com/vulnerability-list/vendor_id-14185/product_id-29205/version_id-1793251/Golang-GO-1.22.3.html
https://www.cvedetails.com/vulnerability-list/vendor_id-14185/product_id-29205/version_id-1682895/Golang-GO-1.20.8.html
https://hub.docker.com/layers/library/golang/1.20/images/sha256-c1a446d8f0c5658cc9af7b207a521995cf26bcfe1c9e6a4e148ba4eb8ed2e8b5
https://www.cvedetails.com/vulnerability-list/vendor_id-14185/product_id-29205/version_id-1724711/Golang-GO-1.20.12.html
https://www.cvedetails.com/vulnerability-list/vendor_id-14185/product_id-29205/version_id-1793249/Golang-GO-1.22.1.html
https://www.cvedetails.com/version-list/14185/29205/1/Golang-GO.html
https://github.com/amnezia-vpn/amneziawg-android/pull/30
https://github.com/amnezia-vpn/amneziawg-windows/pull/13
https://github.com/amnezia-vpn/amnezia-client/pull/1517
https://github.com/amnezia-vpn/amneziawg-go/commit/71be0eb3a6547f172d17ce8b831b89e48052dc27
https://7asecurity.com

Pentest Report

security.

AVP-03-003 WP1: Traffic Masking Weakness via Insecure PRNG (Low)

Retest Notes: Resolved2526 by AmneziaVPN and confirmed by 7ASecurity.

An instance of insecure Pseudo-Random Number Generator (PRNG)27 usage was
identified, potentially undermining the traffic masking mechanism. The junk packet
creation mechanism uses the non-cryptographically secure math/rand package, resulting
in predictable packet sizes. This predictability could enable an attacker to distinguish
junk packets from legitimate traffic through traffic analysis, compromising the traffic
masking mechanism28. This can be confirmed observing the following code path:

Affected File:
https://github.com/amnezia-vpn/amneziawg-go/[...]/device/send.go

Affected Code:
import (​
 "math/rand"​
[...]​
func (peer *Peer) createJunkPackets() ([][]byte, error) {​
 [...]​
 junks := make([][]byte, 0, peer.device.aSecCfg.junkPacketCount)​
 for i := 0; i < peer.device.aSecCfg.junkPacketCount; i++ {​
 packetSize := rand.Intn(​

peer.device.aSecCfg.junkPacketMaxSize-peer.device.aSecCfg.junkPacketMinSize,​
) + peer.device.aSecCfg.junkPacketMinSize​
 junk, err := randomJunkWithSize(packetSize)

 [...]​
 junks = append(junks, junk)​
 }​
 return junks, nil​
}

The use of math/rand.Intn() for determining junk packet sizes is insecure, as it generates
predictable values exploitable through traffic analysis. While the randomJunkWithSize
function correctly uses crypto/rand for secure packet content generation, the
createJunkPackets function produces predictable packet sizes, reducing obfuscation
effectiveness and weakening resistance to traffic analysis.

The replacement of math/rand with crypto/rand is recommended to ensure

28 https://docs.amnezia.org/documentation/how-amnezia-works/
27 https://en.wikipedia.org/wiki/Pseudorandom_number_generator
26 https://github.com/amnezia-vpn/amneziawg-go/pull/70
25 https://github.com/amnezia-vpn/amneziawg-go/pull/61

7ASecurity © 2025
 18

https://github.com/amnezia-vpn/amneziawg-go/blob/2e3f7d122ca8ef61e403fddc48a9db8fccd95dbf/device/send.go
https://docs.amnezia.org/documentation/how-amnezia-works/
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://github.com/amnezia-vpn/amneziawg-go/pull/70
https://github.com/amnezia-vpn/amneziawg-go/pull/61
https://7asecurity.com

Pentest Report

cryptographically secure random number generation and enhance the unpredictability of
junk packet sizes. This change will significantly improve resilience to traffic analysis
attacks and strengthen the security of junk packet generation.

Proposed Fix:
import (​
 "crypto/rand"​
 "encoding/binary"​
[...]​
func (peer *Peer) createJunkPackets() ([][]byte, error) {​
 [...]​
 randomBytes := make([]byte, 8)​
 _, err := rand.Read(randomBytes)​
 if err != nil {​
 return nil, err​
 }​
 packetSize := int(binary.BigEndian.Uint64(randomBytes) % uint64(peer.device.​
aSecCfg.junkPacketMaxSize-peer.device.aSecCfg.junkPacketMinSize)) + peer.device.​
aSecCfg.junkPacketMinSize​
 [...]

}

7ASecurity © 2025
 19

https://7asecurity.com

Pentest Report

WP2: AmneziaVPN Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202229,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta30, Github31, Magento32, SolarWinds33,
and Codecov34, among many others. To mitigate this concerning trend, Google released
an End-to-End Framework for Supply Chain Integrity in June 202135, named
Supply-Chain Levels for Software Artifacts (SLSA)36.

This section of the report elaborates on the current state of the supply chain integrity
implementation of the AmneziaVPN project, as audited against versions 0.1 and 1.0 of
the SLSA framework. SLSA assesses the security of software supply chains and aims to
provide a consistent way to evaluate the security of software products and their
dependencies.

