
CoverDrop Test Targets:
Protocol & Library
Mobile apps
Backend Services
Servers
AWS Infrastructure
Kubernetes Infrastructure
Threat Model
Supply Chain

Pentest Report
Client:
The Guardian
Guardian News & Media Limited

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Dariusz Jastrzębski
● Harsh Bothra, BTech.
● Miroslav Štampar, PhD.
● Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/


Pentest Report

INDEX
Introduction 4
Scope 6
Identified Vulnerabilities 7

COV-01-001 WP2: Possible Phishing via StrandHogg 2.0 on Android (Medium) 7
COV-01-013 WP2: Messaging DoS via DNS Spoofing (Medium) 10
COV-01-015 WP2: Message Access via lack of Passphrase Prompt (Medium) 12
COV-01-021 WP4: File Access & Tampering via Insecure Permissions (Medium) 13
COV-01-022 WP4: Data Access via Missing Encryption at Rest (Medium) 18
COV-01-023 WP2: Passphrase Access via Memory Leak (Medium) 20
COV-01-028 WP3/5: Server DoS via Insecure Signal-CLI Configuration (Medium) 21

Hardening Recommendations 23
COV-01-002 WP2: iOS Binary Hardening Recommendations (Info) 23
COV-01-003 WP1: Multiple Vulnerabilities in Rust Crates (Low) 24
COV-01-004 WP1: Potential for MitM via Downgraded TLS Version (Info) 25
COV-01-005 WP2: Multiple Vulnerabilities in Android packages (Low) 26
COV-01-006 WP3: TLS Hardening Recommendations (Info) 27
COV-01-007 WP5: ELB Hardening Recommendations (Low) 28
COV-01-008 WP5: AWS Weaknesses in Vuln Management Processes (Low) 30
COV-01-009 WP5: Possible risks via unused AWS Region (Info) 32
COV-01-010 WP5: Insufficient AWS Logging & Monitoring (Low) 33
COV-01-011 WP5: Insecure GitHub Token Storage in Parameter Store (Low) 36
COV-01-012 WP5: Lack of S3 Bucket Hardening (Low) 38
COV-01-014 WP2: Android Config Hardening Recommendations (Info) 40
COV-01-016 WP1: Insecure Zero-Padding in PaddedCompressedString (Info) 41
COV-01-017 WP5: Possible Improvements to IAM Policies (Low) 43
COV-01-018 WP5: Insecure Cross-Account Integration (Low) 45
COV-01-019 WP2: Android Binary Hardening Recommendations (Info) 47
COV-01-020 WP4: Boot Loader Password Not Set (Low) 48
COV-01-024 WP4: Weaknesses in Network Stack Configuration (Low) 48
COV-01-025 WP4: Weaknesses in SSH Server Access (Low) 50
COV-01-026 WP4: Weaknesses in Auditing and OS-level Logging (Low) 52
COV-01-027 WP5: Lack of Commit Signatures in Git Repository (Low) 53
COV-01-029 WP1/3: Weaknesses in Journalist Signal Chat (Low) 55
COV-01-030 WP1/3: Possible Impersonation via missing Signal Data (Medium) 56
COV-01-031 WP5: Multiple Weaknesses in Kubernetes Cluster Config (Medium) 58
COV-01-032 WP5: Multiple Weaknesses in Pod Configurations (Medium) 60
COV-01-033 WP5: Unrestricted on-premise Outbound Traffic (Medium) 62

7ASecurity © 2024
2

https://7asecurity.com


Pentest Report

WP6: CoverDrop Lightweight Threat Model 63
Introduction 63
Relevant assets and threat actors 64
Attack surface 64

WP7: CoverDrop Supply Chain Implementation 74
Introduction and General Analysis 74
SLSA v1.0 Analysis and Recommendations 75
SLSA v0.1 Analysis and Recommendations 77

Conclusion 80

7ASecurity © 2024
3

https://7asecurity.com


Pentest Report

Introduction
“CoverDrop can be integrated into existing news apps and enables news app users to
contact journalists at that news organisation, reducing the risk of insecure
communication from the start. It uses cover traffic generated by all the regular users of
the news app to hide whistleblowers’ communication, where traffic is passed through
one or more mixes at the newspaper. Thus, every news app user acts as a potential
whistleblower and becomes inconspicuous in the crowd. We fortify this by ensuring that
the news app ordinarily sends a small amount of constant cover traffic to the mix (Cover-
Node) hosted in the news organisation’s infrastructure; the cover traffic is replaced with
message contents when a whistleblower communicates with a reporter.”

From https://petsymposium.org/2022/files/papers/issue2/popets-2022-0035.pdf

This document outlines the results of a penetration test and whitebox security review
conducted against CoverDrop, a novel approach for whistleblowers implemented by the
CoverDrop team, within Guardian News & Media Limited, more commonly known as The
Guardian newspaper in the UK1.

It should be noted that The Guardian Android2 and iOS3 apps already implement the
CoverDrop protocol at the time of writing. However, this assignment focused on the
reference CoverDrop apps, which will become open source for other newspapers to fork
and integrate, while The Guardian apps were out of scope during this exercise.

Another notable exception was that the journalist app, for journalists to interact with
newspaper readers, was not available during this assignment, as it is still in
development, hence an interim Signal implementation was assessed instead. It is
strongly advised to extrapolate all findings, recommendations and guidance in this report
to harden the upcoming journalist app prior to releasing it.

The project was solicited by the CoverDrop team, funded by the Open Technology Fund
(OTF), and executed by 7ASecurity in January and February 2024. The audit team
dedicated 44 working days to complete this assignment. Please note that this is the first
penetration test for this project. Consequently, the identification of security weaknesses
was initially expected to be easier during this assignment, as more vulnerabilities are
typically identified and resolved after each testing cycle.

During this iteration the goal was to review the CoverDrop project as thoroughly as
possible, to ensure users can be provided with the best possible security and privacy.

3 https://apps.apple.com/us/app/the-guardian-live-world-news/id409128287
2 https://play.google.com/store/apps/details?id=com.guardian&hl=en&gl=US
1 https://www.theguardian.com/gmg

7ASecurity © 2024
4

https://petsymposium.org/2022/files/papers/issue2/popets-2022-0035.pdf
https://apps.apple.com/us/app/the-guardian-live-world-news/id409128287
https://play.google.com/store/apps/details?id=com.guardian&hl=en&gl=US
https://www.theguardian.com/gmg
https://7asecurity.com


Pentest Report

The methodology implemented was whitebox: 7ASecurity was provided with access to
reference Android and iOS builds, a reference server, the AWS and Kubernetes
infrastructure, documentation and source code. A team of 6 senior auditors carried out
all tasks required for this engagement, including preparation, delivery, documentation of
findings and communication.

A number of necessary arrangements were in place by December 2023 and January
2024, to facilitate a straightforward commencement for 7ASecurity. In order to enable
effective collaboration, information to coordinate the test was relayed through email, as
well as a shared Slack channel. The CoverDrop team was helpful and responsive at all
times, which facilitated the test for 7ASecurity, without introducing any unnecessary
delays. 7ASecurity provided regular updates regarding the audit status and its interim
findings during the engagement.

This audit split the scope items in the following work packages, which are referenced in
the ticket headlines as applicable:

● WP1: Whitebox Tests against CoverDrop Protocol and Library Implementation
● WP2: Mobile Security tests against CoverDrop Implementation on Android & iOS
● WP3: Whitebox Tests against CoverDrop Implementation on Backend Services
● WP4: Whitebox Tests against CoverDrop Servers & Configuration via SSH
● WP5: Whitebox Tests against CoverDrop AWS & Kubernetes Infrastructure
● WP6: CoverDrop Lightweight Threat Model documentation
● WP7: Whitebox Tests against CoverDrop Supply Chain Implementation

The findings of the security audit (WP1-5) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

7 26 33

Please note that the analysis of the remaining work packages (WP6-7) is provided
separately, in the following sections of this report:

● WP6: CoverDrop Lightweight Threat Model
● WP7: CoverDrop Supply Chain Implementation

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required. Additionally,
it provides mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance. This includes insights related to the context, preparation, and general

7ASecurity © 2024
5

https://7asecurity.com


Pentest Report

impressions gained throughout this test. Additionally, it offers a summary of the
perceived security posture of the CoverDrop framework.

Scope

The following list outlines the items in scope for this project:
● WP1: Whitebox Tests against CoverDrop Protocol and Library

Implementation
○ Audited Source Code: https://github.com/guardian/coverdrop

● WP2: Mobile Security tests against CoverDrop Implementation on Android
& iOS apps

○ Audited Android Version: 1.0 - com.theguardian.coverdrop
○ Audited iOS Version: 1.0 - uk.co.guardian.securemessaging

● WP3: Whitebox Tests against CoverDrop Implementation on Backend
Services

○ Audited URLs:
■ https://secure-messaging-msg-audit.guardianapis.com
■ https://secure-messaging.code.dev-guardianapis.com
■ https://secure-messaging-api-audit.guardianapis.com

● WP4: Whitebox Tests against CoverDrop Servers, Infrastructure &
Configuration via SSH

○ Audited Reference Server: host-01 (100.127.4.93)
● WP5: Whitebox Tests against CoverDrop AWS and on-prem Kubernetes

Infrastructure
○ Audited AWS Account: 648583952313
○ On-premise Kubernetes Cluster

● WP6: CoverDrop Lightweight Threat Model documentation
○ As above

● WP7: Whitebox Tests against CoverDrop Supply Chain Implementation
○ As above

7ASecurity © 2024
6

https://github.com/guardian/coverdrop
https://secure-messaging-msg-audit.guardianapis.com
https://secure-messaging.code.dev-guardianapis.com
https://secure-messaging-api-audit.guardianapis.com
https://7asecurity.com


Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. COV-01-001) for
ease of reference and offers an estimated severity in brackets alongside the title.

COV-01-001 WP2: Possible Phishing via StrandHogg 2.0 on Android (Medium)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

Testing confirmed that the CoverDrop reference Android app is currently vulnerable to a
number of Task Hijacking attacks. The launchMode for the app-launcher activity is
currently not set and hence defaults to standard4, which mitigates Task Hijacking via
StrandHogg5 and other older techniques documented since 20156, while leaving the app
vulnerable to StrandHogg 2.07. This vulnerability affects Android versions 3-9.08 but was
only patched by Google on Android 8-99. Since the app supports devices from Android
8.x (API level 26), this leaves all users running unpatched Android 8.x-9.0 devices
vulnerable.

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. More specifically, this would be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful to perform
Phishing, Denial-of-Service or capturing user-credentials. This issue has been exploited
by banking malware trojans in the past10.

In StrandHogg and regular Task Hijacking, malicious applications typically use one or
more of the following techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2
wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,

10 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
9 https://source.android.com/security/bulletin/2020-05-01
8 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
7 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
6 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
5 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
4 https://developer.android.com/guide/topics/manifest/activity-element#lmode

7ASecurity © 2024
7

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://7asecurity.com


Pentest Report

malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim
application task stack.

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim application task to the malicious
application stack.

However, in the case of StrandHogg 2.0, all exported activities without a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions11.

This issue can be confirmed by reviewing the AndroidManifest of the Android
application.

Affected File:
AndroidManifest.xml

Affected Code:
<activity android:name="com.theguardian.coverdrop.MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

As can be seen above, the launchMode is not set and hence defaults to standard.

To ease the understanding of this problem, an example malicious app was created to
demonstrate the exploitability of this weakness.

PoC Demo:
https://7as.es/CoverDrop_LGs11RcVNB2/Task_Hijacking_PoC.mp4

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity should be set to an empty string. This is best implemented in the
Android manifest at the application level, which will protect all activities and
ensure the fix works even if the launcher activity changes. The application should
use a randomly generated task affinity instead of the package name to prevent
Task Hijacking, as malicious apps will not have a predictable task affinity to
target.

● The launchMode should then be changed to singleInstance (instead of

11 https://www.xda-developers.com/strandhogg-2-0.../

7ASecurity © 2024
8

https://7as.es/CoverDrop_LGs11RcVNB2/Task_Hijacking_PoC.mp4
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com


Pentest Report

singleTask). This will ensure continuous mitigation in StrandHogg 2.012 while
improving security strength against older Task Hijacking techniques13.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag14.

Affected File:
AndroidManifest.xml

Proposed Fix:
<application android:theme="@style/Theme.CoverDropSample"

android:label="@string/app_name" android:icon="@mipmap/ic_launcher"

android:name="com.theguardian.coverdrop.CoverDropApplication" [...]

android:taskAffinity="">

<activity android:name="com.theguardian.coverdrop.MainActivity" android:exported="true"

android:launchMode="singleInstance">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

14 https://www.slideshare.net/phdays/android-task-hijacking
13 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
12 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../

7ASecurity © 2024
9

https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com


Pentest Report

COV-01-013 WP2: Messaging DoS via DNS Spoofing (Medium)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the reference CoverDrop Android and iOS apps are vulnerable to DoS
attacks via spoofing of the DNS domains used for sending messages. Malicious
attackers, able to modify clear-text network communications (i.e. via open Wi-Fi without
guest isolation, DNS rebinding, ISP MiTM, BGP hijacking), could leverage this weakness
to prevent legitimate app users from accessing the system. Please note that the same
issue applies to potential censorship or user detection attempts on a wider scale.

This issue was confirmed by changing the DNS settings on the test iOS and Android
devices (i.e. to simulate DNS spoofing), so that they point to an attacker-controlled DNS
server using dnschef15, spoofing the domains as follows:

Command:
dnschef -i 192.168.0.15 --fakeip 127.0.0.1 --fakedomains

secure-messaging-api-audit.guardianapis.com,secure-messaging-msg-audit.guardianapis.com

--logfile dns_traffic.txt

Output:
[...]

(13:53:59) [*] DNSChef started on interface: 192.168.0.15

(13:53:59) [*] Using the following nameservers: 8.8.8.8

(13:53:59) [*] 192.168.0.225: proxying the response of type 'AAAA' for

secure-messaging-msg-audit.guardianapis.com

(13:53:59) [*] 192.168.0.225: cooking the response of type 'A' for

secure-messaging-msg-audit.guardianapis.com to 127.0.0.1

[...]

(14:06:11) [*] 192.168.0.225: proxying the response of type 'AAAA' for

dualstack.guardian.map.fastly.net

(14:06:11) [*] 192.168.0.225: proxying the response of type 'A' for

dualstack.guardian.map.fastly.net

As a consequence, the application becomes incapable of sending messages, thus
leaving the user with a perpetual pending state:

15 https://github.com/iphelix/dnschef

7ASecurity © 2024
10

https://github.com/iphelix/dnschef
https://7asecurity.com


Pentest Report

Fig.: Pending message in Android (left) and iOS (right) via DNS spoofing

This issue occurs due to building the messaging functionality on top of the insecure DNS
protocol. An example of this can be seen in the output of the command below, which
confirms the latest iOS protections available since iOS 14 are not being leveraged at the
moment:

Command:
egrep -Ir '(NWParameters|PrivacyContext)' * | wc -l

Output:
0

It is recommended to switch over to DNS over HTTPS (DoH)16 or DNS over TLS (DoT)17

to mitigate these types of attacks. This will automatically remove all clear-text DNS
resolution with its associated privacy and security problems, and instead encrypt all DNS
traffic over HTTPS, this ensures DNS traffic will have the confidentiality and integrity
protections offered by the HTTPS protocol thereafter. On iOS, since iOS 14 Apple allows
developers to specify DoH connection parameters via the

17 https://www.cloudflare.com/learning/dns/dns-over-tls/
16 https://en.wikipedia.org/wiki/DNS_over_HTTPS

7ASecurity © 2024
11

https://www.cloudflare.com/learning/dns/dns-over-tls/
https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://7asecurity.com


Pentest Report

NWParameters.PrivacyContext1819 class. However, it is also possible to implement DoH
at the app level in a compatible way with older iOS versions20. On Android, DoH can be
easily deployed via the okhttp-dnsoverhttps21 module, which has a Kotlin implementation
available22 and may, alternatively, be used as a reference.

Additionally, Domain Fronting23 could be considered, this is a popular technique for
Internet censorship circumvention that uses different domain names, employing different
HTTPS communication layers. However, please note that Fastly, the content delivery
network (CDN) used by CoverDrop services at the moment, plans to block domain
fronting in February 202424.

COV-01-015 WP2: Message Access via lack of Passphrase Prompt (Medium)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was discovered that the CoverDrop reference applications do not always prompt users
for a passphrase prior to granting access to messages. Specifically, the reference iOS
application will prompt the user for the passphrase, prior to showing the messages, after
~5 minutes in the background. Whereas the reference Android app does never appear
to prompt users, if they background the app with the messaging screen open. A
malicious attacker with access to an unlocked device could leverage this weakness to
gain access to all user messages, particularly on Android, while the attack window is
only ~5 minutes on iOS.

