
DEfO-2 Test Targets:
DEfO-2 OpenSSL HPKE PR
DEfO-2 Fuzzing

Pentest Report
Client:
DEfO-2

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Hannes Moesl-Canaval, MSc.
● Alexander Schloegl, MSc.
● Dominik Prodinger, BSc.
● David Gstir, Dipl.-Ing.
● Richard Weinberger
● Lorenz Kofler

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 4
Identified Vulnerabilities 5
Hardening Recommendations 6

DEF-01-001 WP1: Missing Return Value Checks may result in Crashes (Info) 6
DEF-01-002 WP3: Missing Public Key Size Check in OSSL_HPKE_keygen (Info) 7
DEF-01-003 WP1/3: Possible Segmentation Fault via Missing Checks (Info) 10
DEF-01-004 WP3: Possible Segmentation Fault via Buffer Overwrite (Info) 12
DEF-01-005 WP1: Potential GREASE Fingerprinting via RNG Bias (Low) 16
DEF-01-006 WP1: HPKE API Fails To Reject Weak PSK Values (Low) 18
DEF-01-007 WP1: Unnecessary LabeledExtract in HPKE KeySchedule (Info) 19
DEF-01-008 WP1: HPKE API Allows Invalid psk_id & psk Combinations (Low) 21
DEF-01-009 WP1: Possible NULL Dereference in OSSL_HPKE_export (Info) 22
DEF-01-010 WP1: Hardcoded Buffer Size in hpke_aead_enc (Info) 25

Conclusion 27

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

Introduction
“The encrypted ClientHello (ECH) mechanism (draft-spec) is a way to plug a few
privacy-holes that remain in the Transport Layer Security (TLS) protocol that's used as
the security layer for the web.[...]The DEfO project has developed an implementation of
ECH for OpenSSL, and proof-of-concept implementations of various clients and servers
that use OpenSSL as a demonstration and for interoperability testing.”

From https://defo.ie/

This document outlines the results of a penetration test and whitebox security review
conducted against the DEfO-2 OpenSSL HPKE PR1. The project was solicited by the
DEfO-2 team, funded by the Open Technology Fund (OTF), and executed by 7ASecurity
in October 2023. The audit team dedicated 49 working days to complete this
assignment. Please note that, while this is the first penetration test for this project, the
attack surface of the DEfO-2 OpenSSL changes is rather limited and, hence,
identification of exploitable security weaknesses was particularly challenging during this
assignment.

During this iteration the goal was to review the OpenSSL HPKE PR modifications as
thoroughly as possible, to ensure internet users are not negatively impacted by the
changes DEfO-2 introduced to eliminate the previously unavoidable privacy leak in
OpenSSL2.

The methodology implemented was whitebox: 7ASecurity was provided with access to
reference client and server implementations, documentation and source code. A team of
7 senior auditors carried out all tasks required for this engagement, including
preparation, delivery, documentation of findings and communication.

A number of necessary arrangements were in place by September 2023, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared
Element channel. The DEfO-2 team was helpful and responsive at all times, which
facilitated the test for 7ASecurity, without introducing any unnecessary delays.
7ASecurity provided regular updates regarding the audit status and its interim findings
during the engagement.

This audit split the scope items in the following work packages, which are referenced in
the ticket headlines as applicable:

2 https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni
1 https://github.com/openssl/openssl/pull/17172

7ASecurity © 2023
3

https://defo.ie/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni
https://github.com/openssl/openssl/pull/17172
https://7asecurity.com

Pentest Report

● WP1: Audit of DEfO-2 OpenSSL HPKE PR changes
● WP2: Audit of the OpenSSL master branch areas affected by DEfO-2 PR
● WP3: Code-Fuzzing of OpenSSL HPKE PR changes
● WP4: Network-traffic Fuzzing of OpenSSL HPKE PR changes

The findings of the security audit (WP1-4) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

0 10 10

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
DEfO-2 OpenSSL improvements.