Current SLSA practices of AmneziaVPN

The AmneziaVPN project uses a public GitHub repository37 for source code
management and releases. Artifact distribution is fully automated via GitHub Actions38
for Linux, Android, and macOS, while Windows releases are handled using a dedicated
virtual machine. These practices align with SLSA framework security guidelines. The
following sections focus on specific practices and requirements unique to the project:

Source

AmneziaVPN uses Git and GitHub for version control and enforces strict rules to
maintain codebase integrity. All contributions are reviewed by trusted developers,
ensuring controlled and accountable repository access. Changes to the source code are
made transparently, with pull requests reviewed and approved only by trusted
developers.

38 https://github.com/amnezia-vpn/amnezia-client/actions
37 https://github.com/amnezia-vpn
36 https://slsa.dev/spec/
35 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
34 https://blog.gitguardian.com/codecov-supply-chain-breach/
33 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
32 https://sansec.io/research/rekoobe-fishpig-magento
31 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
30 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
29 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2025
 20

https://github.com/amnezia-vpn/amnezia-client/actions
https://github.com/amnezia-vpn
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

Build

The AmneziaVPN project uses GitHub, a hardened hosted platform, for its scripted build
process, defined as code within the repository39. Changes to the build script are made
through pull requests, reviewed and approved by maintainers, and take effect only after
merging. This strict review process enhances build security and reliability. Builds are
timestamped and reproducible on GitHub Actions.

Provenance

No evidence of properly formatted provenance compliant with the SLSA Framework40
was found in the AmneziaVPN repository. This result is expected, as SLSA standard
adoption remains an ongoing process in the industry. Tools like GitHub Artifacts
Attestations41 are gradually enabling provenance generation, but widespread
implementation is still lacking. However, unsigned and unformatted provenance was
identified in the GitHub Workflow build configuration file.

SLSA v1.0 Framework Analysis

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

●​ Build L0: No guarantees represent the lack of SLSA42.
●​ Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge43.
●​ Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance44.
●​ Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection45.

Based on the documentation provided by the AmneziaVPN team, 7ASecurity conducted
a SLSA v1.0 analysis, with the following results.

45 https://slsa.dev/spec/v1.0/levels#build-l3
44 https://slsa.dev/spec/v1.0/levels#build-l2
43 https://slsa.dev/spec/v1.0/levels#build-l1
42 https://slsa.dev/spec/v1.0/levels#build-l0
41 https://github.blog/changelog/2024-06-25-artifact-attestations-is-generally-available/
40 https://slsa.dev/spec/v1.0/provenance
39 https://github.com/amnezia-vpn/amnezia-client/tree/dev/deploy

7ASecurity © 2025
 21

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://github.blog/changelog/2024-06-25-artifact-attestations-is-generally-available/
https://slsa.dev/spec/v1.0/provenance
https://github.com/amnezia-vpn/amnezia-client/tree/dev/deploy
https://7asecurity.com

Pentest Report

SLSA v1.0 Assessment Results

The table below presents the results of AmneziaVPN according to the Producer and
Build platform requirements in the SLSA v1.0 Framework. The categories (source, build,
provenance, and contents of provenance) are logically separated. Each row shows the
SLSA level for each control, with green check marks indicating compliance and red
boxes indicating the lack of evidence for compliance.

Implementer Requirement L1 L2 L3

Producer Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ✅ ⛔ ⛔

Build
platform

Provenance
generation

Exists ✅ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation
strength

Hosted ✅ ✅

Isolated ✅

SLSA v1.0 Assessment Justification

Producer requirements

Choose an Appropriate Build Platform

AmneziaVPN artifacts are built on GitHub, a hosted build platform. GitHub Actions offer
a robust environment for automating builds and support SLSA-compliant provenance
generation using tools like GitHub Artifact Attestation46, enabling cryptographic
verification of artifact origin and integrity. Sandboxed build environments provided by
GitHub reduce interference risks. With proper configuration, GitHub Actions can support
SLSA Level 3 compliance, allowing AmneziaVPN to target SLSA L3 using
platform-provisioned features.

46 https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/

7ASecurity © 2025
 22

https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/
https://7asecurity.com

Pentest Report

Follow a Consistent Build Process

This requirement mandates producers to generate artifacts through a consistent build
process, enabling consumers to set clear expectations47. AmneziaVPN artifacts are
created using defined build scripts48 with step-by-step instructions, triggered by GitHub
Actions49 configured through YAML files.

Build requirements

Distribute provenance

AmneziaVPN distributes configuration files in the source code via GitHub. According to
the SLSA Framework, the configuration build file is classified as unsigned, unformatted
provenance.

Provenance Exists

AmneziaVPN does not use GitHub tools like GitHub Artifact Attestations, which generate
formatted provenance and leverage Sigstore50 for signing and verifying artifacts,
essential for meeting SLSA L2 and L3 requirements. However, AmneziaVPN uses a
build configuration file classified as unsigned, unformatted provenance under the SLSA
Framework, meeting SLSA L1 requirements.

Provenance is Authentic

Provenance must be signed with a private key accessible only to the hosted build
platform, ensuring trustworthiness and preventing tampering. This requirement can be
met by enabling tools such as GitHub Artifact Attestation or generating verifiable artifact
attestations.

Provenance is Unforgeable

The hosting platform must generate Provenance L3 to ensure resistance to tenant
forgery. This requirement can be met by enabling tools such as GitHub Artifact
Attestation.