This issue can be confirmed by opening the messaging screen, sending the app into the
background, and then opening the app again after a few hours (on Android):

24 https://github.com/net4people/bbs/issues/309
23 https://en.wikipedia.org/wiki/Domain_fronting
22 https://github.com/square/okhttp/blob/master/okhttp-dnsoverhttps/.../dnsoverhttps/DnsOverHttps.kt
21 https://github.com/square/okhttp/tree/master/okhttp-dnsoverhttps
20 https://www.wwdcnotes.com/notes/wwdc20/10047/
19 https://gist.github.com/sschizas/ed03571ed129a227947f482b51ffabc5
18 https://developer.apple.com/documentation/network/nwparameters/privacycontext

7ASecurity © 2024
12

https://github.com/net4people/bbs/issues/309
https://en.wikipedia.org/wiki/Domain_fronting
https://github.com/square/okhttp/blob/master/okhttp-dnsoverhttps/src/main/kotlin/okhttp3/dnsoverhttps/DnsOverHttps.kt
https://github.com/square/okhttp/tree/master/okhttp-dnsoverhttps
https://www.wwdcnotes.com/notes/wwdc20/10047/
https://gist.github.com/sschizas/ed03571ed129a227947f482b51ffabc5
https://developer.apple.com/documentation/network/nwparameters/privacycontext
https://7asecurity.com


Pentest Report

Fig.: Access to Android messages via missing passphrase prompt

It is recommended to leverage all the available platform protections to protect sensitive
information, like confidential messages at rest. Furthermore, biometric authentication
such as Face or Touch ID has not been implemented. Such mechanisms could be in
place immediately after the user sends the application into the background, while the
passphrase might still be required once a certain time threshold is reached (i.e. ~5
minutes). In turn, this would better protect user messages with multi-factor authentication
(MFA), whereby, on the client-side, messages could be protected by both biometrics, as
well as the passphrase.

COV-01-021 WP4: File Access & Tampering via Insecure Permissions (Medium)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the host hardening review, it was discovered that a number of files and
directories have lax permissions in place. In the event that the CoverDrop server-side
components are deployed into an environment with multiple users, such as shared
hosting, malicious attackers might leverage this weakness to read and write many
sensitive CoverDrop files. Please note that some of these files contain sensitive data in
their filenames, such as the first and last names of the journalists. These issues can be
confirmed as follows:

Affected Host:
host-01 (100.127.4.93)

Issue 1: Globally Writable & Readable Files

Affected Files:
/data/coverdrop/covernode/keys/organization-b579e12e.pub.json

/data/coverdrop/covernode/keys/covernode_id-27b4e917.keypair.json

7ASecurity © 2024
13

https://7asecurity.com


Pentest Report

/data/coverdrop/covernode/keys/covernode_msg-b081920f.keypair.json

/data/coverdrop/covernode/checkpoints/user_checkpoint.json

/data/coverdrop/covernode/checkpoints/journalist_checkpoint.json

/data/coverdrop/identity-api/keys/organization-b579e12e.pub.json

/data/coverdrop/identity-api/keys/covernode_provisioning-a98fad5c.keypair.json

/data/coverdrop/identity-api/keys/journalist_provisioning-6209d296.keypair.json

/data/coverdrop/signal-cli/accounts.json

/data/coverdrop/signal-cli/243359

/data/coverdrop/signal-bridge/vaults/abraham_aranguren.password

/data/coverdrop/signal-bridge/vaults/daniel_ortiz.password

/data/coverdrop/signal-bridge/vaults/harsh_bothra.password

/data/coverdrop/signal-bridge/vaults/miroslav_stampar.password

/data/coverdrop/signal-bridge/vaults/sam_cutler.password

/data/coverdrop/signal-bridge/vaults/szymon_grzybowski.password

/data/coverdrop/signal-bridge/vaults/abraham_aranguren.vault

/data/coverdrop/signal-bridge/vaults/daniel_ortiz.vault

/data/coverdrop/signal-bridge/vaults/harsh_bothra.vault

/data/coverdrop/signal-bridge/vaults/miroslav_stampar.vault

/data/coverdrop/signal-bridge/vaults/sam_cutler.vault

/data/coverdrop/signal-bridge/vaults/szymon_grzybowski.vault

Example permissions:

Command:
ls -altr /data/coverdrop/covernode/keys/organization-b579e12e.pub.json

Output:
-rwxrwxrwx 1 user user 281 Dec 20 15:25

/data/coverdrop/covernode/keys/organization-b579e12e.pub.json

Issue 2: Globally Writable & Readable Directories

Affected Directories:
/data

/data/coverdrop

/data/coverdrop/covernode

/data/coverdrop/covernode/checkpoints

/data/coverdrop/covernode/keys

/data/coverdrop/identity-api/keys

/data/coverdrop/signal-cli

/data/coverdrop/signal-cli/243359.d

/data/coverdrop/signal-bridge

/data/coverdrop/signal-bridge/keys

/data/coverdrop/signal-bridge/account-data

/data/coverdrop/signal-bridge/account-data/243359.d

/data/coverdrop/signal-bridge/vaults

Command:
ls -altrd /data/coverdrop

7ASecurity © 2024
14

https://7asecurity.com


Pentest Report

Output:
drwxrwxrwx 6 user user 4096 Dec 20 15:09 /data/coverdrop

Issue 3: Globally Writable & Readable Database Files

Affected Files:
/data/coverdrop/signal-bridge/signal.db

/data/coverdrop/signal-bridge/account-data/243359.d/account.db

/data/coverdrop/signal-cli/243359.d/account.db

Command:
ls -altr /data/coverdrop/signal-bridge/signal.db

Output:
-rwxrwxrwx 1 user user 57344 Feb 2 17:08 /data/coverdrop/signal-bridge/signal.db

Issue 4: Bootloader with insecure Permissions

The grub.cfg boot loader configuration file may contain security-relevant information, like
the encrypted password for unlocking boot options, and should be restricted so that only
the super user (root) can read it.

Affected File:
/boot/grub/grub.cfg

Command:
stat /boot/grub/grub.cfg

Output:
File: /boot/grub/grub.cfg

Size: 8990 Blocks: 24 IO Block: 4096 regular file

Device: 802h/2050d Inode: 23 Links: 1

Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

Files and directories used to control jobs by the cron service are world-readable. Read
access to the following files and directories could provide users with the ability to gain
insight on system jobs.

Issue 5: World-readable crontab File

Affected File:
/etc/crontab

Command:
7ASecurity © 2024

15

https://7asecurity.com


Pentest Report

stat /etc/crontab

Output:
File: /etc/crontab

Size: 1136 Blocks: 8 IO Block: 4096 regular file

Device: fd01h/64769d Inode: 1573551 Links: 1

Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

Issue 6: World-readable cron.hourly Directory

Affected Directory:
/etc/cron.hourly/

Command:
stat /etc/cron.hourly/

Output:
File: /etc/cron.hourly/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fd01h/64769d Inode: 1572888 Links: 2

Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

Issue 7: World-readable cron.daily Directory

Affected Directory:
/etc/cron.daily/

Command:
stat /etc/cron.daily/

Output:
File: /etc/cron.daily/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fd01h/64769d Inode: 1572887 Links: 2

Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

Issue 8: World-readable cron.d Directory

Affected Directory:
/etc/cron.d/

Command:
stat /etc/cron.d/

7ASecurity © 2024
16

https://7asecurity.com


Pentest Report

Output:
File: /etc/cron.d/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fd01h/64769d Inode: 1572886 Links: 2

Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

Issue 9: sshd_config File

The SSH sshd_config file contains the configuration of ssh service and should be
protected from unauthorized access from non-privileged users.

Affected File:
/etc/ssh/sshd_config

Command:
stat /etc/ssh/sshd_config

Output:
File: /etc/ssh/sshd_config

Size: 3254 Blocks: 8 IO Block: 4096 regular file

Device: fd01h/64769d Inode: 1574253 Links: 1

Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)

[...]

It is recommended to implement the minimum possible permissions for the application to
work. Specifically, CoverDrop files and directories should not be readable, writable or
executable to unprivileged users on the same server. For the operating system files and
directories, it is advised to change permissions as follows:

Proposed Fix:
chmod 400 /boot/grub/grub.cfg

chmod 600 /etc/crontab

chmod 700 /etc/cron.hourly/

chmod 700 /etc/cron.daily/

chmod 700 /etc/cron.d/

chmod 600 /etc/ssh/sshd_config

7ASecurity © 2024
17

https://7asecurity.com


Pentest Report

COV-01-022 WP4: Data Access via Missing Encryption at Rest (Medium)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the host review of the host-01 (100.127.4.93) server, it was found that some
security-relevant data is unencrypted. The affected files contain Personally Identifiable
Information (PII) of journalists, like their phone numbers and names. Furthermore, due to
the insecure permissions reported on COV-01-021, this information may leak not only via
server backups or to highly privileged users, but also to any malicious attacker who has
an unprivileged user on the same server (i.e. in a shared hosting deployment scenario).

Example 1: Leaks via Unencrypted Database

Command:
# Connect to the SQLite signal.db database

sqlite3 /data/coverdrop/signal-bridge/signal.db

Output:
SQLite version 3.37.2 2022-01-06 13:25:41

Enter ".help" for usage hints.

sqlite>

Command:
# Select all data from the coverdrop_journalist_to_signal_journalist table

select * from coverdrop_journalist_to_signal_journalist;

Output:
s[...]r|+44[...]00

h[...]a|+91[...]22

a[...]n|+48[...]85

d[...]z|+54[...]96

m[...]r|+38[...]06

s[...]i|+48[...]60

Please note that, while chat information is encrypted, journalist PII is not:

Command:
sqlite> select * from group_chats limit 5;

Output:
|deVXiTZS1ts2REFIlgZB1fLfwPnXlNX[...]+UNELYk=|abraham_aranguren|0

[...],>|Pb3PjO9kjBMHqt9qR6lo9A==|s[...]|0

[...]p5IcVOAWpShoYcr3hCV4=|daniel_ortiz|0

[...]}

[...]|RbDIwftWvB5ElC1lpwWaMyywXRG/MGK0geeO2uL5ts4=|abraham_aranguren|0

7ASecurity © 2024
18

https://7asecurity.com


Pentest Report

[...]|JQ3yOJiv4N1C2Z4H8x8fnjmrQjm4HfVQBOkC78VUEG0=|daniel_ortiz|0

sqlite>

It is recommended to encrypt SQLite databases. This may be achieved using SQLite
Encryption Extensions (SEE)25, such as SQLCipher26.

Issue 2: Leaks via other Unencrypted Files

A less significant finding was the leakage of passphrases in clear-text:

Commands:
user@host-01:/$ cat /data/coverdrop/signal-bridge/vaults/miroslav_stampar.password

user@host-01:/$ cat /data/coverdrop/signal-bridge/vaults/daniel_ortiz.password

Output:
crablike sash clothes regretful aside

marine raking plated flattop camper

However, this finding is less security-relevant as it pertains to an interim solution to get
around the not-yet-implemented journalist client. This is perhaps best explained in the
banner that is shown upon opening the journalist.vault file:

Command:
sqlcipher journalist.vault

Output:
[...]
Because each vault is encrypted, a passphrase is needed to decrypt it. This is normally
stored in a .password file upon vault creation. The password file is a simple txt file with
the passphrase stored in cleartext. When the Signal Bridge is eventually replaced by
a journalist client, the .password file will no longer be used, and journalists will
have to remember their passphrase.

Nevertheless, it is recommended to ensure all files that contain sensitive information are
encrypted at rest to avoid unintended leaks.

Regarding the storage of encryption keys on the server-side, it is crucial to avoid
hard-coding them in the source code. While using environment variables is better than
hard-coding secrets, they still have downsides27. Therefore, it is recommended to
employ a dedicated secret management tool. Ideally, applications should retrieve

27 https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-env…
26 https://www.zetetic.net/sqlcipher/
25 https://www.sqlite.org/see/doc/trunk/www/readme.wiki

7ASecurity © 2024
19

https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-environmental-variables-for-secret-data
https://www.zetetic.net/sqlcipher/
https://www.sqlite.org/see/doc/trunk/www/readme.wiki
https://7asecurity.com


Pentest Report

credentials from secure vaults such as AWS Secrets Manager28, HashiCorp Vault29 or an
equivalent secure vault that provides the application with credentials at runtime, while
they remain encrypted at rest. In this particular case, a self-hosted password vault might
increase resilience against high profile attackers, such as a government, able to ask
cloud providers to hand over information. This approach allows applications to use
credentials without exposing them to potential adversaries who may have access to
leaked source code, developer machines, or other vulnerabilities. Additionally, it is
advised to generate credentials, secrets, and API keys randomly to mitigate the potential
for brute force or password-guessing attacks. For further mitigation guidance, please
refer to the OWASP Cryptographic Storage Cheat Sheet30 and the CWE-798: Use of
Hard-coded Credentials page31.

More broadly, it is important to emphasize the importance of having appropriate
processes in place to:

● Regularly rotate credentials
● Revoke and replace credentials in the event of a compromise

COV-01-023 WP2: Passphrase Access via Memory Leak (Medium)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the reference CoverDrop Android app keeps the user passphrase in
memory. This approach is insecure because that information could be accessed by a
malicious attacker with physical access or memory access. Furthermore, given the large
volume of publicly known Android kernel vulnerabilities32 and high likelihood of users on
unpatched Android devices, it should be assumed that malicious apps may be able to
gain such access via privilege escalation vulnerabilities.

To confirm this issue, filesystem usage was reviewed but no sensitive information was
found. Hence, subsequently the app process memory was dumped and the contents
reviewed for possible leaks. In particular, a search for the user passphrase discovered
an occurrence in memory.

Command:
grep "mace tropical ripening safari campus" android_mem.dump.strings | wc -l

Output:

32 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
31 https://cwe.mitre.org/data/definitions/798.html
30 https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
29 https://www.vaultproject.io/
28 https://aws.amazon.com/.../aws-secrets-manager-store-distribute-and-rotate-credentials.../

7ASecurity © 2024
20

https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://cwe.mitre.org/data/definitions/798.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://www.vaultproject.io/
https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/
https://7asecurity.com


Pentest Report

1

This was further confirmed, using Eclipse Memory Analyzer33 to inspect the Memory
Dump as follows:

Command:
SELECT * FROM com.theguardian.coverdrop.core.crypto.Passphrase

Output:
com.theguardian.coverdrop.core.crypto.Passphrase @ 0x13a40278

|- <class>, shadow$_klass_ class com.theguardian.coverdrop.core.crypto.Passphrase @

0x14315298

|- passphrase java.lang.String @ 0x13c1b048 \u7261\u7567\u6261\u656c

| |- <class>, shadow$_klass_ class java.lang.String @ 0x6fe8ddf8 Unknown, System

Class, JNI Global

| |- value byte[8] @ 0x13c1b058 arguable

| '- Total: 2 entries

'- Total: 2 entries

The root cause for this issue appears to be in the following code path, which uses a
java.lang.String object to store the passphrase in memory:

Affected Code:
data class Passphrase(val passphrase: String) {

fun getWords(): List<String> = passphrase.split(" ")

companion object {

fun fromWords(words: List<String>): Passphrase =

Passphrase(words.joinToString(" "))

}

}

To resolve this issue, at a minimum, the user passphrase should be regularly wiped from
memory to avoid potential leaks. Additionally, sensitive data like encryption keys, should
not be retained in RAM longer than necessary. Variables storing keys ought to be
nullified after use. Immutable objects like java.lang.String should be avoided for sensitive
information, opting for char arrays instead. Even after removing or nullifying references
to immutable objects, they might persist in memory until garbage collection, which apps
are unable to enforce. For additional mitigation guidance, please see the Testing
Memory for Sensitive Data section of the Mobile Application Security Testing Guide
(MASTG)34.

34 https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
33 https://eclipse.dev/mat/downloads.php

7ASecurity © 2024
21

https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
https://eclipse.dev/mat/downloads.php
https://7asecurity.com


Pentest Report

COV-01-028 WP3/5: Server DoS via Insecure Signal-CLI Configuration (Medium)

Retest notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The on-premise Kubernetes environment hosts a signal-cli35 container to headlessly
communicate with Signal36 infrastructure. It was discovered that the current configuration
allows attachments. Hence a malicious actor, with knowledge of the number associated
with the Signal account in the backend, may trivially send multiple max size attachments
(100MB), which will be saved within the ephemeral rootfs volume of the container.
Exhausting disk space may in turn trigger the kubernetes eviction policy, and termination
of the container, thus disrupting the availability of the messaging bus.

Affected Resources:
Kubernetes Cluster (pod signal-cli)
git: coverdrop/infra/on-premises/base/signal-cli-deployment.yaml

This issue can be confirmed by observing the arguments passed to the signal-cli:

Command:
cat signal-cli-deployment.yaml

Output:
apiVersion: apps/v1

kind: Deployment

[...]

containers:

- name: signal-cli

command: ["./signal-cli"]

args:

- "--output=json"

- "--verbose"

- daemon

- "--tcp=$(SIGNAL_CLI_ADDRESS)"

- "--receive-mode=manual"

- "--no-receive-stdout"[...]

It is recommended to add the --ignore-attachments and --ignore-stories arguments to
prevent saving unnecessary data in the backend, as described in the signal-cli
documentation37. Furthermore, the production environment ought to remove verbose
logging and handle potential rate-limiting conditions gracefully.