Scope

The following list outlines the items in scope for this project:
● WP1: Audit of DEfO-2 OpenSSL HPKE PR changes

○ OpenSSL PR: https://github.com/openssl/openssl/pull/17172
○ Documentation:

■ https://defo.ie
■ https://datatracker.ietf.org/doc/rfc9180/

● WP2: Audit of the OpenSSL master branch areas affected by DEfO-2 PR
○ OpenSSL master branch: https://github.com/openssl/openssl
○ Reviewed Commit: 91895e39b10033178e662fc7427a09d7562cf8e1

● WP3: Code-Fuzzing of OpenSSL HPKE PR changes
○ As Above

● WP4: Network-traffic Fuzzing of OpenSSL HPKE PR changes
○ As Above

7ASecurity © 2023
4

https://github.com/openssl/openssl/pull/17172
https://defo.ie
https://datatracker.ietf.org/doc/rfc9180/
https://github.com/openssl/openssl
https://github.com/openssl/openssl/tree/91895e39b10033178e662fc7427a09d7562cf8e1
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. DEF-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

No directly exploitable vulnerabilities could be identified during this assignment.

7ASecurity © 2023
5

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

DEF-01-001 WP1: Missing Return Value Checks may result in Crashes (Info)

Note: Although this issue was found in the pull request undergoing the audit, it was later
discovered that the weakness is already resolved in the OpenSSL master branch.

During the code audit of the HPKE pull request, it was identified that the pointer returned
by the ossl_HPKE_KEM_INFO_find_id function is not checked for NULL. Please note
the return value is adequately checked in most locations. However, the
OSSL_HPKE_get_recommended_ikmelen function omits this check entirely. While this
inconsistency does not pose a security vulnerability at the time of writing, it should be
remediated to conform with related calls to the same function and reduce the potential
for weaknesses in the future. For example, dereferencing a null pointer may result in an
application crash. This issue can be observed in the following code path:

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L1431

Affected Code:
size_t OSSL_HPKE_get_recommended_ikmelen(OSSL_HPKE_SUITE suite)

{

const OSSL_HPKE_KEM_INFO *kem_info = NULL;

if (hpke_suite_check(suite) != 1)

return 0;

kem_info = ossl_HPKE_KEM_INFO_find_id(suite.kem_id);

return kem_info->Nsk;

}

It is recommended to consistently check return values throughout the codebase when
making function calls. Please note that there may be other instances where return
values are not adequately checked. For this reason, the DEfO-2 and OpenSSL teams

7ASecurity © 2023
6

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L1431
https://7asecurity.com

Pentest Report

are encouraged to utilize automated and manual checks to consistently identify, report
and resolve similar weaknesses.

DEF-01-002 WP3: Missing Public Key Size Check in OSSL_HPKE_keygen (Info)

Note: Although this issue was found in the pull request undergoing the audit, it was later
discovered that the weakness is already resolved in the OpenSSL master branch.

While fuzzing the DEfO-2 OpenSSL HPKE PR changes, it was uncovered that the
OSSL_HPKE_keygen function may perform buffer out-of-bounds writes for the public
key in some scenarios. This could occur depending on the encoding length of the public
key, if an insufficiently large buffer is passed. Please note that, since the affected input
cannot be tainted by attackers at the time of writing, there are no security implications for
this weakness. Nevertheless, this is still a bad practice that might result in potential
issues in the future, depending on how people fork and expand the OpenSSL library.

Please note this behavior contradicts the official OpenSSL documentation, which states3:
“An error will occur if the input publen is too small.”