50 https://www.sigstore.dev/
49 https://github.com/amnezia-vpn/amnezia-client/actions
48 https://github.com/amnezia-vpn/amnezia-client/tree/dev/deploy
47 https://slsa.dev/spec/v1.0/requirements#follow-a-consistent-build-process

7ASecurity © 2025
 23

https://www.sigstore.dev/
https://github.com/amnezia-vpn/amnezia-client/actions
https://github.com/amnezia-vpn/amnezia-client/tree/dev/deploy
https://slsa.dev/spec/v1.0/requirements#follow-a-consistent-build-process
https://7asecurity.com

Pentest Report

Hosted

The requirement mandates that all build steps be executed on a hosted build platform,
either on shared or dedicated infrastructure, not on individual workstations. AmneziaVPN
meets this requirement using GitHub.

Isolated

The requirement mandates execution of build steps in an isolated environment, with
external influence only initiated by the build process. AmneziaVPN meets this
requirement by using GitHub Actions agents provisioned for each build.

SLSA v0.1 Results

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Requirement L1 L2 L3 L4

Source - Version controlled ✅ ✅ ✅

Source - Verified history ✅ ✅

Source - Retained indefinitely ✅18mo. ✅

Source - Two-person reviewed ✅

Build - Scripted build ✅ ✅ ✅ ✅

Build - Build service ✅ ✅ ✅

Build - Build as code ✅ ✅

Build - Ephemeral environment ✅ ✅

Build - Isolated ✅ ✅

Build - Parameterless ✅

Build - Hermetic ✅

7ASecurity © 2025
 24

https://slsa.dev/spec/v0.1/requirements#version-controlled
https://slsa.dev/spec/v0.1/requirements#verified-history
https://slsa.dev/spec/v0.1/requirements#retained-indefinitely
https://slsa.dev/spec/v0.1/requirements#two-person-reviewed
https://slsa.dev/spec/v0.1/requirements#scripted-build
https://slsa.dev/spec/v0.1/requirements#build-service
https://slsa.dev/spec/v0.1/requirements#build-as-code
https://slsa.dev/spec/v0.1/requirements#ephemeral-environment
https://slsa.dev/spec/v0.1/requirements#isolated
https://slsa.dev/spec/v0.1/requirements#parameterless
https://slsa.dev/spec/v0.1/requirements#hermetic
https://7asecurity.com

Pentest Report

Build - Reproducible ✅

Provenance - Available ✅ ⛔ ⛔ ⛔

Provenance - Authenticated ⛔ ⛔ ⛔

Provenance - Service generated ⛔ ⛔ ⛔

Provenance - Non-falsifiable ⛔ ⛔

Provenance - Dependencies
complete

 ⛔

Common - Security ⛔

Common - Access ⛔

Common - Superusers ⛔

SLSA v0.1 & v1.0 Conclusion

The evaluation of AmneziaVPN software supply chain security practices determined that
the project achieves SLSA Level 1, reflecting basic measures such as source code
version control and automated builds via GitHub Actions. Gaps remain in meeting higher
SLSA levels, primarily due to the absence of formatted and signed provenance data.

It is recommended to deploy Signed Provenance Generation to reach SLSA Level 3.
Specifically, GitHub Actions can use GitHub Artifact Attestations to establish an
unforgeable link between artifacts and the build process, ensuring software supply chain
integrity by creating and verifying signed provenance.

Although AmneziaVPN meets SLSA Level 1, advancing to higher levels requires a
defined strategy for generating signed, formatted provenance. These measures will
enhance resilience against supply chain threats, ensuring artifact integrity, authenticity,
and traceability.

7ASecurity © 2025
 25

https://slsa.dev/spec/v0.1/requirements#reproducible
https://slsa.dev/spec/v0.1/requirements#available
https://slsa.dev/spec/v0.1/requirements#authenticated
https://slsa.dev/spec/v0.1/requirements#service-generated
https://slsa.dev/spec/v0.1/requirements#non-falsifiable
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#security
https://slsa.dev/spec/v0.1/requirements#access
https://slsa.dev/spec/v0.1/requirements#superusers
https://7asecurity.com

Pentest Report

WP3: AmneziaVPN Lightweight Threat Model
Introduction

AmneziaVPN is an all-in-one solution enabling users to connect to a managed VPN
service or configure a self-hosted VPN. It is designed to provide censorship-resistant
access in countries with extreme internet restrictions. To enhance anonymity and bypass
government censorship, it includes AmneziaWG, a custom-modified WireGuard version
with obfuscation techniques against Deep Packet Inspection (DPI) and surveillance. The
software supports multiple protocols for adversarial environments, including WireGuard,
OpenVPN with Cloak, Shadowsocks, and IKEv2/IPsec51.

Threat model analysis identifies security threats and vulnerabilities, enabling effective
mitigation before exploitation. Lightweight threat modeling follows a simplified STRIDE52
approach, focusing on system analysis through documentation, specifications, source
code, and existing threat models, with client representative input.

This section categorizes potential attack scenarios, identifies vulnerabilities, and
suggests mitigations. The analysis covers client applications, infrastructure, design, and
processes based on all available resources during the engagement.

Relevant assets and threat actors

The following key assets were identified as significant from a security perspective:

●​ Source code repository
●​ Build artifacts
●​ Build artifacts signing keys
●​ Accounts in Google Play Store/Apple Store authorized to release the software
●​ GitHub accounts of the team
●​ Domains used to publish documentation and release artifacts
●​ Infrastructure hosting publicly available services (AWS/CloudFlare/GCP)
●​ Private key used by servers to encrypt data provided to clients on managed

AmneziaVPN servers, eliminating reliance on HTTPS certificate infrastructure.
●​ Symmetric session encryption key to encrypt parameters exchanged between

the AmneziaVPN client and backend services.
●​ QR codes and textkey used to share access to VPN instances.