37 https://github.com/AsamK/signal-cli/blob/master/man/signal-cli.1.adoc
36 https://signal.org/
35 https://github.com/AsamK/signal-cli

7ASecurity © 2024
22

https://github.com/AsamK/signal-cli/blob/master/man/signal-cli.1.adoc
https://signal.org/
https://github.com/AsamK/signal-cli
https://7asecurity.com


Pentest Report

Alternatively, if attachments are perceived as a necessary feature, their maximum size
should be limited and the signal bridge may monitor disk usage to detect and prevent
potential attacks via excessive disk consumption.

Hardening Recommendations

This report area provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

COV-01-002 WP2: iOS Binary Hardening Recommendations (Info)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the iOS binary in the reference CoverDrop iOS app fails to leverage
some code injection, privilege escalation, and anti-tampering flags available. While this
is not a serious issue on its own, it could facilitate code injection, privilege escalation,
and application tampering attacks in edge-case scenarios.

Issue: Missing __RESTRICTED segment

The binary does not have a restricted segment that prevents dynamic loading of DYLIB
for arbitrary code injection.

Command:
size -x -l -m referenceAudit | grep __RESTRICT | wc -l

Output:
0

It is recommended to use the following compiler options to enable the restricted segment
feature:

Proposed fix (compiler options):
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

7ASecurity © 2024
23

https://7asecurity.com


Pentest Report

COV-01-003 WP1: Multiple Vulnerabilities in Rust Crates (Low)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the CoverDrop library makes use of Rust crates with publicly known
vulnerabilities. While most of these weaknesses are likely not exploitable under the
current implementation, this is still a bad practice that could result in unwanted security
issues. The following table summarizes publicly known weaknesses affecting Rust files:

Library Details

h2@0.3.19 Affected by: Resource exhaustion vulnerability which may
lead to Denial of Service (DoS)38.
Affected File: Cargo.lock

libsqlite3-sys@0.24.2 Affected by: libsqlite3-sys via C SQLite CVE-2022-3573739.
Affected File: Cargo.lock

time@0.1.45 Affected by: Potential segfault40.
Affected File: Cargo.lock

sodiumoxide@0.2.7 Affected by: sodiumoxide is deprecated41.
Affected File: Cargo.lock

atty@0.2.14 Affected by: Potential unaligned read42.
Affected File: Cargo.lock

In addition to upgrading outdated dependencies to the current versions, it is
recommended to implement an automated task and/or commit hook to regularly check
for vulnerabilities in dependencies. Some solutions that could help in this area are the
cargo update43 and cargo audit fix44 commands, the Snyk tool45, and the OWASP
Dependency Check project46. Ideally, such tools should be run regularly by an
automated job that alerts a lead developer or administrator about known vulnerabilities in
dependencies so that the patching process can start in a timely manner.

46 https://owasp.org/www-project-dependency-check/
45 https://snyk.io/
44 https://crates.io/crates/cargo-audit
43 https://doc.rust-lang.org/cargo/commands/cargo-update.html
42 https://rustsec.org/advisories/RUSTSEC-2021-0145
41 https://rustsec.org/advisories/RUSTSEC-2021-0137
40 https://rustsec.org/advisories/RUSTSEC-2020-0071
39 https://rustsec.org/advisories/RUSTSEC-2022-0090
38 https://rustsec.org/advisories/RUSTSEC-2024-0003

7ASecurity © 2024
24

https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://crates.io/crates/cargo-audit
https://doc.rust-lang.org/cargo/commands/cargo-update.html
https://rustsec.org/advisories/RUSTSEC-2021-0145
https://rustsec.org/advisories/RUSTSEC-2021-0137
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2022-0090
https://rustsec.org/advisories/RUSTSEC-2024-0003
https://7asecurity.com


Pentest Report

COV-01-004 WP1: Potential for MitM via Downgraded TLS Version (Info)

Retest note: The CoverDrop team resolved this issue and 7ASecurity confirmed that the
fix is valid.

During the code review, while inspecting the Rust toolchain installation, it was found that
the CoverDrop library setup scripts restrict the TLS version to v1.2, which is considered
to be adequately safe at the time of writing. Although some theoretical attacks exist
against v.1.24748, TLS v1.3 is considered to be faster and more secure49, and hence it
should be used instead. This was confirmed in the following code locations:

Affected Files:
scripts/setup.sh
docker/dev/signal-cli/Dockerfile

Affected Code:
# Install Rust toolchain

echo "👉 Checking if Rust is installed..."

if ! [[ -x "$(command -v cargo)" ]]; then

echo "❌ Rust not found."

if ! [[ -x "$(command -v curl)" ]]; then

echo "❌ curl not found. Please check https://www.rust-lang.org/tools/install"

exit 1

else

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

source "$HOME/.cargo/env"

echo "✅ Finished installing Rust."

fi

[...]

fi

It is recommended to switch directly to TLSv1.3, which is now widely supported.
Additionally, the backend server supports TLS1.350, while curl supports TLSv1.3 since
201651.

51 https://curl.se/mail/lib-2016-12/0091.html
50 https://domsignal.com/test/jeed5c8r08o2eoewf3v7nsd3ngn44hwm
49 https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/
48 https://access.redhat.com/articles/2112261
47 https://www.ssl.com/blogs/raccoon-attack-targets-tls-1-2-and-earlier-but-is-difficult-to-exploit/

7ASecurity © 2024
25

https://curl.se/mail/lib-2016-12/0091.html
https://domsignal.com/test/jeed5c8r08o2eoewf3v7nsd3ngn44hwm
https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/
https://access.redhat.com/articles/2112261
https://www.ssl.com/blogs/raccoon-attack-targets-tls-1-2-and-earlier-but-is-difficult-to-exploit/
https://7asecurity.com


Pentest Report

COV-01-005 WP2: Multiple Vulnerabilities in Android packages (Low)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the CoverDrop Android module makes use of Android packages with
publicly known vulnerabilities. While most of these weaknesses are likely not exploitable
under the current implementation, this is still a bad practice that could result in unwanted
security issues. The following table summarizes publicly known weaknesses affecting
Android packages:

Library Details

com.google.dagger:hi
lt-compiler@2.48.1

Affected by: Creation of Temporary File in Directory with
Insecure Permissions 52

Affected File: android/gradle/libs.versions.toml

org.jetbrains.kotlin:ko
tlin-stdlib@1.8.10

Affected by: Information Exposure 53

Affected File: android/build.gradle

libsqlite3-sys@0.24.2 Affected by: Information Exposure 54

Affected File: android/gradle/libs.versions.toml

The following command can be used to obtain a summary of vulnerable packages:

Command:
➜ android git:(main) ✗ snyk test . --all-sub-projects

It is recommended to extrapolate the mitigation guidance offered under COV-01-003 to
resolve this issue.

54 https://security.snyk.io/vuln/SNYK-JAVA-ORGJETBRAINSKOTLIN-2393744

53 https://security.snyk.io/vuln/SNYK-JAVA-ORGJETBRAINSKOTLIN-2393744

52 https://security.snyk.io/vuln/SNYK-JAVA-COMGOOGLEGUAVA-5710356

7ASecurity © 2024
26

https://security.snyk.io/vuln/SNYK-JAVA-ORGJETBRAINSKOTLIN-2393744
https://security.snyk.io/vuln/SNYK-JAVA-ORGJETBRAINSKOTLIN-2393744
https://security.snyk.io/vuln/SNYK-JAVA-COMGOOGLEGUAVA-5710356
https://7asecurity.com


Pentest Report

COV-01-006 WP3: TLS Hardening Recommendations (Info)

Note: The CoverDrop team plans to address this issue in the next release.

It was found that the TLS configuration of the CoverDrop API servers has minor
weaknesses that could be resolved. While these issues do not constitute any significant
security finding at present, they might become serious as new attacks continue to be
discovered and fall into the public domain. Furthermore, these misconfigurations may
facilitate Man-In-The-Middle (MitM) attacks against outdated clients.

The TLS configuration was found to support a number of weak TLS1.2 ciphers:
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
● TLS_RSA_WITH_AES_128_GCM_SHA256
● TLS_RSA_WITH_AES_256_GCM_SHA384
● TLS_RSA_WITH_AES_256_CBC_SHA
● TLS_RSA_WITH_AES_128_CBC_SHA
● TLS_RSA_WITH_3DES_EDE_CBC_SHA

PoC URLs:
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi.guardiana
pis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi%2daudit.
guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dmsg%2daudit
.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging.code.dev%2dgua
rdianapis.com&s=151.101.1.111&hideResults=on

It is recommended to deploy TLS correctly to solve these problems55. This should be
done on all servers, including those that were out of scope during this assignment. The
OWASP TLS Cheat Sheet56 is a valuable resource to do this. Ultimately, the SSL Labs
website57 can be helpful to verify the configuration when the website is reachable online.
Alternatively, the OWASP O-Saft tool58 may facilitate testing the TLS configuration of
servers that are not reachable via the internet.

58 https://owasp.org/www-project-o-saft/
57 https://www.ssllabs.com/ssltest/
56 https://cheatsheetseries.owasp.org/.../Transport_Layer_Protection_Cheat_Sheet.html
55 https://docs.fastly.com/en/guides/working-with-hosts#specifying-acceptable-tls-cipher-suites

7ASecurity © 2024
27

https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi%2daudit.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dapi%2daudit.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dmsg%2daudit.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging%2dmsg%2daudit.guardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging.code.dev%2dguardianapis.com&s=151.101.1.111&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=secure%2dmessaging.code.dev%2dguardianapis.com&s=151.101.1.111&hideResults=on
https://owasp.org/www-project-o-saft/
https://www.ssllabs.com/ssltest/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://docs.fastly.com/en/guides/working-with-hosts#specifying-acceptable-tls-cipher-suites
https://7asecurity.com


Pentest Report

COV-01-007 WP5: ELB Hardening Recommendations (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The AWS infrastructure makes use of an Elastic Load Balancer (ELB) to expose
services. It was found that minor hardening improvements can be applied to improve its
configuration. Specifically, the load balancer does not remove invalid headers, fails to
leverage the AWS WAF, and has no logging configuration.

Affected Resources:
AWS Account 648583952313

Issue: Security attributes and integrations disabled in all ELBs

This issue can be confirmed reviewing the ELB security settings as follows:
1. Navigate to the Elastic Load Balancers view, on the AWS Management Console

under the EC2 category:
URL:
https://eu-west-1.console.aws.amazon.com/ec2/home?region=eu-west-1#LoadB
alancer:loadBalancerArn=arn:aws:elasticloadbalancing:eu-west-1:648583952313
:loadbalancer/app/secure-LoadB-5GQZ2lZ2MagZ/8c558a216e1999bc;tab=attrib
utes

2. Click on the Integrations (WAF and Config settings) and then the Attributes
(logging and drop invalid headers) tabs.

Result:
The Attributes and Integrations tabs fail to enable Access logs, the Drop Invalid Headers
option, as well as the AWS WAF and AWS Config integration:

7ASecurity © 2024
28

https://eu-west-1.console.aws.amazon.com/ec2/home?region=eu-west-1#LoadBalancer:loadBalancerArn=arn:aws:elasticloadbalancing:eu-west-1:648583952313:loadbalancer/app/secure-LoadB-5GQZ2lZ2MagZ/8c558a216e1999bc;tab=attributes
https://eu-west-1.console.aws.amazon.com/ec2/home?region=eu-west-1#LoadBalancer:loadBalancerArn=arn:aws:elasticloadbalancing:eu-west-1:648583952313:loadbalancer/app/secure-LoadB-5GQZ2lZ2MagZ/8c558a216e1999bc;tab=attributes
https://eu-west-1.console.aws.amazon.com/ec2/home?region=eu-west-1#LoadBalancer:loadBalancerArn=arn:aws:elasticloadbalancing:eu-west-1:648583952313:loadbalancer/app/secure-LoadB-5GQZ2lZ2MagZ/8c558a216e1999bc;tab=attributes
https://eu-west-1.console.aws.amazon.com/ec2/home?region=eu-west-1#LoadBalancer:loadBalancerArn=arn:aws:elasticloadbalancing:eu-west-1:648583952313:loadbalancer/app/secure-LoadB-5GQZ2lZ2MagZ/8c558a216e1999bc;tab=attributes
https://7asecurity.com


Pentest Report

Fig.: “Drop Invalid Header” & “Access logs” options disabled

Fig.: AWS Config & AWS WAF integrations disabled for sample ELB

7ASecurity © 2024
29

https://7asecurity.com


Pentest Report

It is recommended to enable the Drop Invalid Headers option59, enable the AWS Config60

integration and consider deploying the AWS WAF61. Please note that implementing the
Drop Invalid Headers and AWS WAF options will provide some protection against HTTP
Smuggling and other web-based attacks. It is also advised to collect access logs at the
ELB-level, if more comprehensive insight is needed to analyze HTTP requests coming
from the Internet, however in most cases application-level logs should be sufficient.

COV-01-008 WP5: AWS Weaknesses in Vuln Management Processes (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the configuration audit of the AWS account, it was discovered that some AWS
security-relevant services are not configured correctly. Failure to leverage these services
can leave the infrastructure open to attacks due to insufficient hardening.

Affected Resources:
AWS Account 648583952313

Please note that, as most of the AWS services are region-based, it is important to
determine which regions are used first, to focus the analysis on the regions that are
actually in use. The regions with defined resources in the analyzed environment are:
eu-west-1 and us-east-1. The latter however seems to be potentially unused and was
described separately.

Issue 1: AWS Config is not enabled in all used regions

AWS Config62 is a service that maintains the configuration history for AWS resources
and evaluates best practices. The following command can be used to confirm AWS
Config is not enabled on the used region:

Command:
aws configservice get-status

Output:
Configuration Recorders:

Delivery Channels:

62 https://aws.amazon.com/blogs/mt/aws-config-best-practices/
61 https://docs.aws.amazon.com/waf/
60 https://docs.aws.amazon.com/config/latest/developerguide/elb-logging-enabled.html
59 https://docs.aws.amazon.com/config/latest/developerguide/alb-http-drop-invalid-header(...).html

7ASecurity © 2024
30

https://aws.amazon.com/blogs/mt/aws-config-best-practices/
https://docs.aws.amazon.com/waf/
https://docs.aws.amazon.com/config/latest/developerguide/elb-logging-enabled.html
https://docs.aws.amazon.com/config/latest/developerguide/alb-http-drop-invalid-header-enabled.html
https://7asecurity.com


Pentest Report

Issue 2: Security Hub is not enabled in us-east-1

Security Hub63 is a region-based service that provides a comprehensive view of security
issues from regions where it is enabled. The following command describes the status of
Security Hub for the regions in use:

Command:
aws securityhub --region us-east-1 describe-hub

Output:
An error occurred (InvalidAccessException) when calling the DescribeHub operation:

Account 648583952313 is not subscribed to AWS Security Hub

On the other hand, in the main region (eu-west-1), the service is enabled.

Command:
aws securityhub --region eu-west-1 describe-hub

Output:
{

"HubArn": "arn:aws:securityhub:eu-west-1:648583952313:hub/default",

"SubscribedAt": "2022-10-24T14:44:37.989Z",

"AutoEnableControls": true,

"ControlFindingGenerator": "STANDARD_CONTROL"

}

It is recommended to implement as many AWS Security related services as possible.
This should include tools like Security Hub64, Config65, Guard Duty66 and if possible
Macie67 and Inspector68. After this, the infrastructure team should ensure that all relevant
services, and equivalent products, are enabled for the whole environment in all used
regions. Furthermore, any reported issues should be regularly reviewed and remediated.
This should ideally be accomplished by leveraging an infrastructure-as-code approach
such as Terraform69, which would significantly simplify applying the same settings across
all AWS accounts and regions. Please note that cloud-native security tools are not
perfect, however they provide a solid baseline for each environment. Special

69 https://www.terraform.io/use-cases/infrastructure-as-code
68 https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
67 https://aws.amazon.com/macie/
66 https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
65 https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
64 https://aws.amazon.com/security-hub/
63 https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html

7ASecurity © 2024
31

https://www.terraform.io/use-cases/infrastructure-as-code
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://aws.amazon.com/macie/
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
https://aws.amazon.com/security-hub/
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html
https://7asecurity.com


Pentest Report

consideration should be given to Security Hub and Config, as they allow to streamline
and discover common misconfigurations.

COV-01-009 WP5: Possible risks via unused AWS Region (Info)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The AWS account mainly uses the eu-west-1 region. However, it was discovered that
some resources like VPC, Security Groups and CloudFormation Stacks, RDS
SubnetGroups and an S3 bucket are present in the us-east-1 region. If the region is
actively used, multiple monitoring options should be enabled, i.e. Security Hub, VPC
Flow Logs, etc. Failure to do this, may result in some security breaches going unnoticed.