This issue occurs because the size of the buffer must be at least Npk bytes. The reason
for this can be found in section 7.1. Key Encapsulation Mechanisms (KEMs) of RFC
9180, which specifies4 concrete size requirements. Additionally, section 11.1. KEM
Identifiers of the aforementioned RFC defines the Npk parameter as:

“Npk: The length in bytes of an encoded public key for the algorithm”

The root cause for this issue can be found in the following code path, which fails to
perform a size check before the public key is extracted by the
EVP_PKEY_get_octet_string_param function:

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L1317

Affected Code:
[...]

if (EVP_PKEY_generate(pctx, &skR) <= 0) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

4 https://datatracker.ietf.org/doc/rfc9180/
3 https://github.com/openssl/openssl/blob/master/doc/man3/OSSL_HPKE_CTX_new.pod

7ASecurity © 2023
7

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L1317
https://datatracker.ietf.org/doc/rfc9180/
https://github.com/openssl/openssl/blob/master/doc/man3/OSSL_HPKE_CTX_new.pod
https://7asecurity.com

Pentest Report

EVP_PKEY_CTX_free(pctx);

pctx = NULL;

if (EVP_PKEY_get_octet_string_param(skR, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, pub,

*publen, publen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

*priv = skR;

erv = 1;

[...]

This was further confirmed at runtime using the following proof-of-concept:

PoC:
int fuzzerCrash0(const uint8_t *buf, size_t len) {

if (len < 100)

return 0;

OSSL_HPKE_SUITE hpke_suite = {0x12, 0x02, 0xffff};

size_t publen = 132;

unsigned char *pub = malloc(publen);

const unsigned char *ikm = NULL;

size_t ikmlen = 0;

OSSL_LIB_CTX *libctx = NULL;

const char *propq = NULL;

EVP_PKEY *priv;

OSSL_HPKE_keygen(hpke_suite, pub, &publen, &priv, ikm, ikmlen, libctx,

propq);

if (pub) {

free(pub);

pub = NULL;

}

if(priv)

EVP_PKEY_free(priv);

return 0;

}

Which resulted in the following crash:

Crash Output:
==31517==ERROR: AddressSanitizer: heap-use-after-free on address 0x602000000112 at pc

0x560f95ef50ec bp 0x7ffda23cae30 sp 0x7ffda23cae28

WRITE of size 1 at 0x602000000112 thread T0

7ASecurity © 2023
8

https://7asecurity.com

Pentest Report

#0 0x560f95ef50eb in bn2binpad openssl/crypto/bn/bn_lib.c:605:13

#1 0x560f95ef53f9 in BN_bn2bin openssl/crypto/bn/bn_lib.c:630:12

#2 0x560f9604e352 in ossl_ec_GFp_simple_point2oct

openssl/crypto/ec/ecp_oct.c:234:16

#3 0x560f95ffe663 in EC_POINT_point2oct openssl/crypto/ec/ec_oct.c:88:20

#4 0x560f95d852f2 in common_get_params

openssl/providers/implementations/keymgmt/ec_kmgmt.c:738:26

#5 0x560f95d7f6ae in ec_get_params

openssl/providers/implementations/keymgmt/ec_kmgmt.c:761:12

#6 0x560f9617a0ee in evp_keymgmt_get_params

openssl/crypto/evp/keymgmt_meth.c:394:12

#7 0x560f95b3bbfe in EVP_PKEY_get_params openssl/crypto/evp/p_lib.c:2369:20

#8 0x560f95b388a3 in EVP_PKEY_get_octet_string_param

openssl/crypto/evp/p_lib.c:2189:17

#9 0x560f95b72167 in OSSL_HPKE_keygen openssl/crypto/hpke/hpke.c:1309:9

#10 0x560f95b1f467 in FuzzerTestOneInput openssl/fuzz/ossl_hpke_keygen.c:100:3

#11 0x560f95b202a8 in testfile openssl/fuzz/test-corpus.c:55:9

#12 0x560f95b1fd02 in main openssl/fuzz/test-corpus.c:96:13

#13 0x7f2747957ccf (/usr/lib/libc.so.6+0x27ccf) (BuildId:

8bfe03f6bf9b6a6e2591babd0bbc266837d8f658)