The following threat actors are considered relevant for the analysis:

●​ Advanced Persistent Attacker (Nation State Attacker)
●​ External Attacker

52 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
51 https://docs.amnezia.org/documentation/protocols-info/

7ASecurity © 2025
 26

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://docs.amnezia.org/documentation/protocols-info/
https://7asecurity.com

Pentest Report

●​ LAN Attacker
●​ Compromised Developer

Attack surface

In threat modeling, the attack surface includes all potential entry points an attacker could
exploit to compromise a system, access or manipulate sensitive data, or disrupt
application availability. Identifying the attack surface helps pinpoint vulnerabilities and
implement defenses to mitigate risks.

By analyzing threats and attack scenarios, organizations gain insight into techniques that
could compromise system security.

The following data flow diagram outlines the system, highlighting key countermeasures
and components handling various assets as envisioned by 7ASecurity:

Fig.: Data flow diagram of a simplified Amnezia Free involving an end-user, infrastructure

engineer (admin) and backend components hosted in AWS

7ASecurity © 2025
 27

https://7asecurity.com

Pentest Report

Threat 01: Attacks Against Custom Cryptography Implementation

Overview

The risk of HTTPS certificate infrastructure compromise, particularly in adversary states,
is considered. A custom encryption mechanism using public-key cryptography and a
session key for symmetric encryption is implemented.

Cryptographic flaws are difficult to detect due to their complexity. If encryption is
compromised, the system and users may face threats to privacy, anonymity, or more
advanced attacks targeting the infrastructure.

Countermeasures

The Amnezia Free gateway component uses a custom cryptography protocol with
public-key cryptography and AES-based symmetric encryption using a session key.
Amnezia Premium does not implement this scheme, but implementation is planned.

Attack Scenarios

The following attack scenarios should be considered in security assessments and
cryptanalysis:

●​ Ciphertext attacks due to insufficient randomness in algorithm parameters,
enabling decryption.

●​ Known or chosen plaintext attacks to break the encryption key.
●​ Padding oracle attacks using chosen ciphertext.
●​ Private key disclosure, allowing decryption and tampering of user-backend

communication.
●​ Attacks on cryptographic libraries (e.g., OpenSSL), insecure wrappers, or

insecure defaults lacking mitigations for known vulnerabilities.

Recommendation

To mitigate risks from custom cryptography and strengthen defenses against the listed
attacks, the following measures may be considered:

●​ Conduct a cryptanalysis alongside a security assessment to ensure compliance
with security best practices.

●​ Review algorithms and modes to identify potential attack techniques.
●​ Use reputable libraries with securely configured parameters to mitigate known

attacks.
●​ Ensure secure parameter generation using a reliable randomness source.
●​ Review private key handling and potential backend key material attacks.

7ASecurity © 2025
 28

https://7asecurity.com

Pentest Report

●​ Implement strong encryption for key management (e.g., AWS CMK KMS or HSM
solutions).

Threat 02: Network-based Amnezia Backend Service Impersonation

Overview

The VPN solution, designed for highly adversarial areas, faces threats from nation-state
actors using advanced techniques such as issuing legitimate certificates, large-scale
Man-in-the-Middle (MiTM) attacks, and DNS spoofing. Countermeasures must prevent
and detect these attacks.

Countermeasures

The application considers common certificate infrastructure vulnerable to
Man-in-the-Middle (MiTM) attacks in adversarial environments. Amnezia Free does not
rely on issued certificates but uses custom cryptography with public-key and symmetric
encryption, as detailed separately.

Attack Scenarios

The following network-level attack scenarios, previously used by sophisticated attackers,
should be included in risk assessments:

●​ DNS spoofing to redirect AmneziaVPN users to an attacker-controlled server.
●​ Large-scale Man-in-the-Middle (MiTM) attacks via BGP hijacking or ISP-level

traffic manipulation.
●​ Certificate issuance by nation-state attackers using state-controlled root CAs

installed on devices.
●​ Coercion of a trusted CA to issue a malicious but valid certificate for a targeted

domain.
●​ Private key extraction from misconfigured cloud infrastructure, servers, or VPS

providers, compromising data integrity in Amnezia backend services.

Recommendation

The common certificate infrastructure was correctly identified as vulnerable in censored
countries, leading to a custom encryption protocol implementation. To further protect
against sophisticated attackers, the following measures should be considered:

●​ Security review of backend services, focusing on sensitive parameter storage
and secrets handling.

●​ Monitoring of DNS and BGP53 routes to detect protocol-based attacks.

53 https://radar.cloudflare.com/routing

7ASecurity © 2025
 29

https://radar.cloudflare.com/routing
https://7asecurity.com

Pentest Report

●​ Secure key storage using Hardware Security Modules (HSM) for cryptographic
operations.

●​ Key revocation and rotation processes for compromised key material.
●​ DNS over HTTPS (DoH)54 in all client applications (i.e. mobile, desktop) to

prevent tampering, regardless of OS or network configuration.

Threat 03: Release Binary Tampering

Overview

The application includes mobile and desktop versions for multiple platforms. Server-side
components are deployed in Amnezia-managed infrastructure, with key parts also
deployable for self-hosted VPN servers. Ensuring artifact integrity throughout
development, release, and installation is critical to protecting end-user communication.

Countermeasures

Artifacts are built using GitHub Actions. Mobile binaries are signed before release to
Google Play and Apple Store. The Windows binary is signed for verification during
installation. Docker containers and Linux binaries lack integrity checks.