Affected Resources:
AWS Account 648583952313

Example 1: VPC defined in us-east-1

Command:
# List VPCs in a given region

aws ec2 --region us-east-1 describe-vpcs

Output:
{

"Vpcs": [

{

"CidrBlock": "172.31.0.0/16",

"DhcpOptionsId": "dopt-0bcd10b8ca6e2f646",

"State": "available",

"VpcId": "vpc-04761d6f9341bb24a",

"OwnerId": "648583952313",

"InstanceTenancy": "default",

"CidrBlockAssociationSet": [

{

"AssociationId": "vpc-cidr-assoc-00453aa0a7d1582d8",

"CidrBlock": "172.31.0.0/16",

"CidrBlockState": {

"State": "associated"

}

}

],

"IsDefault": true

}

]

}

7ASecurity © 2024
32

https://7asecurity.com


Pentest Report

Example 2: CloudFormation Stacks in us-east-1

Command:
# List cloudformation stacks in a given region

aws cloudformation list-stacks

--region us-east-1

--query StackSummaries[*].StackName

Output:
[

"secure-collaboration-INFRA-aws-cost-monitor",

"CoverDrop-CODE",

"login-federation"

]

It is advised to monitor resources in all used regions. This way, in the event of a
compromise, this may be a useful indicator when attackers successfully breach into the
environment, as they might attempt to remain hidden in rarely used regions. In general, it
is further recommended to remove all unnecessary regions and resources, to reduce the
attack surface as much as possible.

COV-01-010 WP5: Insufficient AWS Logging & Monitoring (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

It was found that the AWS account fails to log some important events, and does not
implement robust security alerts for early attack detection. Without adequate logging and
alerting, it may be impossible to monitor and detect malicious activities, or use integrated
tools that analyze logs for anomalies, all of which may be critical in the event of a
security breach.

Affected Resources:
AWS Account 648583952313

Issue 1: No VPC flow logs defined

No VPC flow logs were found to be defined. At a minimum, these should be listed for the
VPCs with the main workloads. This can be confirmed by reviewing the VPC flow logs
like so:

1. Open the AWS Management Console
2. Navigate to the VPC Settings and select a VPC to check.

7ASecurity © 2024
33

https://7asecurity.com


Pentest Report

PoC URL:
https://eu-west-1.console.aws.amazon.com/vpcconsole/home?region=eu-west-1
#vpcs:

3. Review the Flow Logs tab.

The following command confirms there are no flow logs defined in the regions for the
AWS accounts provided during this assignment:

Command:
# eu-west-1

aws ec2 describe-flow-logs

Output:
{ "FlowLogs": [] }

Issue 2: No CloudWatch and CloudTrail integration and no security-related alerts

The trail created in CloudTrail for the account does not have associated CloudWatch log
groups. Effectively, there are no security-related metrics, as well as no security-related
alerts based on the missing metrics. The only metrics and alerts configured in the
system are related to typical daily operations of the administrative teams regarding the
operational status of the application. Lack of CloudTrail and CloudWatch integration can
be confirmed by reviewing the appropriate sections as follows:

1. Open the AWS Management Console
2. Navigate to the AWS CloudTrail and select the main trail.

PoC URL:
https://eu-west-1.console.aws.amazon.com/cloudtrail/home?region=eu-west-1#/tr
ails/arn:aws:cloudtrail:eu-west-1:648583952313:trail/cloudtrail-Trail-Gn8iT6KGJp
s0

3. Review the CloudWatch Logs tab.

7ASecurity © 2024
34

https://eu-west-1.console.aws.amazon.com/vpcconsole/home?region=eu-west-1#vpcs
https://eu-west-1.console.aws.amazon.com/vpcconsole/home?region=eu-west-1#vpcs
https://eu-west-1.console.aws.amazon.com/cloudtrail/home?region=eu-west-1#/trails/arn:aws:cloudtrail:eu-west-1:648583952313:trail/cloudtrail-Trail-Gn8iT6KGJps0
https://eu-west-1.console.aws.amazon.com/cloudtrail/home?region=eu-west-1#/trails/arn:aws:cloudtrail:eu-west-1:648583952313:trail/cloudtrail-Trail-Gn8iT6KGJps0
https://eu-west-1.console.aws.amazon.com/cloudtrail/home?region=eu-west-1#/trails/arn:aws:cloudtrail:eu-west-1:648583952313:trail/cloudtrail-Trail-Gn8iT6KGJps0
https://7asecurity.com


Pentest Report

Fig.: No associated log groups in CloudWatch

It is recommended to enable VPC Flow Logs and ensure CloudTrail is integrated with
CloudWatch. Metrics, alerts and notifications should then be defined70 to detect
anomalies early.

In general, all logging and monitoring settings should be adjusted depending on the
threat model, compliance requirements and volume of generated data. Excessively
verbose logs may increase the overall infrastructure cost significantly, however, lack of
appropriate logging and monitoring decreases the chances of successful threat detection
and analysis in case of a breach. It is advised to review and improve the logging and
monitoring configuration in the context of a potential incident response case, rather than
just regular daily operations of the infrastructure71.

71 https://docs.aws.amazon.com/whitepapers/.../aws-security-incident-response...html
70 https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html

7ASecurity © 2024
35

https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/logging-and-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html
https://7asecurity.com


Pentest Report

COV-01-011 WP5: Insecure GitHub Token Storage in Parameter Store (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

It was found that a GitHub Personal Token belonging to a user in the organization is
stored in the AWS Parameter Store, without sufficiently strong encryption properties. The
parameter uses a default KMS encryption key, meaning users with read access can
easily extract the token, and try to reach private resources in GitHub. While the token
was found to have limited read:packages permissions attached, it can still be leveraged
to download private docker containers from the GitHub Container Registry belonging to
the organization. Please note the severity of this finding is reduced, as no containers
were found to have sensitive data stored in docker layers. Nevertheless, attackers might
be able to extract this type of information in the future, if it is added by mistake to some
private container.

Affected Resources:
AWS Account 648583952313

Users with attached ReadOnlyAccess and SecurityAudit policies, can fetch the
unencrypted token from the AWS Parameter Store, despite the SecureString property
being assigned to the parameter, due to the default KMS key usage. This would not be
possible if keys were managed with fine-grained policies instead.

Issue 1: Token encrypted using the default KMS key in the AWS Parameter Store

Command:
# Get the value of the parameter encrypted using the default KMS (alias/aws/ssm)

aws ssm get-parameter --name "/PROD/coverdrop/ghcr-token" --with-decryption

Output:
# Decrypted GitHub Personal Token

{

"Parameter": {

"Name": "/PROD/coverdrop/ghcr-token",

"Type": "SecureString",

"Value": "ghp_SpnZd8oo[...]",

"Version": 1,

"LastModifiedDate": "2023-11-13T10:38:16.423000-05:00",

"ARN":

"arn:aws:ssm:eu-west-1:648583952313:parameter/PROD/coverdrop/ghcr-token",

"DataType": "text"

}

}

7ASecurity © 2024
36

https://7asecurity.com


Pentest Report

Issue 2: Personal GitHub token used in the production environment

Command 1: GitHub Token Recon
# GitHub token verification

curl -sS -f -H "Authorization: token ghp_SpnZd[...]" https://api.github.com/user

Output:
# Object from GitHub API

{

"login": "it[...]",

[...]

"name": "Sa[...]",

"company": "The Guardian",

"blog": "https://twitter.com/it[...]",

[...]

"created_at": "2013-09-27T18:43:22Z",

[...]

}

Command 2: List Private Containers from ghcr.io
# GitHub API list containers for Guardian organization

curl -L -H "Authorization: token ghp_SpnZd[...]"

"https://api.github.com/orgs/guardian/packages?package_type=container" | jq '.[] |

select(.repository.private==true) | .name'

Output:
# Containers accessible to the user including some test resources

"coverdrop_kinesis"

"coverdrop_covernode"

"coverdrop_api"

"containers-experiment"

"container-experiments"

"coverdrop_key-expiry"

"coverdrop_journalist-identity-api"

"coverdrop_identity-api"

"coverdrop_cover-traffic"

"coverdrop_autoconfigure-api-ingress"

"test_coverdrop_kinesis"

"test_coverdrop_identity-api"

"test_coverdrop_covernode"

"test_coverdrop_api"

"test_coverdrop_fastly-edge"

"coverdrop_fastly-edge"

"coverdrop_signal-cli"

"coverdrop_signal-bridge"

7ASecurity © 2024
37

https://7asecurity.com


Pentest Report

It is recommended to invalidate the identified credentials, and use a separate machine
account to access the GitHub Container Registry (GHCR). Limited permissions should
be attached to expose only the necessary containers.

More broadly, secrets should be stored securely either in AWS Secrets Manager72 or in
the AWS Parameters Store73, but in both cases sensitive data should additionally be
protected utilizing a managed encryption key with fine-grained permissions. Preferably
CMK KMS74 should be used for full control over the encryption keys, and in case of
cross-account data sharing.

COV-01-012 WP5: Lack of S3 Bucket Hardening (Low)

Client Note: The CoverDrop team made some adjustments in this area, e.g. to enable
bucket versioning. However to date they have not enabled MFA delete. They are
planning before CoverDrop launches publicly to enable KMS encryption using
service-specific keys to encrypt new objects in the bucket.

It was found that the S3 buckets in scope use default encryption settings and lack
adequate hardening options, such as MFA Delete and Versioning. Malicious attackers,
with read access to the account, may leverage this weakness to download data from the
buckets. If attackers gain write access, it may be possible to modify the content of the
objects, which might be unnoticed by IT Staff. Furthermore, modification of binaries and
scripts could lead to the compromise of EC2 instances: As instances download scripts
and binaries during cloud-init via User-Data, any malicious modifications to those files in
S3 may lead to the compromise of virtual machines.

Affected Resources:
AWS Account 648583952313

This issue can be confirmed navigating to the S3 buckets view on the AWS
Management Console:

Issue 1: Default AWS-managed KMS encryption key

This issue can be confirmed reviewing any S3 bucket as follows:
1. Navigate to the S3 buckets view, on the AWS Management Console:

URL: https://s3.console.aws.amazon.com/s3/buckets
2. Click on e.g. coverdrop-dist-audit S3 bucket to review the properties.

74 https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html
73 https://docs.aws.amazon.com/kms/latest/developerguide/services-parameter-store.html
72 https://aws.amazon.com/secrets-manager/features/

7ASecurity © 2024
38

https://s3.console.aws.amazon.com/s3/buckets
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-parameter-store.html
https://aws.amazon.com/secrets-manager/features/
https://7asecurity.com


Pentest Report

Result:
The Encryption type section reveals the default KMS key:

Fig.: Default Amazon-managed encryption key

Issue 2: Lack of MFA delete and Bucket Versioning

The Bucket versioning section reveals disabled options:

Fig.: MFA delete and versioning options disabled

It is recommended to use custom keys in the AWS Key Management Service (AWS
KMS)75 for bucket encryption. Ideally CMK KMS should be used for best control, and in
case of cross-account sharing scenarios. Additionally options like Versioning and MFA
delete should be enabled, especially for important buckets, like the ones containing
binaries and scripts used by EC2 instances. Finally, if possible, robust object-level

75 https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

7ASecurity © 2024
39

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://7asecurity.com


Pentest Report

logging76 should be implemented, to monitor and notify administrators if any
unauthorized modifications of important data are detected, as this will contain potential
security breaches early in the kill chain.

COV-01-014 WP2: Android Config Hardening Recommendations (Info)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the reference CoverDrop Android app fails to leverage optimal values
for a number of security-related settings. While the CoverDrop team diligently mitigates
the potential for backup leaks via backup exceptions, and no backup leaks could be
found during this assignment, these settings increase the potential for leaks once the
CoverDrop project becomes open source, and less educated developers fork and modify
the CoverDrop applications in the future. These weaknesses are documented in more
detail next.

Issue 1: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

76 https://docs.aws.amazon.com/AmazonS3/latest/userguide/enable-cloudtrail-logging-for-s3.html

7ASecurity © 2024
40

https://docs.aws.amazon.com/AmazonS3/latest/userguide/enable-cloudtrail-logging-for-s3.html
https://7asecurity.com


Pentest Report

Issue 2: Usage of android:allowBackup=”true”

Note: CoverDrop was not found to leak any sensitive information in backups and
correctly sets backup exceptions. Nevertheless, this hardening setting is presented here
as an informational hardening recommendation for third parties to be careful about, once
they fork and modify the upcoming open source CoverDrop version.

The application currently allows backups which might result in local attackers with
access to an unlocked device able to enable USB debugging and access application
secrets:

Affected File:
AndroidManifest.xml

Affected code:
<application android:theme="@style/Theme.CoverDropSample"

[...]

android:taskAffinity="" android:allowBackup="true" android:largeHeap="true"

android:supportsRtl="true" android:extractNativeLibs="false"

[...]

android:appComponentFactory="androidx.core.app.CoreComponentFactory"

android:dataExtractionRules="@xml/data_extraction_rules">

It is recommended to use a value of false for android:allowBackup. If backups must be
allowed, the android:fullBackupContent directive could be used to specify an XML file77

with full backup rules for auto backup78.

COV-01-016 WP1: Insecure Zero-Padding in PaddedCompressedString (Info)

Retest Notes: The CoverDrop team resolved this issue during the test and 7ASecurity
confirmed that the fix is valid.

It was found that the CoverDrop protocol implementation is using zero-padding79 for
message encapsulation. In cryptography, Zero padding refers to the practice of padding
a message with zeros, to meet a specific block size requirement before encryption.
While zero padding is a simple and widely used technique, it has some security
vulnerabilities, especially in certain cryptographic scenarios80.

Zero padding is deterministic, meaning that the same input will always result in the same
padded output. This lack of variability can be exploited by attackers who might observe

80 https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
79 https://en.wikipedia.org/wiki/Padding_(cryptography)#Zero_padding
78 https://developer.android.com/guide/topics/data/autobackup
77 https://developer.android.com/guide/topics/manifest/application-element#fullBackupContent

7ASecurity © 2024
41

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://en.wikipedia.org/wiki/Padding_(cryptography)#Zero_padding
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/guide/topics/manifest/application-element#fullBackupContent
https://7asecurity.com


Pentest Report

repeated patterns in the ciphertext, potentially revealing information about the plaintext.
Furthermore, zero padding does not provide any integrity protection for the padded
message. Malicious attackers capable of modifying the ciphertext may be able to tamper
the padding, leading to potential security issues. Even though this does not appear to be
an exploitable vulnerability at the moment, it represents a bad security practice which
should be addressed appropriately. This issue can be confirmed observing the following
code paths:

Affected Files:
common/src/padded_compressed_string.rs
ios/reference/CoverDropCore/Sources/CoverDropCore/PaddedCompressedString.swift
android/core/src/main/java/com/theguardian/coverdrop/core/models/PaddedCompresse
dString.kt

Affected Code:
impl<const PAD_TO: LengthHeader> PaddedCompressedString<PAD_TO> {

const HEADER_SIZE: usize = size_of::<LengthHeader>();

/// The total length of this buffer, used when allocating arrays which need `usize`.

pub const TOTAL_LEN: usize = PAD_TO as usize;

pub fn new(text: &str) -> Result<PaddedCompressedString<PAD_TO>, Error> {

// Allocate at the expected size up front.

let mut buf: Vec<u8> = Vec::with_capacity(Self::TOTAL_LEN);

// Reserve bytes which we'll need later for writing the size

// This saves us from prepending later on, O(n), horrifying!

buf.resize(Self::HEADER_SIZE, 0x0);

let mut compression = GzEncoder::new(buf, Compression::default());

compression.write_all(text.as_bytes())?;

let mut buf = compression.finish()?;

// Write the size of the compressed bytes into the header we reserved previously

let compressed_size = LengthHeader::try_from(buf.len() - Self::HEADER_SIZE)

.map_err(|_| Error::CompressedStringTooLong(buf.len() as f32 / PAD_TO as f32))?;

// The compressed string is >2^16 bytes

let compressed_size_bytes = compressed_size.to_be_bytes();

buf[..Self::HEADER_SIZE].copy_from_slice(&compressed_size_bytes[..

Self:: HEADER_SIZE]);

if buf.len() > Self::TOTAL_LEN {

Err(Error::CompressedStringTooLong(

buf.len() as f32 / PAD_TO as f32,

))

} else {

7ASecurity © 2024
42

https://7asecurity.com


Pentest Report

buf.resize(Self::TOTAL_LEN, 0x0); // NOTE: zero-padding happens here

Ok(PaddedCompressedString(buf))

}

}

It is recommended to employ a modern cryptographic standard that implements more
secure padding schemes, such as PKCS#781 or simple randomized padding. These
provide better security properties and resistance to a broader range of cryptography
attacks.

COV-01-017 WP5: Possible Improvements to IAM Policies (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

While performing the AWS audit, It was discovered that some of the IAM policies fail to
restrict access to a number of resources in the environment. As the environment mixes
staging and production workloads, it is crucial to ensure boundaries are enforced to
prevent pivoting between environments, in the event of a compromise.

Affected Resources:
AWS Account 648583952313

Issue 1: Cross-Env Param Store Access via AmazonSSMManagedInstanceCore

The following command using PMapper82 reveals which entities have permissions to
perform actions on a given resource. In this case, all EC2 instance roles, and the
cloudquery-access role, were found to be authorized to read data from the AWS
Parameter Store, regardless of the environment the parameter belongs to, based on the
naming convention. Furthermore, for EC2 instance roles, it was found that the
AmazonSSMManagedInstanceCore AWS-managed policy is attached to the role,
granting broad access.