#14 0x7f2747957d89 in __libc_start_main (/usr/lib/libc.so.6+0x27d89) (BuildId:

8bfe03f6bf9b6a6e2591babd0bbc266837d8f658)

#15 0x560f959e8044 in _start (openssl/fuzz/ossl_hpke_keygen-test+0x169044)

(BuildId: b70fbf5bd74bb0e96676551261c4da39e7bd06bc)

The offending out-of-bounds write occurs in the heap, therefore this crash is classified by
the AdressSanitizer (ASAN) as a heap-use-after-free vulnerability. Allocating the buffer
on the stack would change the ASAN classification to a stack overflow bug.

It is recommended to check that publen fulfills at least the size requirements listed in
RFC9180. Additionally, it was observed that the function call uses publen as both an
input and an output parameter, which should be avoided.

7ASecurity © 2023
9

https://7asecurity.com

Pentest Report

DEF-01-003 WP1/3: Possible Segmentation Fault via Missing Checks (Info)

Retest Notes: The DEfO-2 team fixed5 this issue and 7ASecurity confirmed that the fix
is valid.

During the code audit and fuzzing of the HPKE extension within the OpenSSL library, it
was discovered that the OSSL_HPKE_encap and OSSL_HPKE_decap functions fail to
validate the info input parameter. Specifically, supplying a NULL pointer to info and a
valid length to infolen, the execution results in a segmentation fault. Please note that,
since the affected input cannot be tainted by attackers at the time of writing, there are no
security implications for this weakness. The root cause for this issue can be confirmed
reviewing the following code snippets:

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L1070

Affected Code:
int OSSL_HPKE_encap(OSSL_HPKE_CTX *ctx,

unsigned char *enc, size_t *enclen,

const unsigned char *pub, size_t publen,

const unsigned char *info, size_t infolen)

{

int erv = 1;

if (ctx == NULL || enc == NULL || enclen == NULL || *enclen == 0

|| pub == NULL || publen == 0) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);

return 0;

}

if (infolen > OSSL_HPKE_MAX_INFOLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

[...]

}

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L1107

Affected Code:
int OSSL_HPKE_decap(OSSL_HPKE_CTX *ctx,

const unsigned char *enc, size_t enclen,

5 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
10

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L1070
https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L1107
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

EVP_PKEY *recippriv,

const unsigned char *info, size_t infolen)

{

int erv = 1;

if (ctx == NULL || enc == NULL || enclen == 0 || recippriv == NULL) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);

return 0;

}

if (infolen > OSSL_HPKE_MAX_INFOLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

[...]

}

This was further confirmed at runtime using the following proof-of-concept:

PoC:
// [...]

OSSL_HPKE_encap(ctx, enc, &enclen, pub, publen, NULL, 20);

Which resulted in the following crash:

Crash Output:
==95468==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc

0x7f1077f62901 bp 0x7ffdafba0e70 sp 0x7ffdafba0638 T0)

==95468==The signal is caused by a READ memory access.

==95468==Hint: address points to the zero page.

#0 0x7f1077f62901 in memcpy (/lib/x86_64-linux-gnu/libc.so.6+0xc4901) (BuildId:

69389d485a9793dbe873f0ea2c93e02efaa9aa3d)

#1 0x557369f81301 in __asan_memcpy

(/workspaces/openssl/fuzz/hpke_roundtrip-test+0x2e4301) (BuildId:

8882758b6dbe6e3cc5d358f0a99e14dff2df2116)

#2 0x55736a5d58fb in WPACKET_memcpy /workspaces/openssl/crypto/packet.c:470:9

#3 0x55736a5a6442 in ossl_hpke_labeled_extract

/workspaces/openssl/crypto/hpke/hpke_util.c:324:17

#4 0x55736a59a851 in hpke_do_middle /workspaces/openssl/crypto/hpke/hpke.c:718:9

#5 0x55736a597f9a in OSSL_HPKE_encap /workspaces/openssl/crypto/hpke/hpke.c:1088:11