Attack Scenarios

The following supply chain attack scenarios could lead to severe compromise by
injecting malicious code into released binaries:

●​ GitHub pipeline compromise or external action manipulation to inject malicious
code without modifying source code.

●​ Domain hijacking to tamper with hosted data and serve malicious binaries,
especially for unsigned artifacts.

●​ Workstation attacks on infrastructure engineers to backdoor deployed services.
●​ Docker Hub account takeover to release malicious images under the company

name.
●​ Library supply chain attacks to introduce malicious code, similar to the 2024 XZ

Utils case, where a threat actor contributed for two years before introducing
vulnerable code5556.

●​ Signing key compromise to release modified binaries in mobile stores or coercion
by a nation-state to distribute malicious versions.

56 https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
55 https://tukaani.org/xz-backdoor/
54 https://en.wikipedia.org/wiki/DNS_over_HTTPS

7ASecurity © 2025
 30

https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://tukaani.org/xz-backdoor/
https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://7asecurity.com

Pentest Report

Recommendation

To enhance defenses against the identified scenarios, consider the following measures:

●​ Achieve the highest possible SLSA compliance to mitigate supply chain attacks.
●​ Enforce strict control over signing keys and accounts used for artifact releases.
●​ Require MFA for critical systems, including source code, build pipelines, and

releases, preferably using physical keys.
●​ Use isolated, monitored workstations for signing, releasing artifacts, and

infrastructure deployment (e.g., Ansible Tower).
●​ Pin dependencies in the application and Dockerfiles to prevent fetching malicious

images.
●​ Apply strong security settings to company-owned domains to prevent hijacking.
●​ Monitor published binaries across all locations to detect tampering by

nation-state actors.

Threat 04: Connecting to a Malicious VPN Server

Overview

AmneziaVPN client supports multiple VPN protocols57, including AmneziaWG,
OpenVPN, and Shadowsocks. Configurations can be imported via file (e.g., .ovpn), QR
code, or text key. The latter methods allow direct imports or loading an api_key from a
custom JSON format to query backend services for VPN configurations.

Users should be aware of threats when importing configurations from untrusted sources.
If connected to a rogue VPN server, no application-level protections prevent attacker
interference.

Countermeasures

AmneziaVPN Free uses public key cryptography and symmetric session key encryption
to exchange parameters between the application and backend, ensuring confidentiality
and authentication without relying on HTTPS certificates.

AmneziaVPN Premium delivers configurations, including api-key and backend IP, via
email or Telegram in vpn://<textkey> format. The textkey is a compressed,
base64-encoded JSON relying on the security of delivery channels. After importing the
configuration, the client connects to the api_endpoint over HTTPS to retrieve the VPN
configuration. Public key cryptography is planned for the premium service but has not
yet been implemented.

57 https://docs.amnezia.org/documentation/protocols-info/

7ASecurity © 2025
 31

https://docs.amnezia.org/documentation/protocols-info/
https://7asecurity.com

Pentest Report

Attack Scenarios

The following attack scenarios demonstrate how configuration import flexibility may be
exploited against Amnezia users:

●​ Spear phishing using similar domains58 to deliver forged vpn://<textkey> links,
tricking victims into connecting to attacker-controlled VPN servers by claiming
improved Amnezia Premium nodes.

●​ Compromise of communication channels used to deliver vpn://<textkey> links,
such as Telegram, email, or payment websites, to modify configurations.

●​ Public campaigns distributing QR codes leading to attacker-controlled servers,
easily imported into AmneziaVPN clients.

●​ Automatic attacks against users connected to malicious VPN servers due to
insufficient client-side firewall rules, enabling persistence.

Recommendation

Enhancements to improve security and complement existing mechanisms include:

●​ Integrity protection for vpn://<textkey> and QR codes to ensure configurations
are legitimate and generated by the Amnezia backend.

●​ Clear warnings in the application for untrusted VPN configurations, allowing
users to distinguish between Amnezia-generated and third-party configurations.
A self-hosted server can share a public key for verification.

●​ Default deny-all firewall rules to prevent exposure after connecting to rogue VPN
servers. Users should configure this firewall before connecting if no ports need to
be exposed.

●​ Notifications if multiple devices connect to the same VPN endpoint using the
same api-key, detecting potential key leakage.

●​ Passphrase protection when sharing QR codes or textkey strings for VPN
access.

Threat 05: Disrupted Continuity of the Service (Denial of Service)

Overview

Denial of service occurs when the system fails to function as intended, temporarily or
permanently. Ensuring availability is critical for VPN providers, especially against
nation-state attacks. Additional attack scenarios and countermeasures must be
considered to maintain service continuity.

58 https://www.cisa.gov/resources-tools/services/domain-doppelganger

7ASecurity © 2025
 32

https://www.cisa.gov/resources-tools/services/domain-doppelganger
https://7asecurity.com

Pentest Report

Countermeasures

Publishing limitations in mobile stores and domain blocks in some countries have been
encountered. As a countermeasure, a static AWS S3 file with a custom proxy list,
implemented via AWS Lambda functions, is used when http://gw.amnezia.org is blocked.
However, this solution is suboptimal, as the S3 resource is static, and the Lambda
function can be easily blocked at the DNS level in adversary-controlled networks.

Attack Scenarios

Reviewing and testing the following attack scenarios will improve detection and
mitigation of threats targeting Amnezia users:

●​ DNS tampering to block Amnezia domains and IPs, disrupting Free and Premium
services.