Command:
# Query to PMapper to retrieve who has access to sample sensitive parameter

who can do ssm:GetParameter with

arn:aws:ssm:eu-west-1:648583952313:parameter/CODE/secure-collaboration/signal-bridge/ac

count.pin

Output:
# Highlighted roles potentially should not be able to read any parameter

82 https://github.com/nccgroup/PMapper
81 https://node-security.com/posts/cryptography-pkcs-7-padding/

7ASecurity © 2024
43

https://github.com/nccgroup/PMapper
https://node-security.com/posts/cryptography-pkcs-7-padding/
https://7asecurity.com


Pentest Report

user/7ASecurity

role/AWSCloudFormationStackSetExecutionRole

role/cloudquery-access

role/janus

role/secure-collaboration-AUDI-InstanceRoleCovertrafficC-wew3fxOVjoe3

role/secure-collaboration-AUDIT--InstanceRoleApi6D8EAD0D-sOyg3BaZnuzX

role/secure-collaboration-CODE-c-InstanceRoleApi6D8EAD0D-mTe6oxCNcVxT

role/secure-collaboration-CODE-InstanceRoleCovernodeE7FC-0qSsjIVICPAE

role/secure-collaboration-CODE-InstanceRoleCovertrafficC-joP4PRfWPlks

role/secure-collaboration-CODE-InstanceRoleIdentityapi5B-6rmUNSDbeJJL

role/secure-collaboration-CODE-InstanceRoleSignalbridgeB-VLHitlW8xdTs

role/secure-collaboration-DEMO-c-InstanceRoleApi6D8EAD0D-t8lZ3WtNWalX

role/secure-collaboration-DEMO-InstanceRoleCovernodeE7FC-26LwY8S6ZLNR

role/secure-collaboration-DEMO-InstanceRoleCovertrafficC-QBjdHO2RuKu3

role/secure-collaboration-DEMO-InstanceRoleIdentityapi5B-BwDk3qEqNIOQ

role/secure-collaboration-DEMO-InstanceRoleSignalbridgeB-iKbEjZwHKVur

role/secure-collaboration-PROD-c-InstanceRoleApi6D8EAD0D-cqUpyAdIr17d

role/StackSet-RiffRaffAccess-3-RiffRaffCloudformationEx-P6ZILT0HFUT3

role/StackSet-RiffRaffAccess-3828f6-RiffRaffAccountRole-HEG6110C54G0

role/stacksets-exec-af8836dbce8a429fb93c2b7e225a10f0

Issue 2: Broad Read Access for cloudquery-access role

The cloudquery-access role, used by an external entity to query the environment, was
found to have a full ReadOnlyAccess policy attached, with some minor restrictions
introduced by an inline policy. Despite the restrictions, as listed in the previous issue, this
allows any user assuming cloudquery-access, to retrieve values from the AWS
Parameter Store, including those marked as SecretString. The following command can
be used to list the attached policies:

Command:
# List policies attached to the role

aws iam list-attached-role-policies --role-name cloudquery-access

Output:
# ReadOnlyAccess policy attached to the role assumed from other aws

# account: 095768028460

{

"AttachedPolicies": [

{

"PolicyName": "ReadOnlyAccess",

"PolicyArn": "arn:aws:iam::aws:policy/ReadOnlyAccess"

}

]

}

It is recommended to consider removing roles granting broad read access, and use
restricted KMS policies, or customer managed KMS keys, for better control over

7ASecurity © 2024
44

https://7asecurity.com


Pentest Report

encrypted data. Tools such as IAM Access Analyzer83 can then be used, to determine
the smallest set of permissions needed to comply with the least privilege principle.

COV-01-018 WP5: Insecure Cross-Account Integration (Low)

Client note: The CoverDrop team plans to address this issue in the next release.

The CoverDrop 648583952313 cloud environment is integrated with multiple AWS
accounts. This includes, 717331877981 - Fastly, an external one, while 100378408918 -
Guardian Security, 095768028460 - Guardian deployTools, and others are internal and
part of the Guardian organization. It was found that multiple roles, used by the internal
account integrated via IAM roles, do not prevent a confused deputy issue or can be
leveraged to obtain administrative access. These weaknesses are described in more
detail next:

Affected Resources:
AWS Account 648583952313

Issue: Lack of ExternalID for role from CI/CD pipelines AWS account (deployTools)

The StackSet-RiffRaffAccess-3828f6-RiffRaffAccountRole-HEG6110C54G0 role can be
assumed from 095768028460, a shared AWS account used by multiple development
teams. Such an account with shared services can be potentially used in Confused
Deputy Problem84 scenarios. For example, an attacker with access to another
development team, might gain administrative access to the analyzed AWS account. The
lack of ExternalID can be confirmed reviewing the trust policy settings as follows:

Command:
# List trust policy

aws iam get-role --role-name

StackSet-RiffRaffAccess-3828f6-RiffRaffAccountRole-HEG6110C54G0

Output:
# Trusted roles from shared CI/CD AWS account 095768028460

{ "Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": [

"arn:aws:iam::095768028460:role/riff-raff-PROD-InstanceRole-1PZTOOPUBA63P",

84 https://cwe.mitre.org/data/definitions/441.html
83 https://aws.amazon.com/iam/access-analyzer/

7ASecurity © 2024
45

https://cwe.mitre.org/data/definitions/441.html
https://aws.amazon.com/iam/access-analyzer/
https://7asecurity.com


Pentest Report

"arn:aws:iam::095768028460:role/riff-raff-CODE-InstanceRole-1X7SE4IXFE6MU"

]

},

"Action": "sts:AssumeRole" }]}

It is worth mentioning that the external Fastly account integrated with Kinesis streams is
correctly protected against this type of attack as follows:

Command:
# List trust policy for Fastly

aws iam get-role --role-name userToJournalistKinesisFastlyRole-PROD

Output:
# Limited Fastly role with ExternalId

{ "Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::717331877981:root"

},

"Action": "sts:AssumeRole",

"Condition": {

"StringEquals": {

"sts:ExternalId": "Ga3[...]" }}}]}

Please note that other roles are also missing confused deputy protection. Hence, this
also similarly weakens services deployed in other AWS accounts, which might be
leveraged to gain access via 648583952313, namely:

● arn:aws:iam::648583952313:role/grafana-access
● arn:aws:iam::648583952313:role/cloudquery-access

It is recommended to remediate the confused deputy problem by using the
aforementioned ExternalID approach. It is important to do this, if possible, on all systems
deployed in integrated AWS accounts. For additional mitigation and guidance, please
see the Confused Deputy section of the AWS documentation85.

85 https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

7ASecurity © 2024
46

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://7asecurity.com


Pentest Report

COV-01-019 WP2: Android Binary Hardening Recommendations (Info)

Client Note: The CoverDrop team will not apply this hardening recommendation for the
time being.

It was found that a number of binaries embedded into the CoverDrop reference Android
application are currently not leveraging the available compiler flags to mitigate potential
memory corruption vulnerabilities. This unnecessarily puts the application more at risk
for such issues.

Issue 1: Binaries missing usage of -D_FORTIFY_SOURCE=2

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries (from decompiled production app):
x86/libsodium.so
x86_64/libjnidispatch.so
arm64-v8a/libjnidispatch.so
arm64-v8a/libtoolChecker.so
armeabi/libsodium.so
armeabi-v7a/libjnidispatch.so
[...]

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Issue 2: Binaries missing usage of Stack Canary

Some binaries do not have a stack canary value added to the stack. Stack canaries are
used to detect and prevent exploits from overwriting return addresses.

Example binaries (from decompiled app):
lib/mips/libjnidispatch.so
lib/armeabi-v7a/libjnidispatch.so
lib/mips64/libjnidispatch.so
lib/x86/libjnidispatch.so
lib/arm64-v8a/libjnidispatch.so
lib/x86_64/libjnidispatch.so
[...]

7ASecurity © 2024
47

https://7asecurity.com


Pentest Report

Regarding stack canaries, the -fstack-protector-all option can be used to allow the
detection of overflows by verifying the integrity of the canary before function returns.

COV-01-020 WP4: Boot Loader Password Not Set (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

It was found that no boot loader password is set on the host-01 (100.127.4.93) server.
Having no boot loader password set, an unauthorized user with physical access to the
server, may set command line boot parameters when booting the host. These
parameters could be used to subvert the security of the system.

Affected File:
/boot/grub/grub.cfg

Command:
grep "password" /boot/grub/grub.cfg

Output:
(empty)

It is recommended to create an encrypted password by using the
grub-mkpasswd-pbkdf286 command.

COV-01-024 WP4: Weaknesses in Network Stack Configuration (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the host hardening audit, it was discovered that the network stack on host-01
(100.127.4.93) is configured with insecure settings. Specifically:

● send_redirects is enabled. An attacker could use a compromised host, to send
invalid ICMP redirects to other router devices, corrupt routing, and have users
access an attacker-controlled system instead of the intended one.

● accept_redirects is enabled. This enables processing of ICMP Redirect packets.
ICMP redirects should not be needed in correctly operating networks and
unnecessarily increase the attack surface.

● secure_redirects is enabled. This enables processing of ICMP Redirect packets,
if the source address is a router.

86 https://manpages.ubuntu.com/manpages/focal/en/man1/grub-mkpasswd-pbkdf2.1.html
7ASecurity © 2024

48

https://manpages.ubuntu.com/manpages/focal/en/man1/grub-mkpasswd-pbkdf2.1.html
https://7asecurity.com


Pentest Report

● log_martians is not enabled. Enabling this feature and logging these packets
allows administrators to investigate the possibility of attackers sending spoofed
packets to the system.

This can be confirmed as follows:

Affected File:
/etc/sysctl.conf

Commands:
sysctl net.ipv4.conf.all.send_redirects

sysctl net.ipv4.conf.default.send_redirects

sysctl net.ipv4.conf.default.accept_redirects

sysctl net.ipv4.conf.all.secure_redirects

sysctl net.ipv4.conf.default.secure_redirects

sysctl net.ipv4.conf.all.log_martians

sysctl net.ipv4.conf.default.log_martians

Output:
net.ipv4.conf.all.send_redirects = 1

net.ipv4.conf.default.send_redirects = 1

net.ipv4.conf.default.accept_redirects = 1

net.ipv4.conf.all.secure_redirects = 1

net.ipv4.conf.default.secure_redirects = 1

net.ipv4.conf.all.log_martians = 0

net.ipv4.conf.default.log_martians = 0

It is recommended to disable the send_redirects, accept_redirects and secure_redirects
settings in the /etc/sysctl.conf file, and enable the log_martians setting. To set the
runtime status of the aforementioned kernel parameters, it is recommended to run the
following commands:

Proposed Fix:
sysctl -w net.ipv4.conf.all.send_redirects=0

sysctl -w net.ipv4.conf.default.send_redirects=0

sysctl -w net.ipv4.conf.default.accept_redirects=0

sysctl -w net.ipv4.conf.all.secure_redirects=0

sysctl -w net.ipv4.conf.default.secure_redirects=0

sysctl -w net.ipv4.conf.all.log_martians=1

sysctl -w net.ipv4.conf.default.log_martians=1

7ASecurity © 2024
49

https://7asecurity.com


Pentest Report

COV-01-025 WP4: Weaknesses in SSH Server Access (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the host hardening audit, it was found that the configuration for a number of SSH
options was not improved from the default settings. Additionally, the password policy has
not been hardened. This makes the operating system more prone to brute force and
resource exhaustion attacks. Other weaknesses include the usage of shared user
accounts for access to the server, as well as missing Multi-Factor Authentication (MFA),
both of which complicate the auditability of possible server compromises and increase
the potential for unauthorized access to the server.

Affected Host:
host-01 (100.127.4.93)

Issue 1: Default MaxAuthTries

The MaxAuthTries parameter specifies the maximum number of authentication attempts
permitted per connection. If the number of login failures reaches half the number, error
messages will be added to the syslog file. Setting the value of MaxAuthTries parameter
to a low number will minimize the risk of successful brute force attacks to the SSH
server. The setting is currently not set, resulting in the default value of 6.

Command:
grep --color MaxAuthTries /etc/ssh/sshd_config

Output:
#MaxAuthTries 6

Issue 2: ClientAliveInterval not set

The ClientAliveInterval and ClientAliveCountMax settings control the timeout of SSH
sessions. When the ClientAliveInterval variable is set, SSH sessions that have no
activity for the specified length of time are terminated. When the ClientAliveCountMax
variable is set, the SSH daemon will send alive messages at every ClientAliveInterval
interval to the client. When the number of consecutive client alive messages are sent
without response from the client, the SSH session is terminated. The ClientAliveInterval
parameter is currently set to default value of 0, indicating the setting is disabled.

Command:
grep --color ClientAliveInterval /etc/ssh/sshd_config

7ASecurity © 2024
50

https://7asecurity.com


Pentest Report

Output:
#ClientAliveInterval 0

It is recommended to configure the MaxAuthTries, ClientAliveInterval and
ClientAliveCountMax settings. This can be done by running the commands listed below.
If the value of ClientAliveCountMax is left at the default, and the ClientAliveInterval is set
to 15, unresponsive SSH clients will be disconnected after approximately 45 seconds.

Proposed Fix:
echo "MaxAuthTries 4" >> /etc/ssh/sshd_config

echo "ClientAliveInterval 15" >> /etc/ssh/sshd_config

Issue 3: Lax Password Policy

The password policy configuration is configured with unhardened default settings:
● PASS_MAX_DAYS is set to 99999. The PASS_MAX_DAYS setting allows to

force passwords to expire once they reach a defined age. The ability to leverage
a compromised password is limited by the age of the password. Therefore,
reducing the maximum age of the password (PASS_MAX_DAYS) also reduces
the window of opportunity.

● PASS_MIN_DAYS is set to 0. The PASS_MIN_DAYS setting Prevents users from
changing their password until a minimum number of days have passed since the
last time the user changed their password.

Command:
egrep "(PASS_MAX_DAYS|PASS_MIN_DAYS)" /etc/login.defs

Output:
PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

By restricting the frequency of password changes, administrators can prevent users from
repeatedly changing their password in an attempt to circumvent password reuse
controls.

For the SSH configuration, it is recommended to set the PASS_MAX_DAYS to 90 and
PASS_MIN_DAYS to 7 and update the settings for existing account with the following
commands:

Proposed Fix:
chage --maxdays 90 $user

chage --mindays 7 $user

7ASecurity © 2024
51

https://7asecurity.com


Pentest Report

Issue 4: Non-personal User Account

A non-personal account appears to be in use for daily tasks on the server. User
accounts should be either service accounts or personal accounts. The primary reasons
for this are:

● Accountability: When a security incident occurs and log files are examined it is
important to be able to link activities to individuals instead of only a shared user
account.

● Shared Password Risks: Shared user accounts require shared passwords,
which often leads to various risks such as insecure passwords, passwords that
are hard to change, and/or passwords that get stored in plain text files.

Non-personal and shared accounts should not be used by any user. It is recommended
to use personal accounts instead.

Issue 5: Missing MFA for SSH Access

The reference host is currently missing Multi Factor Authentication (MFA) for SSH
access.

It is recommended to implement MFA for SSH access. A possible way to accomplish this
is by installing and configuring the google-authenticator87 package.

COV-01-026 WP4: Weaknesses in Auditing and OS-level Logging (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

During the host hardening audit, it was discovered that the server does not have auditd
installed. When the Linux Auditing System (auditd) is installed and configured, it may
capture security related events. It was also found that the server fails to implement an
external log sink, although the rsyslog logging service is active. These weaknesses
make the investigation of possible security breaches more difficult and might allow
attackers to evade detection.

Issue 1: Linux Audit System (auditd) not installed

The following command shows that the auditd and audispd-plugins packages are not
installed on the operating system.

Command:

87 https://ubuntu.com/tutorials/configure-ssh-2fa

7ASecurity © 2024
52

https://ubuntu.com/tutorials/configure-ssh-2fa
https://7asecurity.com


Pentest Report

dpkg-query -W -f='${binary:Package}\t${Status}\t${db:Status-Status}\n' auditd

audispd-plugins

Output:
dpkg-query: no packages found matching auditd

dpkg-query: no packages found matching audispd-plugins

Issue 2: Missing External OS-level Logging

Currently, system logs are stored on the local disk. In the event of a compromise, an
attacker with elevated privileges is likely to delete all logs from disk and disable logging
to prevent effective forensics, thus logs stored locally cannot be trusted. Therefore, it is a
good practice to designate dedicated log servers to collect logs from the host in an
isolated network.

Affected File:
/etc/rsyslog.conf

Command:
grep -E '^\s*([^#]+\s+)?action\(([^#]+\s+)?\btarget=\"?[^#"]+\"?\b' /etc/rsyslog.conf

/etc/rsyslog.d/*.conf

Output:
(empty)

It is recommended to install and configure the auditd package, as well as enable remote
logging88 to a secure logging server. Please note log events should be transferred in real
time, so attackers have no time to modify them before they are transferred.