#6 0x557369fbfb5e in fuzzerCrash0 /workspaces/openssl/fuzz/hpke_roundtrip.c:211:9

#7 0x557369fbd917 in FuzzerTestOneInput

/workspaces/openssl/fuzz/hpke_roundtrip.c:233:5

#8 0x557369fc0aac in testfile /workspaces/openssl/fuzz/test-corpus.c:55:9

#9 0x557369fc054a in main /workspaces/openssl/fuzz/test-corpus.c:96:13

#10 0x7f1077ec7d8f (/lib/x86_64-linux-gnu/libc.so.6+0x29d8f) (BuildId:

69389d485a9793dbe873f0ea2c93e02efaa9aa3d)

7ASecurity © 2023
11

https://7asecurity.com

Pentest Report

#11 0x7f1077ec7e3f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x29e3f)

(BuildId: 69389d485a9793dbe873f0ea2c93e02efaa9aa3d)

#12 0x557369eff0a4 in _start

(/workspaces/openssl/fuzz/hpke_roundtrip-test+0x2620a4) (BuildId:

8882758b6dbe6e3cc5d358f0a99e14dff2df2116)

It is recommended to ensure the validity of both the info and infolen parameters before
proceeding.

DEF-01-004 WP3: Possible Segmentation Fault via Buffer Overwrite (Info)

Retest Notes: The DEfO-2 team fixed6 this issue and 7ASecurity confirmed that the fix
is valid.

While fuzzing the OpenSSL HPKE PR changes, it was discovered that calling
OSSL_HPKE_encap with return buffers that are too small to store the return values, will
lead to a segmentation fault, even if the correct sizes are passed. Please note that, since
the affected input cannot be tainted by attackers at the time of writing, there are no
security implications for this weakness. Nevertheless, this is still a bad practice that
might result in potential issues in the future, depending on how people fork and expand
the OpenSSL library.

Please note this behavior contradicts the official OpenSSL documentation for the
OSSL_HPKE_get_public_encap_size function, which states7:

“An error will occur if the input enclen is smaller than the value returned from
OSSL_HPKE_get_public_encap_size().”

This issue occurs because the EVP_PKEY_encapsulate(pctx, NULL, enclen, NULL,
&lsslen) call will overwrite the value stored in enclen (which is a size_t*), setting it to
Nenc=Npk, the encoded public key length. Hence, the modified value will pass the size
check in the subsequent call, leading to an out-of-bounds write and segmentation fault.
Furthermore, the same problem exists for OSSL_HPKE_decap, where a similar call
happens.

The root cause for this issue can be confirmed reviewing the following code paths:

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L510

7 https://github.com/openssl/openssl/blob/master/doc/man3/OSSL_HPKE_CTX_new.pod
6 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
12

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L510
https://github.com/openssl/openssl/blob/master/doc/man3/OSSL_HPKE_CTX_new.pod
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

Affected Code:
[...]

*p = OSSL_PARAM_construct_end();

if (ctx->mode == OSSL_HPKE_MODE_AUTH

|| ctx->mode == OSSL_HPKE_MODE_PSKAUTH) {

if (EVP_PKEY_auth_encapsulate_init(pctx, ctx->authpriv,

params) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

} else {

if (EVP_PKEY_encapsulate_init(pctx, params) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

}

if (EVP_PKEY_encapsulate(pctx, NULL, enclen, NULL, &lsslen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

ctx->shared_secret = OPENSSL_malloc(lsslen);

if (ctx->shared_secret == NULL)

goto err;

ctx->shared_secretlen = lsslen;

if (EVP_PKEY_encapsulate(pctx, enc, enclen, ctx->shared_secret,

&ctx->shared_secretlen) != 1) {

[...]