●​ Automated bots fetching proxy lists to add IPs to country-wide blocklists.
●​ Mass scanning of Amnezia infrastructure to fingerprint services via HTTP

headers or error messages, enabling dynamic blocking or large-scale (D)DoS
attacks.

●​ Nation-state actors purchasing VPN access to query and block VPN servers or
identify connected users.

●​ Network filtering exploiting weaknesses in the anonymization protocol, using
deep packet inspection, BGP hijacking59, or IP filtering to block or capture
AmneziaWG traffic.

●​ Bot farms mass-reporting the application in mobile stores, hindering installation,
forcing users to enable untrusted sources, and preventing Amnezia client users
from applying security patches.

Recommendation

To counter these threats, the following measures should be considered:

●​ Security assessments to prevent easy fingerprinting of Amnezia servers and
backend components.

●​ Frequent rotation of IP addresses and DNS names to evade censorship.
●​ Utilization of unblockable services, such as CDNs or Tor Hidden Services.
●​ Short-lived, dynamically rotated proxy addresses to maintain access when

backend components are unavailable.
●​ Alternative communication channels, such as Telegram, Signal, or approved

messaging apps, to distribute backend service IPs in high-censorship areas.
●​ Extensive monitoring across multiple networks to detect blocked IPs and

domains, enabling active resource rotation and configuration updates.

59 https://www.cloudflare.com/en-gb/learning/security/glossary/bgp-hijacking/

7ASecurity © 2025
 33

https://www.cloudflare.com/en-gb/learning/security/glossary/bgp-hijacking/
https://7asecurity.com

Pentest Report

Threat 06: Increased Local Attack Surface

Overview

VPN applications are a high-value target for attackers seeking initial compromise or
privilege escalation on end-user devices. Support for multiple protocols, configuration
parsers, and automated VPN setup via QR codes or JSON payloads increases the
attack surface. Vulnerabilities in these components, when combined with other attacks,
may be exploited by both regular and nation-state attackers. Comprehensive security
testing is essential to mitigate risks and address the expanded attack surface on local
devices.

Countermeasures

AmneziaVPN uses keyword-based filters to detect potentially malicious configuration
options, such as in OpenVPN configurations. AmneziaVPN binaries have correct binary
flags set to limit memory corruption issues, but integrated components for third-party
protocols require better protection.

Due to the variety of configuration formats and loading methods, including custom
Backup and Amnezia JSON-based types, current protections should undergo extensive
testing, covering at least the listed scenarios.

Attack Scenarios

The following attacks should be considered during the design, development, and
analysis of client binaries:

●​ Insecure local binaries, including third-party components, allowing library
hijacking.

●​ Insecure configuration parsers, enabling deserialization, command injection, or
memory corruption, especially in C/C++ parsers.

●​ Social engineering attacks using crafted malicious configurations to bypass
regex-based filtering via QR codes or encoded text keys.

●​ Memory corruption attacks on QT components or integrated libraries due to
insufficient protection or missing binary flags.

●​ Configuration type confusion, merging properties from multiple formats using
incorrect logic.

●​ Attacks on templating engines, processing JSON-based data, leading to potential
command injection.

7ASecurity © 2025
 34

https://7asecurity.com

Pentest Report

Recommendation

To mitigate these threats, the following measures should be considered:

●​ Enforce security flags across all platforms using tools like checksec60 and
PESecurity61, applying these settings to all integrated components.

●​ Conduct extensive fuzz testing on configuration file loading, focusing on custom
parsing logic.

●​ Perform client-side API fuzzing to identify memory corruption or deserialization
bugs in AmneziaVPN logic when fetching backend data, preventing local
exploitation, especially with new features.

Threat 07: Attacks Against the Backend Infrastructure

Overview

Amnezia Free and Premium services use AWS and multiple VPS providers. Each
Internet-exposed infrastructure is a potential target. API exploitation could grant
attackers access to cloud infrastructure. Proper configuration and compromise detection
are crucial to prevent breaches.

Countermeasures

The VPS infrastructure is accessible from infrastructure engineer workstations with
access to Ansible playbooks (private GitHub repository), SSH keys, and Ansible Vault
passwords used for encrypting secrets. Employees reported that self-managed laptops
follow high security standards, including full disk encryption, multi-factor authentication,
and up-to-date operating systems.

Cloud infrastructure was outside the assessment scope, and no assumptions about its
security controls can be made.

Attack Scenarios

Future security assessments should consider the following attack scenarios due to the
lack of backend cloud analysis:

●​ AWS account compromise via leaked access keys, weak credentials, or
misconfigurations.

●​ Employee workstation compromise to backdoor VPN node servers via Ansible
playbooks.

61 https://github.com/NetSPI/PESecurity
60 https://github.com/slimm609/checksec

7ASecurity © 2025
 35

https://github.com/NetSPI/PESecurity
https://github.com/slimm609/checksec
https://7asecurity.com

Pentest Report

●​ Backend vulnerabilities (e.g., SSRF, deserialization) targeting cloud resources to
extract IAM tokens.

●​ Unauthorized S3 bucket access to redirect users to attacker-controlled servers.
●​ Backend database compromise due to misconfigured access controls, public

exposure, or unauthorized access.
●​ Exploitation of administrative API features to manipulate licensing, backend

applications, or VPN configurations.
●​ Cloud privilege escalation via compromised service instances (e.g., gateway,

Lambda, backend) leveraging privileged IAM roles or access to resources.