COV-01-027 WP5: Lack of Commit Signatures in Git Repository (Low)

Retest Notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The CoverDrop Git repository was found to have multiple unsigned commits. If an
attacker compromises a machine belonging to a developer, or gains access to the SSH
key used by a developer, it might be possible to commit malicious code to the repository
on behalf of that individual. Therefore, signature verification should be part of the code
review workflow.

Affected Resources:
guardian/coverdrop git repository

88 https://docs.fluentbit.io/manual/pipeline/inputs/syslog

7ASecurity © 2024
53

https://docs.fluentbit.io/manual/pipeline/inputs/syslog
https://7asecurity.com


Pentest Report

Example 1: Signed Git Commit

To show a valid commit signature the following command can be used:

Command:
# List signature for a commit

git show 4c62eb6f982b522a9136f87f327ee51131c7438e --show-signature

Output:
# Signed commit

commit 4c62eb6f982b522a9136f87f327ee51131c7438e (HEAD -> main, origin/main,

origin/HEAD)

gpg: Signature made Mon 05 Feb 2024 11:15:20 AM EST

gpg: using RSA key B5690EEEBB952194

gpg: Can't check signature: No public key

Author: Mario Savarese <57295823+marsavar@users.noreply.github.com>

Date: Mon Feb 5 16:15:20 2024 +0000

Example 2: Unsigned Git Commit

In case of no signature nothing is returned in the output. For example:

Command:
# List signature for a commit

git show 4e93fc0f2e3f2c43307fe095434fca811617c139 --show-signature

Output:
# Missing signature part

commit 4e93fc0f2e3f2c43307fe095434fca811617c139

Author: D[...] H[...] <d[...].h[...]@gmail.com>

Date: Mon Jul 31 16:51:08 2023 +0100

It is recommended to sign89 all commits to easily verify the author of the changes and
reject unsigned changes.

89 https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits

7ASecurity © 2024
54

https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits
https://7asecurity.com


Pentest Report

COV-01-029 WP1/3: Weaknesses in Journalist Signal Chat (Low)

Retest notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The CoverDrop system relays messages posted by users to dynamically created
Signal90 group chats for communication with journalists. The Signal account is
associated with signal-bridge and used via signal-cli91, which has administrative
privileges in chat groups, while journalists are invited as regular members. The absence
of a human administrator hampers some management capabilities. For example, if an
unwanted party joins a group chat, nobody is able to remove them. Additionally, all users
can invite anyone to the chat without approval, and can modify various chat parameters,
such as the disappearing messages setting.

Affected Resources:
git: coverdrop/signal-bridge

Possible Attack 1: Unwanted participant eavesdropping conversation

An invited user becomes an unwanted participant who cannot be removed from the
group, as only the signal-bridge has administrator privileges, hence the CoverDrop IT
administrator must remove them manually. In the meantime, the unwanted participant
can observe the chat and capture all messages sent by the anonymous CoverDrop user.

Possible Attack 2: Set disappearing messages to send invisible messages

An unwanted user in the group chat sends an invisible message to the anonymous user,
so disappearing messages are set to the lowest value (5s). After writing the message, it
is immediately captured by the backend, and passed to the queue, which forwards it to
the CoverDrop user. However, the message in the Signal group chat disappears, and
nobody is aware something was sent to the anonymous user. It is worth remembering
that all messages, including deleted messages, are also forwarded back to the
CoverDrop user. Thus, users should not rely on the delete functionality in Signal.

It is recommended to grant administrative access to the first journalist who is invited to a
group chat, so that initially there are two administrators (signal-bridge and the journalist).
Additionally, it is worth enabling group links with approvals to add new users to the chat.
This will reduce the likelihood of unwanted users joining the chat, and reading messages
delivered through CoverDrop.

91 https://github.com/AsamK/signal-cli
90 https://signal.org/

7ASecurity © 2024
55

https://github.com/AsamK/signal-cli
https://signal.org/
https://7asecurity.com


Pentest Report

COV-01-030 WP1/3: Possible Impersonation via missing Signal Data (Medium)

Retest notes: The CoverDrop team resolved this issue and 7ASecurity confirmed that
the fix is valid.

The CoverDrop application is integrated with Signal group chats via the signal-bridge
and signal-cli components deployed in the on-premise infrastructure. According to the
design outlined in the whitepaper, journalists can invite more users to collaborate on a
case, with two types of users specified: individual journalists and desk teams. These
desk teams comprise a group of journalists working on a single case and sharing a
single Signal account.

In scenarios where a journalist invites third parties to the group, the anonymous
CoverDrop user has no way to know who they are communicating with, hence this setup
creates the illusion for the user that they are communicating with a single journalist. The
reason for this is that any message posted in the chat group is sent to the anonymous
user, without control messages -such as information about who joined the chat-, nor
details about the message author.

Therefore, such a design might be exploited if a malicious party manages to join the
group chat, i.e. via a SIM swapping92 attack against any group participant. Despite the
protections in place for the backend Signal account against account takeovers, invited
users remain susceptible to targeting. Hence, an attacker with group access could
impersonate the journalist and attempt to fool anonymous CoverDrop users to reveal
their identity or other sensitive information.

Affected Resource:
CoverDrop mobile applications

This issue can be confirmed by having two users join the Signal group, making both
send a message to the anonymous user, and observing how the CoverDrop anonymous
user has no way to tell who is the message author:

92 https://www.sec.gov/secgov-x-account

7ASecurity © 2024
56

https://www.sec.gov/secgov-x-account
https://7asecurity.com


Pentest Report

Fig.: CoverDrop does not provide information about the message author

The issue concerns the design of the application thus there is no clear single solution. It
is recommended to review the requirements and perhaps poll possible application users
to determine a desirable outcome. The following possible mitigations are provided for
consideration:

● Author information could be included along with the message.
● Control messages about the Signal group chat participants could be forwarded

for transparency.
● Messages from invited users, beside the first journalist account invited during the

chat group creation, could be dropped, as all messages delivered to the
anonymous user should originate from a single person.

● Group chat commands such as /block and /unblock may be implemented, to
authorize the invited Signal participants to communicate directly with the user,
along with some information when additional participants are added to the group,
so it is possible to distinguish this in the CoverDrop application.

● The signal-bridge could monitor alerts when chat participants change devices,
and require communication approval from the group chat admin, before

7ASecurity © 2024
57

https://7asecurity.com


Pentest Report

potentially compromised participants are allowed to communicate with the
end-user. Ideally, in this scenario the backend ought to issue a suspicious action
alert, and remove such users from the chat, requiring a new invitation to be
issued.

● All parties meant to use Signal communications should be educated, to ensure
they configure their Signal accounts93 in a secure manner, are aware about
possible phishing and SIM swapping attacks, and how to mitigate such risks.

COV-01-031 WP5: Multiple Weaknesses in Kubernetes Cluster Config (Medium)

Retest Notes: The CoverDrop team addressed the principal concerns for this issue and
7ASecurity confirmed that those fixes were valid.

The Kubernetes cluster uses the K3S distribution, is installed on a single Ubuntu-based
node, and is configured with default security settings. During the assignment, it was
discovered that the K8s configuration is currently missing some hardening options. This
may be verified by comparing it against the CIS Benchmark for Kubernetes94. Among the
most important missing features, it is worth mentioning the absence of the Pod Security
Standard (PSS)95, which enforces runtime compliance, the lack of adequate cluster-wide
auditing settings, and the absence of Kernel Protection96. Please note that the cluster
has securely defined network policies for the on-premise namespace, significantly
reducing potential attacks in the event of a compromised Pod.

Affected Resources:
On-Premise Kubernetes Cluster

Issue 1: No PSS and audit settings

There is no custom configuration file, nor arguments passed to the k3s process, related
to the admission controller (PSS) or auditing, which results in suboptimal default
settings97 being applied to Kubernetes-related services.

Command (k3s process arguments):
ps auxww | grep "k3s server"

Output:
root 18141 7.2 2.1 5626656 709340 ? Ssl 2023 5170:28 /usr/local/bin/k3s

server

97 https://docs.k3s.io/security/hardening-guide#control-plane-execution-and-arguments
96 https://docs.datadoghq.com/security/default_rules/cis-kubernetes-1.5.1-4.2.6/
95 https://kubernetes.io/docs/concepts/security/pod-security-standards/
94 https://www.cisecurity.org/benchmark/kubernetes
93 https://cert.europa.eu/publications/security-guidance/security-guidance-22-002---hardening-signal/

7ASecurity © 2024
58

https://docs.k3s.io/security/hardening-guide#control-plane-execution-and-arguments
https://docs.datadoghq.com/security/default_rules/cis-kubernetes-1.5.1-4.2.6/
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://www.cisecurity.org/benchmark/kubernetes
https://cert.europa.eu/publications/security-guidance/security-guidance-22-002---hardening-signal/
https://7asecurity.com


Pentest Report

Command (configuration file):
stat /etc/rancher/k3s/config.yaml

Output:
stat: cannot statx '/etc/rancher/k3s/config.yaml': No such file or directory

Issue 2: No --protect-kernel-defaults argument passed to kubelet process

Commands:
# CIS Benchmark verification tool with K3S profile

kube-bench | grep FAIL

Output:
[FAIL] 4.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to

0 (Automated)

[FAIL] 4.2.6 Ensure that the --protect-kernel-defaults argument is set to true

(Automated)

[FAIL] 4.2.7 Ensure that the --make-iptables-util-chains argument is set to true

(Automated)

It is recommended to review the current Kubernetes configuration against CIS
benchmarks and apply all possible recommendations98. This should be done, regardless
of the final Kubernetes distribution used in production, since benchmarks exist for all
major variations. The cluster should undergo regular scanning, using tools such as
kube-bench99 and others. These tools seamlessly integrate well with the cluster, and can
be scheduled as jobs within the cluster, to provide early notifications in case of potential
misconfigurations. Consideration should additionally be given to scanning container
images, stored in the local registry, to spot outdated artifacts. It ought to be ensured that
all logs, including OS-level logs and cluster-wide auditing logs, are integrated with a
centralized logging system. Furthermore, it is strongly advised to launch a multi-node
deployment in production.

99 https://github.com/aquasecurity/kube-bench
98 https://docs.k3s.io/security/hardening-guide

7ASecurity © 2024
59

https://github.com/aquasecurity/kube-bench
https://docs.k3s.io/security/hardening-guide
https://7asecurity.com


Pentest Report

COV-01-032 WP5: Multiple Weaknesses in Pod Configurations (Medium)

Retest Notes: The CoverDrop team addressed the principal concerns for this issue and
7ASecurity confirmed that those fixes were valid.

The Kubernetes infrastructure audit revealed that multiple Pods lack a number of
essential hardening features. Specifically, multiple containers were found to be running
as root, without runAsNonRoot set to true, or without allowPrivilegeEscalation set to
false. Additionally, almost no Pods drop Linux capabilities, or restrict capabilities to the
bare essential ones. These weaknesses fail to implement the Least Privilege100 security
principle, and may provide attackers with access to resources in edge-case scenarios.
Please note that, for the sake of brevity, only a few examples are listed below. The
complete results should be reviewed using automated tools, such as for instance
checkov101.

Affected Resources:
On-Premise Kubernetes Cluster

Example 1: Multiple weaknesses in container configurations

The current failure to adhere to container hardening best practices can be confirmed
using the following command, after fetching and saving deployment files in a directory:

Commands:
checkov --skip-download -d . | grep "FAILED" -B1 | grep "Check"

Output:
# Unique findings from all deployments from all namespaces

Check: CKV2_K8S_6: "Minimize the admission of pods which lack an associated

NetworkPolicy"

Check: CKV_K8S_11: "CPU limits should be set"

Check: CKV_K8S_13: "Memory limits should be set"

Check: CKV_K8S_15: "Image Pull Policy should be Always"

Check: CKV_K8S_20: "Containers should not run with allowPrivilegeEscalation"

Check: CKV_K8S_22: "Use read-only filesystem for containers where possible"

Check: CKV_K8S_23: "Minimize the admission of root containers"

Check: CKV_K8S_25: "Minimize the admission of containers with added capability"

Check: CKV_K8S_28: "Minimize the admission of containers with the NET_RAW capability"

Check: CKV_K8S_30: "Apply security context to your containers"

101 https://bridgecrew.io/blog/kubernetes-static-code-analysis-with-checkov/
100 https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege

7ASecurity © 2024
60

https://bridgecrew.io/blog/kubernetes-static-code-analysis-with-checkov/
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege
https://7asecurity.com


Pentest Report

Check: CKV_K8S_31: "Ensure that the seccomp profile is set to docker/default or

runtime/default"

Check: CKV_K8S_35: "Prefer using secrets as files over secrets as environment

variables"

Check: CKV_K8S_37: "Minimize the admission of containers with capabilities assigned"

Check: CKV_K8S_38: "Ensure that Service Account Tokens are only mounted where

necessary"

Check: CKV_K8S_40: "Containers should run as a high UID to avoid host conflict"

Check: CKV_K8S_43: "Image should use digest"

Check: CKV_K8S_8: "Liveness Probe Should be Configured"

Check: CKV_K8S_9: "Readiness Probe Should be Configured"

Example 2: Pod running as root

Only the signal-cli pod, in the on-premises namespace, was found to be running as root.
The following commands execute the id command, on a container to confirm it is running
as root.

Command (on-premises namespace):
# Executed inside a signal-cli-deployment-f5c88d855-rrgqx pod in on-premises namespace

id

Output:
uid=0(root) gid=0(root) groups=0(root)

Example 3: Inconsistent settings on non on-premise deployments

Options like with digest102, or deployed cosign103 verification, are applied to custom
workloads launched in the on-premise namespace. However, they are missing in
kube-system deployments:

Command (sealed-secrets-controller image with tag instead of digest):
kubectl get deployment sealed-secrets-controller --namespace kube-system

Output:
image: docker.io/bitnami/sealed-secrets-controller:v0.24.5

Sample comparison to a correct deployment with a digest defined for the image:

Command (signal-cli-deployment image with digest):

103 https://github.com/sigstore/cosign
102 https://docs.bridgecrew.io/docs/bc_k8s_39

7ASecurity © 2024
61

https://github.com/sigstore/cosign
https://docs.bridgecrew.io/docs/bc_k8s_39
https://7asecurity.com


Pentest Report

kubectl get deployment signal-cli-deployment --namespace on-premises

Output:
image:ghcr.io/guardian/coverdrop_signal-cli@sha256:b07c5e96f3d10ada208641f2e6e0ee85985f

29d071922ab58b8f0eaf809f248a

It is recommended to employ static code analysis tools into the development pipelines,
to scan and detect misconfigurations in Kubernetes Deployments. In this particular case,
it is strongly advised to ensure no containers are running as root, and a minimal set of
capabilities104 is defined for each container, or all capabilities are dropped. Deployments
should then utilize security context features105, to reduce the permissions to the minimum
necessary for the solution to work. Additionally, secrets should ideally be mounted as
files instead of environment variables for better access control protection.

COV-01-033 WP5: Unrestricted on-premise Outbound Traffic (Medium)

Note: The CoverDrop team plans to address this issue in the next release.

The Kubernetes server was found to have unrestricted outbound access to the Internet.
In the event of a container compromise, a malicious attacker might leverage such
weakness to fetch additional tools, escalate privileges, or easily exfiltrate data.

Affected Resources:
On-Premise Kubernetes Cluster

Unrestricted outbound connectivity can be confirmed running the following command:

Command:
curl ifconfig.co

Output:
HTTP/1.1 200 OK

Date: Wed, 07 Feb 2024 03:44:22 GMT

[...]

77.91.250.148

It is highly recommended to restrict outbound traffic. This should only be allowed in the
minimum possible number of services, which truly require outbound traffic to be
operational. All other traffic should be disallowed, or only temporarily enabled when
administrators need it to perform maintenance procedures.

105 https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
104 https://docs.fugue.co/FG_R00493.html

7ASecurity © 2024
62

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.fugue.co/FG_R00493.html
https://7asecurity.com


Pentest Report

WP6: CoverDrop Lightweight Threat Model
Introduction

Client note: Some of the recommendations summarized below were addressed during
the test period. For details please see the notes accompanying the issue descriptions in
the “Identified Vulnerabilities” and “Hardening Recommendations” section of this report.

The CoverDrop project aims to be a universal solution for whistleblowers that intend to
contact journalists to share sensitive information, while they are potentially targeted by
high profile attackers, such as government-sponsored adversaries. The project
implements a communication protocol with multiple security countermeasures preventing
powerful threat actors from disclosing the identity of application users, as well as
features providing plausible deniability, in case the whistleblower or parts of the backend
infrastructure are confiscated. As a result, CoverDrop is designed as a module which
can be integrated with legitimate applications, and potentially adopted by multiple news
organizations around the world, to protect the anonymity of individuals in the world of
omnipresent surveillance.

Threat model analysis assists organizations to proactively identify potential security
threats and vulnerabilities, enabling them to develop effective strategies to mitigate
these risks, before they are exploited by attackers. Furthermore, this often helps to
improve the overall security and resilience of a system or application. Lightweight threat
modeling refers to a simplified threat modeling process, loosely following the STRIDE106

methodology, which does not involve workshops, but instead focuses on the analysis of
the system, as performed by 7ASecurity, based on the documentation, specification and
source code, with the assistance of a representative of the client.

The aim of this section is to facilitate the identification of potential security threats and
vulnerabilities that may be exploited by adversaries, along with possible mitigations. As
the main target is a module, which may be integrated into any application to enable a
covert communication channel, many threats from an external attacker perspective,
common for web and mobile applications, have appropriate countermeasures designed
and implemented, thus the threat model focuses on the general overview of the system,
supply chain attacks, and deployment of the environment in which the application is
going to operate in the near future. Taking into account such assumptions the main
threats identified to be relevant to the environment can be categorized in the following
groups:

1. Attacks against the supply chain (i.e. deployment and development).
2. Denial of service conditions rendering the system temporarily or permanently

inoperational.

106 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

7ASecurity © 2024
63

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://7asecurity.com


Pentest Report

3. Incident response readiness in terms of logging, monitoring and anomaly
detection.

4. User deanonymization attacks.
5. Sensitive data handling.

Relevant assets and threat actors

The following assets are considered important for the CoverDrop project:
● CoverDrop Source Code (A01)
● CoverDrop Build Artifacts (A02)
● Backend Signal Account (A03)
● Journalist Vaults (A04)
● Conversation Chat History (A05)
● CoverNode Private Key (A06)
● Journalist Private Key (A07)
● AWS Secrets (A08)
● Authenticated Github Session (A09)
● Key Hierarchy (A10)
● Encrypted Messages (A11)
● Provisioning Keys (A12)

The following threat actors are considered relevant to the CoverDrop project:
● External Attacker (TA1)
● Internal Attacker (TA2)
● Compromised Internal Developer (TA3)
● Network/LAN Attacker (TA4)
● Compromised External Dependency (TA5)
● Internal Infrastructure Attacker (TA6)
● Sophisticated Attacker (TA7)

Attack surface

In threat modeling, an attack surface refers to any possible point of entry that an attacker
might use to exploit a system or application. This includes all the paths and interfaces
that an attacker may use to access, manipulate or extract sensitive data from a system.
By understanding the attack surface, organizations are typically able to identify potential
attack vectors and implement appropriate countermeasures to mitigate risks.

The following diagram provides an overview of potential attacks against the currently
implemented deployment and development process as envisioned by 7ASecurity:

7ASecurity © 2024
64

https://7asecurity.com


Pentest Report

Fig.: Data flow diagram for the CoverDrop environment, application, cloud, and infrastructure

7ASecurity © 2024
65

https://7asecurity.com


Pentest Report

7ASecurity identified the following threat categories according to STRIDE, as relevant to
the CoverDrop project, deployed infrastructure and the related DevOps processes:

Threat 01: Identity or Data Spoofing

Overview:
A spoofing attack allows an adversary to impersonate either a person or a program to
gain advantage in the system. Spoofing may lead to various consequences such as data
disclosure, if the receiver accepts the forged identity of the attacker, or to execute
undesired actions on behalf of some entity, which the attacker pretends to be.

Countermeasures:
The whitepaper107, as well as the CoverDrop team, correctly identified this threat as a
serious issue. Hence the following mechanisms are already implemented to prevent
spoofing attacks:

● Certificate pinning in mobile applications and transport-layer encryption
● Additional message encryption and signatures within the encrypted transport

layer.
● Manual verification of journalists and monitoring of trusted Signal devices.
● Zero-trust cloud architecture.
● Container signatures.
● Public key hierarchy structure.

Attack Scenarios:
Despite the implementation of multiple countermeasures, room for improvement was
identified in the following attack scenarios:

● Take-over of the signal-bridge Signal account, using a cloned account or linked
devices.

● Take-over of journalist Signal accounts, i.e. via SIM swapping attacks.
● Impersonation of message authors to end users, due to the absence of authoring

metadata, when messages from other participants in the Signal group chat are
passed to the system.

● Impersonation of legitimate developers, due to the lack of enforced git
signatures.

Recommendation:
It is advised to strengthen identity verification, and enhance monitoring, by implementing
domain-relevant anomaly detection, similar to the IDS or IPS systems that have been
utilized in IT security for years. Depending on the constraints, it may be necessary to
develop and test processes for each attack scenario, and ensure that the team is trained

107 https://petsymposium.org/2022/files/papers/issue2/popets-2022-0035.pdf

7ASecurity © 2024
66

https://petsymposium.org/2022/files/papers/issue2/popets-2022-0035.pdf
https://7asecurity.com


Pentest Report

to respond effectively when an attack is detected. The following technical solutions could
be explored to enhance defenses against the aforementioned attacks:

● Enforcement of signatures in the CI/CD process, adherence to the principle of
least privilege, and ensuring a robust code review process is implemented.

● All accounts, particularly Signal accounts, ought to be adequately hardened at
the account level (Signal properties) and used on secure and hardened devices
(mobile/laptops). This also applies to the backend signal-bridge account, as well
as all other Signal accounts involved in sensitive data processing. Consideration
should be given to implementing an allow-list of accounts that can be invited to
collaborate with journalists, or establish a verification process that participants
must undergo to join. Invitations through a dedicated /invite command could be a
possible solution for more granular access control.

● Implementing anomaly detection, and procedures to automatically remove
compromised assets (e.g. a journalist) from sensitive Signal groups whenever
possible.

● For critical assets such as the signal-bridge account, appropriate anomaly
monitoring and deactivation processes should be in place. This might include
issuing a new Signal account number and reactivating all Signal groups.

● Integrity checks should be implemented and monitored for any modification to the
public key hierarchy.

● All integrated systems and applications rendering user-supplied messages, such
as the upcoming journalist app, should sanitize messages and utilize hardened
views to reduce the potential for client-side attacks, such as phishing, XSS and
premium number calls.

Threat 02: Data Tampering or Unauthorized Modifications

Overview:
Data tampering occurs when an attacker modifies information without the relevant
authorization. This attack encompasses a broad range of assets, involving data
modification on disk, in-memory, and in-transit. A successful attack may lead to multiple
consequences, such as the modification of data exchanged between two parties,
alteration of code, unauthorized access to the system, or compromise of the entire
infrastructure.

Countermeasures:
This threat was found to be already taken into consideration by the CoverDrop team
while designing the system. Hence, the following countermeasures are in place to
mitigate this risk:

● Communications are protected by an encrypted transport layer between mobile
devices and the API, including certificate pinning.

● Integrity checks are in place for messages between users and CoverNodes, as
well as between CoverNodes and journalists.

7ASecurity © 2024
67

https://7asecurity.com


Pentest Report

● Utilization of end-to-end Signal communicator between the backend and
journalists.

● Rigorous physical access control to on-premise infrastructure.
● Strict control over launched containers (using hashes) and signed build artifacts.
● Enforced two-factor authentication (2FA) for GitHub accounts.
● Mandatory code reviews and GitHub Pull Request rules with protected branches.
● Employment of fine-grained GitHub access tokens.
● Limited dependencies with pinned versions to minimize supply chain attacks.

Despite the implemented countermeasures, the following attack scenarios, primarily
targeting the on-premise infrastructure, are deemed relevant for the environment and
would benefit from remediation strategies.

Attack Scenarios:
● Unauthorized access and modifications to sensitive CoverDrop data in

on-premise resources may occur due to e.g. lax server file system permissions
and misconfigurations in Kubernetes cluster deployments, which are susceptible
to container escapes.

● Potential kernel exploitation due to insufficient protection of Kubernetes clusters
and inadequate logging and monitoring of OS-level anomalies.

● Attacks originating from CI/CD pipelines (e.g. RiffRaff) or other AWS accounts
within the organization due to internal DevOps practices and shared artifact
storage.

● Attacks on GitHub PR rules may occur due to the monorepo design, wherein
compromised developers responsible for minor modules can introduce
vulnerabilities into the infrastructure code or poison build artifacts.

Recommendation:
The described attack scenarios can be mitigated by adhering to the principle of least
privilege on all components, both within the internal cluster and in the design of internal
processes. As a baseline, CIS Benchmarks should be implemented for all assets in
production environments. Shared CI/CD environments ought to undergo periodic audits,
be treated as critical assets, and be included in holistic security reviews or internal red
teaming engagements to test all implemented security controls. Alternatively, the
environment hosting CoverDrop infrastructure may be isolated from other organizational
components. Additionally, infrastructure-related source code in the Infrastructure as
Code (IaaC) approach must always be handled with caution and ideally separated from
less critical modules.

7ASecurity © 2024
68

https://7asecurity.com


Pentest Report

Threat 03: Repudiation Attacks

Overview:
Preventing attacks is equally important as logging and monitoring, which provide insight
into all actions performed in the system, addressing the concept of repudiation threats.
Comprehensive and robust logging and monitoring, though often underappreciated,
serve as essential tools for forensic investigators to identify initial attack vectors. In
modern security systems, they form the foundation of effective anomaly detection. If
attackers can successfully cover their tracks or if there are insufficient controls to monitor
activities, the company cannot be certain that the attack will not reoccur, what was the
goal of the attacker and whether the attack was successful.

Countermeasures:
● Application-level logs collected by Fluentbit from containers in the on-premise

Kubernetes cluster.
● AWS logs are shipped to a separate dedicated AWS account within the

organization.
● Physical access security measures include physical access control, CCTV

cameras, and a dedicated laptop for managing the on-premise cluster.

Attack Scenarios:
● Deletion of on-premise server logs due to the absence of OS-level log

forwarding.
● Challenges in establishing accountability on on-premise servers due to shared

OS-level accounts.
● Challenges in establishing accountability in the Kubernetes cluster due to

inadequate cluster-level audit logging and the usage of a local cluster-level
admin.

Recommendation:
The following technical solutions should be investigated to enhance defenses against
the listed attacks:

● The infrastructure should improve logging and monitoring capabilities, both in the
cloud and on-premise. Currently, numerous tools are available to implement
centralized logging, monitoring, anomaly detection, and alerting effectively.

● At a minimum, adequate OS-level monitoring (including auditd rules) and audit
logs for the Kubernetes cluster should be configured.

● All other services should be configured to collect as many logs as possible,
detailing who performed actions and when. This approach leaves no room for
attackers to cover their tracks in the event of a compromise.

● Systems should avoid the use of shared accounts. Instead, individual accounts
for all staff members should be created in both the operating system and the

7ASecurity © 2024
69

https://7asecurity.com


Pentest Report

on-premise cluster. These identities should be centrally managed, facilitating
credential invalidation and rotation.

Threat 04: Information disclosure

Overview:
Information disclosure occurs when an attacker gains access to sensitive data. This may
occur due to inadequate security controls implemented in the system, incorrect
encryption applied to data in transit or stored locally, or flaws in the design that can be
exploited to extract sensitive information.

Countermeasures:
Information protection is one of the most critical components of the entire solution, and
multiple security controls are detailed in the whitepaper as well as in the actual
implementation. The following mechanisms have been implemented to enhance the
resilience of the system to information disclosure threats:

● Encrypted transport layer between mobile and backend services,
● Encryption of messages using public-private key encryption.
● On-premise encrypted secrets loaded from repositories.
● Dedicated and isolated on-premise infrastructure hosting critical services, along

with a zero-trust architecture for cloud deployment.
● Message mixing strategies that blend encrypted and dummy messages to protect

communication parties and ensure anonymity.
● A list of allowed first points of contact for journalists.
● Encryption of end-user data storage to prevent disclosure of communication

content.
● Plausible deniability features in mobile applications, such as static size of

encrypted storage and messages, the absence of CoverDrop specific logs, and
covert messages.

● Full disk encryption applied to on-premise servers.

Despite the multiple countermeasures in place, the following possible attack scenarios
require additional remediation measures:

Attack Scenarios:
● Unauthorized access to Signal groups due to the absence of strict invitation and

moderation rules.
● N-1 attacks108 against dead drop messages under certain edge conditions.
● Extraction of sensitive data from memory on mobile devices.

108 https://www.freehaven.net/anonbib/cache/danezis:wpes2003.pdf

7ASecurity © 2024
70

https://www.freehaven.net/anonbib/cache/danezis:wpes2003.pdf
https://7asecurity.com


Pentest Report

● Phishing attacks resulting from insufficient implementation of countermeasures
on mobile devices and the absence of integration guidelines for other adopters of
the solution.

● Leakage of sensitive data via git history due to the absence of pre-commit hooks.
● Exfiltration of data from on-premise infrastructure due to the lack of appropriate

egress filtering rules.
● Stealthy takeover of Signal accounts (signal-bridge/journalist) due to the absence

of anomaly detection and integration.

Recommendation:
It is advised to consider the following technical solutions to improve defenses against the
aforementioned attacks:

● The environment may tighten rules for Signal groups and implement anomaly
detection while using the third-party protocol in the system. Ideally, a custom and
more controllable communication solution should be implemented.

● Both the applications and the backend could improve control over sensitive data
and address common attacks against mobile device users by employing memory
protection mechanisms.

● When the software is publicly released, it is crucial to provide appropriate
guidelines derived from multiple security reviews for other adopters of the
system. This ensures that applications embedding CoverDrop do not break the
security properties of the system due to trivial development bugs.

● More tests focused on anonymity and plausible deniability should be conducted
to ensure the highest possible security.

● Backend services should implement anomaly detection for indicators of N-1
attack exploitation. Additionally, to remove fixed parameters and predictable
outcomes, it is recommended to investigate the dynamic size of published dead
drop batches, random order of published messages, and enforced covert
messages included in each batch, instead of filling the batch till the fixed size of
500 messages.

Threat 05: Temporary or Permanent Denial of Service

Overview:
Denial of service occurs when the system is unable to perform its intended actions,
either temporarily or permanently. Ensuring availability is crucial for software responsible
for exchanging sensitive messages. Users, who may be targeted by sophisticated threat
actors, as well as journalists awaiting valuable information, may experience disruptions
in communication in extreme cases, potentially leading to data loss. Both parties must
be assured that the system is as resilient as possible against both common and
large-scale attacks.

Countermeasures:

7ASecurity © 2024
71

https://7asecurity.com


Pentest Report

● Utilizing a CDN in conjunction with an auto-scalable cloud infrastructure to
manage messaging through Fastly and the Kinesis queue.

● Block commands in Signal groups preventing potential abusive or spam
messages

Attack Scenarios:
● Flood attacks due to the absence of smart rate-limiting functionality for mobile

clients sending messages to the Kinesis queue. This may particularly affect the
on-premise infrastructure.

● Temporary Signal account outages bound to signal-bridge may occur due to the
lack of spam protection functionality, while Signal servers implement rate limiting
in response to users sending multiple small messages within a short timeframe,
which may result in throttling from Signal infrastructure.

● Disk space outages in on-premise components may arise due to the lack of
OS-level hardening and resource limitations, as well as the configuration of the
containers and libraries in use (attachment and stores in signal-cli).

● A single Signal account, used by signal-bridge, represents a single point of
failure in the event of a successful SIM swapping attack, for example.

● Denial of service due to the usage of personal GitHub tokens to access the
container registry.

● System overload due to the lack of a high availability configuration for on-premise
components.

● Denial of service conditions due to insufficient protection against DNS hijacking
on mobile devices.

Recommendation:
The following technical solutions ought to be evaluated to improve the security posture
against the listed attacks:

● Backend services should implement smart rate-limiting features to prevent
various flood attacks, particularly in the initial stages of payload processing.

● Employing a high-availability cluster configuration to enhance the resilience of
on-premise infrastructure.

● Whenever possible, the backend should use multiple Signal accounts.
● Personal tokens should be avoided in all parts of the system, configuring

dedicated accounts instead.
● DNS hijacking attacks should be included in the threat model of the mobile

applications and secured using DNS over HTTPS or DNS over TLS.

Threat 06: Privilege Escalation

Overview:
Privilege escalation describes a situation in which an attacker gains sufficient access to
compromise the most critical assets in the environment. Threats falling under this

7ASecurity © 2024
72

https://7asecurity.com


Pentest Report

category are typically the most devastating, indicating that the attacker has breached
most of the defensive mechanisms. Among privilege escalation attacks, the most typical
are remote code execution, local privilege escalation, or supply chain attacks.

Countermeasures:
The CoverDrop team regards the cloud infrastructure as a breachable asset, while the
on-premise infrastructure handles the most sensitive data. Therefore, the following
countermeasures were confirmed to be implemented:

● Zero-trust architecture for the cloud infrastructure.
● Custom containers running in a Kubernetes cluster using low-privileged users.
● Dependency pinning.
● Container signatures.

Attack Scenario:
● Access to the on-premise infrastructure via supply chain attacks, i.e. targeting the

built-in Kubernetes containers.
● Access to the on-premise cluster via poisoning GHCR containers.
● Remote code execution and/or container escape due to insufficient hardening of

on-premise servers and containers.
● Attacks originating from CI/CD pipelines (RiffRaff) or other AWS accounts within

the organization.
● Spear phishing attacks against journalists leveraging the desire to exchange

sensitive information as the primary purpose of the CoverDrop application.