Recommendation

To mitigate and prepare for the aforementioned attacks, it is recommended to:

●​ Conduct a full security review of the cloud infrastructure.
●​ Isolate free and premium backend services and separate test environments to

limit compromise impact.
●​ Perform a security review of the amnezia-backend component.
●​ Implement robust logging and monitoring across cloud and VPS-hosted servers,

focusing on anomaly detection.
●​ Secure key material handling to prevent extraction (e.g., using HSM modules).
●​ Establish key revocation and rotation procedures in case of key disclosure.

Threat 08: Bug Omission Risk from Missing Automated Security in CI/CD

Overview

No software is bug-free, and thorough code reviews can still miss security vulnerabilities.
All components, including source code, Terraform, Docker images, and CI/CD
configurations (e.g., GitHub Actions), should be continuously scanned using SAST tools
in CI/CD pipelines. This enhances software resilience by complementing internal
development practices.

Countermeasures

The team reported minimal use of security tools for static code, image, or build
configuration scanning. Codacy, configured with GitHub Actions, was mentioned but not
found in the analyzed repositories. Despite the lack of automated scanning, overall code
quality is decent.

Attack Scenarios

The absence of security tooling in pipelines introduces the following risks:

7ASecurity © 2025
 36

https://7asecurity.com

Pentest Report

●​ Accidental commits of sensitive data (e.g., private keys, unencrypted
credentials), especially in private repositories.

●​ Insecure Docker configurations.
●​ Introduction of outdated libraries or detectable bugs by new developers

bypassing code review.

Recommendation

To enhance component security, the following should be integrated into CI/CD pipelines:

●​ Dependency scanning to detect outdated or vulnerable dependencies.
●​ Periodic secret scanning in repositories using tools like TruffleHog62 or

GitLeaks63.
●​ Commit scanning with hooks to prevent secret exposure.
●​ Docker and infrastructure code scanning using tools like Checkov64 .
●​ Source code scanning with SAST tools (e.g., CodeQL65, semgrep66) for all

languages, including Go, Python, and C++.

Threat 09: Public Relation Failures and Loss of Public Trust

Overview

Software that bypasses restrictions or censorship, preventing government tracking and
monitoring, can be used for both positive and negative purposes. Such tools are often
criticized as enablers of illegal activities, sometimes justifiably. Organizations in this
sector must prioritize transparent communication to ensure project success amid
potential attacks and accusations. Poorly handled security incidents or responses may
lead to the downfall of the company.

Attack Scenarios

The following potential scenarios may cause PR damage and should be considered:

●​ Misconfigured integration enabling mass exploitation of self-hosted AmneziaVPN
servers.

●​ Insecure defaults compromising anonymity or confidentiality for self-hosted or
managed users.

●​ Cryptographic attacks on the custom encryption protocol replacing HTTPS
certificate infrastructure.

66 https://github.com/semgrep/semgrep
65 https://github.com/github/codeql-action
64 https://github.com/bridgecrewio/checkov
63 https://github.com/gitleaks/gitleaks
62 https://github.com/trufflesecurity/trufflehog

7ASecurity © 2025
 37

https://github.com/semgrep/semgrep
https://github.com/github/codeql-action
https://github.com/bridgecrewio/checkov
https://github.com/gitleaks/gitleaks
https://github.com/trufflesecurity/trufflehog
https://7asecurity.com

Pentest Report

●​ Undetected data breaches exposed by the media, eroding customer trust.
●​ Association with illegal activities similar to accusations against Tor or

cryptocurrencies.
●​ Lack of responsible disclosure and security bounty policies, and poor handling of

bug reports, damaging reputation.

Recommendation

The following measures should be implemented to limit PR damage from listed or similar
cases:

●​ Monitor all supported protocols and ensure VPN server configurations follow best
security practices (e.g., hardened OpenVPN setups).

●​ Conduct periodic penetration tests to identify misconfigured services or exposed
ports early.

●​ Regularly review VPS provider accounts and apply the most secure settings to
prevent administrative account takeovers.

●​ Test incident response processes, including PR communication, to ensure
effective handling.

●​ Develop strategies to manage media accusations and incidents involving illegal
activities.

●​ Establish a clear responsible disclosure policy, using formats like
SECURITY.md67 or security.txt68.

68 https://securitytxt.org/
67 https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

7ASecurity © 2025
 38

https://securitytxt.org/
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the
AmneziaVPN solution defended itself well against a broad range of attack vectors. The
platform will become increasingly difficult to attack as additional cycles of security testing
and subsequent hardening continue.

The AmneziaVPN platform provided a number of positive impressions during this
assignment that must be mentioned here:

●​ AmneziaVPN demonstrates a well-structured codebase, effective vulnerability
management, and prior experience with penetration testing and code reviews.

●​ The Android components effectively mitigate common vulnerabilities, reflecting a
strong security posture.

●​ Well-documented and structured source code facilitates efficient review and
assessment.

●​ Alignment with SLSA Level 1 indicates the adoption of fundamental supply chain
security practices, establishing a foundation for higher compliance levels.

●​ No obfuscation weaknesses were identified in the static and dynamic review,
demonstrating strong privacy and security practices.

●​ Despite the absence of SAST tools, code quality is solid. The focus on
supporting multiple protocols increases the potential attack surface, particularly
with QR code and encoded string-based configuration imports, which could be
leveraged for phishing attacks.

●​ Automation frameworks like Terraform and Ansible streamline development and
deployment. However, Ansible playbook access lacks auditability and is executed
from a local infrastructure engineer machine, which is suboptimal.