Recommendation:
Despite the difficulty to perform privilege escalation attacks, it is advised to consider the
following technical solutions to improve defenses against the aforementioned scenarios:

● Message inspection for common attack vectors, using well-known or multiple
security solutions, including inspection of decrypted payloads before passing
data to external components (such as signal-cli).

● Enhancement of container deployment settings to ensure all containers are
thoroughly vetted.

● Periodic auditing of AWS organization accounts with an emphasis on
cross-account privilege escalation.

● Isolation of AWS account and CI/CD process from internal organization toolsets
and shared environments to limit privilege escalation attack vectors.

7ASecurity © 2024
73

https://7asecurity.com


Pentest Report

WP7: CoverDrop Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 2022109,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta110, Github111, Magento112,
SolarWinds113, and Codecov114, among many others. To mitigate this concerning trend,
Google released an End-to-End Framework for Supply Chain Integrity in June 2021115,
named Supply-Chain Levels for Software Artifacts (SLSA)116.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the CoverDrop project, as audited against the SLSA framework. SLSA
assesses the security of software supply chains and aims to provide a consistent way to
evaluate the security of software products and their dependencies.

The following sections elaborate on the results against versions 0.1 and 1.0 of the SLSA
standard. At the time of this assignment, CoverDrop components are hosted on private
GitHub repositories, however, the intention is to release these as open source projects.

The CoverDrop project will be distributed using GitHub, it uses automated tools to
synchronize the source code of the packages to their own GitHub repositories. Similarly,
distribution is also performed through Maven artifacts, attached to GitHub Actions.
These processes align closely with the principles of SLSA, notably enhancing
Provenance. Essentially, this signifies that not only is the build process documented, but
also, the resulting artifacts are intricately linked to a known and controlled build
environment.

While auditing the supply chain implementation, the CoverDrop project provided a
number of positive impressions that must be acknowledged here:

● The size and complexity of custom Docker images is minimal.
● The build process for Docker images is well implemented.
● Lock files are present in cargo files.
● Github workflows are in place for mobile and Rust backend components.
● CDK and RiffRaff are leveraged for automated Infrastructure-as-Code.

116 https://slsa.dev/spec/
115 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
114 https://blog.gitguardian.com/codecov-supply-chain-breach/
113 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
112 https://sansec.io/research/rekoobe-fishpig-magento
111 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
110 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
109 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2024
74

https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com


Pentest Report

● A single AWS account is used, however, privileges are fine grained via multiple
separated security groups.

● There is a dedicated on-premise Kubernetes cluster.
● Modern centralized logging mechanisms are implemented in some infrastructure

areas.
● The workflows have automated dependency checks in place, such as

dependabot and cargo audit.
● Code review processes are clearly in use.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees represent the lack of SLSA117.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge118.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance119.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection120.

To produce artifacts with a specific SLSA level, the responsibility is split between the
Build platform and the Producer. Broadly speaking, the Build platform must strengthen
the security controls to achieve a specific level, while the Producer must choose and
adopt a Build platform capable of achieving a desired SLSA level, implementing security
controls as specified by the chosen platform.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

In the context of the SLSA framework v1.0, CoverDrop adherence to Build Level 3 (L3)
is demonstrated through its management of software artifact provenance. The

120 https://slsa.dev/spec/v1.0/levels#build-l3
119 https://slsa.dev/spec/v1.0/levels#build-l2
118 https://slsa.dev/spec/v1.0/levels#build-l1
117 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2024
75

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com


Pentest Report

CoverDrop project is hosted on GitHub, a platform capable of producing Build Level 3
provenance. This ensures that CoverDrop fulfills the requirement to "Choose an
appropriate build platform." Moreover, the CoverDrop artifact generation process is
clearly defined. Each step is meticulously scripted, the use of GitHub Actions is
leveraged to produce Maven artifacts, and for iOS, the Swift Package Manager
generates Swift packages, in this case, CoverDrop meets the Producer requirements,
specifically "Follow a consistent build process."

Furthermore, CoverDrop ensures that provenance information is not only present but
also effectively distributed through the respective package manager ecosystems. By
leveraging these established ecosystems, CoverDrop effectively satisfies the Producer
requirements essential for achieving Build Level 3 (L3) within the SLSA framework.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ✅ ✅

Distribute provenance ✅ ✅ ✅

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and
organizations that can influence the build. A build platform is often a hosted, multi-tenant
build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

The CoverDrop project generates artifact provenance in each step; This not only
identifies the output artifacts but also provides information regarding how each of them
was created, this guarantees that the criterion of "Provenance generation Exists" is
entirely met. Additionally, the format of this provenance is designed to be simply
understood by customers and fits frictionlessly within the ecosystem of package
management.

Nevertheless, despite diligent efforts to ensure the existence of provenance, a crucial
aspect falls short when it comes to the Authenticity requirement. The absence of signed
artifacts prevents consumers from effectively validating the legitimacy of the provenance.
Additionally, the Unforgeable degree cannot be met either, because the provenance is
not resistant to forgery. This is due to the inexistence of key material to sign artifacts.

7ASecurity © 2024
76

https://7asecurity.com


Pentest Report

Requirement Degree L1 L2 L3

Provenance generation Exists ✅ ✅ ✅

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ✅ ✅

Isolated ✅

In conclusion, while the CoverDrop project is SLSA v1.0 compliant, it is possible to reach
level 3 (L3) easily as follows:

● Signed Artifacts: The CoverDrop project should take proactive steps to leverage
available mechanisms to sign artifacts. For example, at least some signed
artifacts could be distributed through Maven. Such signatures would greatly
enhance the ability of consumers to validate the legitimacy of the provenance.

● After the above, automated tools like slsa-github-generator121 and slsa-verifier122

could be integrated into the build process to further harden the supply chain
implementation.

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels123 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

123 https://slsa.dev/spec/v0.1/levels
122 https://github.com/slsa-framework/slsa-verifier
121 https://github.com/slsa-framework/slsa-github-generator

7ASecurity © 2024
77

https://slsa.dev/spec/v0.1/levels
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://7asecurity.com


Pentest Report

Source code control requirements:

Requirement L1 L2 L3 L4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

Retained indefinitely ⛔ (18 mo.) ⛔

Two-person reviewed ✅

Build process requirements:

Requirement L1 L2 L3 L4

Scripted build ✅ ✅ ✅ ✅

Build service ✅ ✅ ✅

Build as code ✅ ✅

Ephemeral environment ✅ ✅

Isolated ✅ ✅

Parameterless ✅

Hermetic ✅

Reproducible ⛔(Justified)

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc.:

Requirement L1 L2 L3 L4

Security ⛔

Access ⛔

Superusers ⛔

7ASecurity © 2024
78

https://7asecurity.com


Pentest Report

Provenance requirements:

Requirement L1 L2 L3 L4

Available ✅ ✅ ✅ ✅

Authenticated ⛔ ⛔ ⛔

Service generated ✅ ✅ ✅

Non-falsifiable ⛔ ⛔

Dependencies complete ✅

Provenance content requirements:

Requirement L1 L2 L3 L4

Identifies artifact ✅ ✅ ✅ ✅

Identifies builder ✅ ✅ ✅ ✅

Identifies build instructions ✅ ✅ ✅ ✅

Identifies source code ✅ ✅ ✅

Identifies entry point ✅ ✅

Includes all build parameters ✅ ✅

Includes all transitive
dependencies

✅

Includes reproducible info ⛔

Includes metadata ✅ ✅ ✅ ✅

In conclusion, although CoverDrop is still not SLSA v0.1 L2 compliant, due to the
available GitHub tools it is possible to reach level SLSA v0.1 L3 as follows:

● GitHub Artifact retention policy124 ought to be implemented to comply with the
retained indefinitely requirements.

● After the above, automated tools like slsa-github-generator125 and slsa-verifier126,
could be integrated into the build process to further harden the supply chain
implementation.

126 https://github.com/slsa-framework/slsa-verifier
125 https://github.com/slsa-framework/slsa-github-generator
124 https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-[...]

7ASecurity © 2024
79

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-period-for-github-actions-artifacts-and-logs-in-your-organization
https://7asecurity.com


Pentest Report

Conclusion

Client note: Many of the recommendations summarized below were addressed during
the test period. For details please see the notes accompanying the issue descriptions in
the “Identified Vulnerabilities” and “Hardening Recommendations” section of this report.

The CoverDrop solution defended itself well against a broad range of attack vectors. In
fact, not a single critical or high severity issue could be identified during this
engagement. Continued cycles of security testing and hardening will further fortify the
platform, making it even more resistant to potential attacks.

7ASecurity would like to highlight several positive aspects of CoverDrop, as observed by
the audit team:

● Multiple checks were found to be in place in all CoverDrop components to
enhance the resilience against potential exploits and unauthorized access.

● Most libraries and dependencies were found to be up-to-date, demonstrating a
prioritization and maintenance of security hygiene. This approach mitigates
vulnerabilities and guarantees a robust defense against potential threats..

● Overall, the CoverDrop backend components were found to be robust against
many traditional web application security attack vectors. For example, no
Command Injection, SQL Injection (SQLi), Cross-Site Request Forgery (CSRF),
Local File Inclusion (LFI) or Remote Code Execution (RCE) issues could be
identified during this exercise.

● The session and messaging implementation was resistant to manipulation,
cracking attempts and replay attacks.

● The source code of the solution is well-written, easy to read, and generally
adheres to a number of security best practices. In addition to this, the project is
actively maintained and commits are thoroughly documented.

● Importantly, no sensitive data was found to be exposed within the code.
● The CoverDrop cloud infrastructure exhibits well-thought-out designs and

configurations, prioritizing security best practices.
● The AWS infrastructure leverages modern DevOps tools, such as code

automation, enabling straightforward maintenance for the team members.
● The Kubernetes cluster has a clean setup, benefiting from on-premise

infrastructure. This environment enhances security, offering isolation, restricted
access, and robust monitoring.

● CoverDrop demonstrates robust security measures across the iOS and Android
platforms, including the avoidance of sensitive content leaks, proactive exclusion
from backups, protection screens against screenshot leaks, and detection of

7ASecurity © 2024
80

https://7asecurity.com


Pentest Report

other possible attacks, showcasing a comprehensive approach to safeguarding
user data.

● CoverDrop communications are strongly protected with TLS encryption and
Certificate Pinning. Hence, traffic between the mobile applications and backend
CoverDrop Nodes is protected even against high profile adversaries able to craft
TLS certificates trusted by the Android and iOS operating systems (i.e. many
governments, some companies). Furthermore, the Android app explicitly blocks
clear-text HTTP communications, while the iOS app achieves the same result by
not weakening its ATS configuration.

● The deployment of security mechanisms such as IntegrityGuard for Android and
SecuritySuite for iOS classes, indicates that the development of CoverDrop
components was undertaken with a strong emphasis on security.

● The Android and iOS apps correctly leverage the hardware-backed security
enclaves in the operating system to protect secrets. For example, the iOS app
utilizes ios-sloth, supported by the Secure Enclave, to securely store sensitive
keys on the device, enhancing the overall security posture and safeguarding
critical data against unauthorized access.

● The iOS and Android apps ensure no sensitive content leakage via
NSLog/logcat, backups or state preservation.

● Additionally, the root/jailbreak detection in place correctly alerts and educates
users about the security risks of running the apps in such an environment.
Similarly, the Android application incorporates defenses against Tapjacking
attacks, alerting users in case of such attempts.

The security posture of the CoverDrop mobile applications will improve with a focus on:
● Protection of Messages: It is advised to implement biometrics and strong

passphrase prompts to better protect confidential messages from attackers with
physical access (COV-01-015).

● Denial-of-Service (DoS): It is recommended to implement appropriate fallback
mechanisms to better protect users against DoS attacks. The application should
implement safe DNS resolution mechanisms with integrity and confidentiality
protections (COV-01-013).

● Hijacking Attacks: The Android application should mitigate well-known Task
Hijacking attacks (COV-01-001).

● Memory Leakage: The Android application should mitigate risks related to
sensitive information in memory (COV-01-023).

● General Hardening: Other less significant findings include utilizing all available
platform protections to safeguard sensitive information, such as implementing
secure configuration options (COV-01-014) and the hardening of iOS
(COV-01-002) and Android (COV-01-019) binaries.

The security of the CoverDrop backend server components and library implementation
may be enhanced with a focus on the following areas:

7ASecurity © 2024
81

https://7asecurity.com


Pentest Report

● Signal Configuration Hardening: The server-side Signal configuration should
be hardened to reduce the attack surface as much as possible, this will mitigate
potential Denial of Service (DoS) attacks via attachments (COV-01-028).

● Signal Chat Hardening: A number of settings and design decisions can be
incorporated to better protect users and mitigate attacks related to the Signal
Chat in edge-case scenarios, such as possible Signal Chat eavesdropping and
hidden messages (COV-01-029), as well as potential impersonation attacks
(COV-01-030).

● TLS Hardening: A number of servers support insecure TLS protocols with
publicly known security vulnerabilities (COV-01-006). Efforts should be made to
address these issues and ensure the TLS configuration is hardened to protect
users from Man-In-The-Middle (MitM) attacks.

Both the mobile applications and backend components would also benefit from:
● Software Patching: All CoverDrop components should adhere to appropriate

software patching procedures, consistently applying security patches in a timely
manner (COV-01-003, COV-01-005). In a day and age when a significant portion
of code comes from underlying software dependencies, routine patching is
crucial to prevent potential security vulnerabilities. Possible automation for this
could include tools like Snyk.io127 or Renovate Bot128.

Hardening of CoverDrop backend servers should be prioritized in the following areas:
● File Permissions: Files and directories ought to have the minimum necessary

permissions for the solution to function, reducing the potential for unauthorized
access by unprivileged users (COV-01-021).

● Encryption of Data at Rest: All sensitive server data should be appropriately
encrypted at rest, significantly reducing the possibility of leaks via server backups
or unauthorized access (COV-01-022).

● Network Configuration: The network stack configuration should be improved to
avoid a number of possible attacks (COV-01-024).

● SSH Access Hardening: The SSH configuration could be enhanced
implementing MFA and other options (COV-01-025).

● Separate Logging Server: A separate logging server ought to be in place to
preserve the integrity of captured security related events (COV-01-026).

● Bootloader Password: Backend hosts should set a bootloader password
(COV-01-020).

Last but not least, implementing these measures will reinforce the security posture of the
CoverDrop Cloud infrastructure:

● Hardening of the Kubernetes Cluster: The Kubernetes Infrastructure would

128 https://github.com/renovatebot/renovate
127 https://snyk.io/

7ASecurity © 2024
82

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com


Pentest Report

benefit from a configuration better aligned to the CIS Benchmark for
Kubernetes129 (COV-01-031), Pod hardening to reduce the potential for privilege
escalation attacks (COV-01-032) and implementing outbound traffic restrictions
(COV-01-033).

● Workflow Hardening: It is important to harden all CI/CD workflows as much as
possible. For example, enforcing commit signing for every commit in the Git
repositories (COV-01-027) will reduce the potential for supply chain and
compromised developer attacks, while the secure storage of tokens will provide
protection against unauthorized access and pivoting throughout the infrastructure
(COV-01-011).

● Logging and Monitoring: It is important to enable and configure correctly all
security-relevant AWS tools and features, such as logging and monitoring
mechanisms, on load balancers (COV-01-007), as well as throughout all other
AWS cloud components (COV-01-010)

● Attack Surface Reduction: The cloud infrastructure would benefit from
eliminating anything that is not strictly required to ensure adversaries have as
little opportunity as possible. For example, unused regions should be deleted
(COV-01-009), and outbound traffic ought to be disallowed (COV-01-033).

● Least Privilege: Strong consideration should be given to removing broad access
roles, utilizing restricted KMS policies, and following the least privilege principle
throughout the infrastructure (COV-01-017), as well as ensuring accounts are
better isolated from each other to prevent privilege escalation attacks
(COV-01-018).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This approach will not only significantly enhance the
security posture of the platform but also contribute to a reduction in the number of tickets
in future audits.

Once all recommendations in this report are addressed and verified, a more thorough
review, ideally including another code audit, is highly recommended to ensure adequate
security coverage of the platform. Future audits should ideally allocate a greater budget,
enabling test teams to delve into more complex attack scenarios.

It is suggested to test the application regularly, at least once a year or when substantial
changes are deployed, to make sure new features do not introduce undesired security
vulnerabilities. Consistently following this approach will lead to a reduction in the number
of security issues and fortify the application against online attacks over time.

7ASecurity would like to take this opportunity to sincerely thank Daniel Hugenroth,
Dominic Kendrick, Mario Savarese, Sabina Bejasa-Dimmock, Sam Cutler, and the rest

129 https://www.cisecurity.org/benchmark/kubernetes

7ASecurity © 2024
83

https://www.cisecurity.org/benchmark/kubernetes
https://7asecurity.com


Pentest Report

of the CoverDrop team, for their exemplary assistance and support throughout this audit.
Last but not least, appreciation must be extended to the Open Technology Fund (OTF)
for sponsoring this project.

7ASecurity © 2024
84

https://7asecurity.com