The security of the AmneziaVPN solution will improve substantially with a focus on the
following areas:

●​ Administrative API Security: Administrative APIs should be secured to prevent
unauthorized VPN configuration tampering. IP-whitelisting, Access through VPN,
role-based access controls, strict authentication, and input validation should be
enforced to mitigate this and similar issues (AVP-03-005).

●​ Configuration Import Hardening: The VPN configuration import process should
be secured against arbitrary remote code execution. Strict input validation,
sanitization, and execution restrictions should be implemented to prevent
exploitation through malicious configuration files (AVP-03-006).

●​ Secure Gateway Communication: HTTPS enforcement should be applied for
gateway communication, error handling in proxy failback logic should be
improved, and resilient proxy distribution methods should be implemented to
mitigate DNS-based blocking attacks (AVP-03-004).

7ASecurity © 2025
 39

https://7asecurity.com

Pentest Report

●​ Supply Chain Security: Signed provenance should be implemented to achieve
higher SLSA Framework levels, and artifact signatures should be applied
universally, including Linux binaries and Docker containers, which remain
unsigned (WP2).

●​ Static Application Security Testing (SAST): A comprehensive SAST toolchain
should be implemented for automated code scanning for vulnerabilities, this will
complement security audits and facilitate the identification of potential
weaknesses.

●​ Security Model Gaps: Adequate infrastructure mechanisms ought to be in place
to ensure appropriate logging, monitoring, and anomaly detection. Without
detection mechanisms, node compromise would remain unnoticed.

●​ Infrastructure Access Risks: VPS node access via SSH and Ansible playbooks
should be secured by enforcing strong authentication, restricting SSH access,
implementing credential rotation, and monitoring for unauthorized access to
prevent attackers from exploiting leaked credentials.

●​ Cryptographic Security: The custom cryptography implementation, based on
public-key and symmetric AES encryption, should undergo a dedicated
cryptanalysis. The AES wrapper should be reviewed for vulnerabilities,
particularly against ciphertext attacks. Similarly, secure
Pseudorandom-Number-Generators (PRNGs) ought to be employed for best
security (AVP-03-003).

●​ Software Patching: The AmneziaVPN solution should implement appropriate
software patching procedures which regularly apply security patches in a timely
manner (AVP-03-002). In a day and age when most lines of code come from
underlying software dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible
automation for this could include tools like Snyk.io69 or Renovate Bot70.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application

70 https://github.com/renovatebot/renovate
69 https://snyk.io/

7ASecurity © 2025
 40

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing AmneziaVPN
resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

It is advised to consider the following areas in future engagements:

●​ AWS Cloud Security Review: A comprehensive assessment of the AWS cloud
infrastructure should be performed to ensure security best practices are applied,
as it serves as the primary backend environment.

●​ Host Hardening and Ansible Configuration Review: A review of host hardening
guidelines enforced via Ansible should be conducted. The assessment should
include CIS benchmarks as a baseline, along with additional security checks for
deployed services such as Docker.

●​ Fuzz Testing: Automated fuzzing should be incorporated to identify vulnerabilities
in input processing, configuration handling, and exposed interfaces, improving
overall security resilience.

●​ Ongoing Source Code Reviews: Continuous code reviews should be conducted,
as vulnerabilities often reside in small details. Some of the issues in this report
were identified through a focused review of a single file, highlighting the need for
regular, in-depth assessments.

7ASecurity would like to take this opportunity to sincerely thank the Amnezia VPN team,
for their exemplary assistance and support throughout this audit. Last but not least,
appreciation must be extended to the Open Technology Fund (OTF) for sponsoring this
project.

7ASecurity © 2025
 41

https://7asecurity.com

	Introduction
	Scope
	
	Identified Vulnerabilities
	AVP-03-004 WP1: DoS via Insecure Communication in AmneziaVPN Client (High)
	AVP-03-005 WP1/3: VPN Config Tampering via Exposed Admin API (Critical)
	
	AVP-03-006 WP1: Arbitrary RCE via OpenVPN Config Import (Critical)

	
	Hardening Recommendations
	AVP-03-001 WP1: Lack of Perfect Forward Security (Medium)
	AVP-03-002 WP1: Multiple Vulnerabilities in Go Versions Used (Low)
	AVP-03-003 WP1: Traffic Masking Weakness via Insecure PRNG (Low)

	
	WP2: AmneziaVPN Supply Chain Implementation
	Introduction and General Analysis
	Current SLSA practices of AmneziaVPN
	SLSA v1.0 Framework Analysis
	
	SLSA v1.0 Assessment Results
	
	SLSA v1.0 Assessment Justification
	Producer requirements
	Build requirements

	SLSA v0.1 Results
	
	SLSA v0.1 & v1.0 Conclusion

	
	WP3: AmneziaVPN Lightweight Threat Model
	Introduction
	Relevant assets and threat actors
	
	Attack surface
	Threat 01: Attacks Against Custom Cryptography Implementation
	Threat 02: Network-based Amnezia Backend Service Impersonation
	Threat 03: Release Binary Tampering
	Threat 04: Connecting to a Malicious VPN Server
	Threat 05: Disrupted Continuity of the Service (Denial of Service)
	Threat 06: Increased Local Attack Surface
	Threat 07: Attacks Against the Backend Infrastructure
	
	Threat 08: Bug Omission Risk from Missing Automated Security in CI/CD
	
	Threat 09: Public Relation Failures and Loss of Public Trust

	
	Conclusion