Affected File:
https://github.com/openssl/openssl/blob/50b3[...]/crypto/hpke/hpke.c#L605

Affected Code:
[...]
} else {

if (EVP_PKEY_decapsulate_init(pctx, params) != 1) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
goto err;
}

}
if (EVP_PKEY_decapsulate(pctx, NULL, &lsslen, enc, enclen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
goto err;

}
ctx->shared_secret = OPENSSL_malloc(lsslen);
if (ctx->shared_secret == NULL)

goto err;
if (EVP_PKEY_decapsulate(pctx, ctx->shared_secret, &lsslen,

7ASecurity © 2023
13

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L605
https://7asecurity.com

Pentest Report

enc, enclen) != 1) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
goto err;

}
[...]

This was further confirmed at runtime using the following proof-of-concept:

PoC:
#include <openssl/err.h>

#include <openssl/evp.h>

#include <openssl/hpke.h>

#include <openssl/types.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

int main() {

int mode = 0;

OSSL_HPKE_SUITE hpke_suite = {0x21, 0x1, 0x2};

size_t enclen =0x17, publen =0xff, infolen =0x20;

unsigned char *pub = malloc(publen);

unsigned char *info = malloc(infolen);

unsigned char *enc = malloc(enclen);

EVP_PKEY *priv;

OSSL_HPKE_keygen(hpke_suite, pub, &publen, &priv, NULL, 0, NULL, NULL);

OSSL_HPKE_CTX *ctx = OSSL_HPKE_CTX_new(mode, hpke_suite, OSSL_HPKE_ROLE_SENDER, NULL,

NULL);

OSSL_HPKE_encap(ctx, enc, &enclen, pub, publen, NULL, 0);

if (pub) {

free(pub);

pub = NULL;

}

if (info) {

free(info);

info= NULL;

}

if (enc) {

free(enc);

enc = NULL;

}

return 0;

}

7ASecurity © 2023
14

https://7asecurity.com

Pentest Report

The above snippet was compiled and linked against OpenSSL. Note that without the
AdressSanitizer employed by the AFL fuzzer only a segmentation fault will be
encountered. This resulted in the following crash:

Crash Output:
==65334==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000012507 at pc

0x55e99665952f bp 0x7ffc7f2fcbf0 sp 0x7ffc7f2fc3b0

WRITE of size 56 at 0x603000012507 thread T0

#0 0x55e99665952e in __asan_memcpy (openssl/fuzz/ossl_hpke_encap-test+0x25552e)

(BuildId: 10e84c1c628567aebc403d7a17bc06a4b7816d4b)

#1 0x55e996b2b7fc in dhkem_encap

openssl/providers/implementations/kem/ecx_kem.c:588:5

#2 0x55e996b297a6 in ecxkem_encapsulate

openssl/providers/implementations/kem/ecx_kem.c:665:20

#3 0x55e99681e505 in EVP_PKEY_encapsulate openssl/crypto/evp/kem.c:235:12

#4 0x55e9966b114a in hpke_encap openssl/crypto/hpke/hpke.c:562:9

#5 0x55e9966afe58 in OSSL_HPKE_encap openssl/crypto/hpke/hpke.c:1076:9

#6 0x55e9966a4772 in FuzzerTestOneInput openssl/fuzz/ossl_hpke_encap.c:97:9

#7 0x55e9966a5848 in testfile openssl/fuzz/test-corpus.c:55:9

#8 0x55e9966a52a2 in main openssl/fuzz/test-corpus.c:96:13

#9 0x7f88176d8ccf (/usr/lib/libc.so.6+0x27ccf) (BuildId:

8bfe03f6bf9b6a6e2591babd0bbc266837d8f658)

#10 0x7f88176d8d89 in __libc_start_main (/usr/lib/libc.so.6+0x27d89) (BuildId:

8bfe03f6bf9b6a6e2591babd0bbc266837d8f658)

#11 0x55e99656d044 in _start (openssl/fuzz/ossl_hpke_encap-test+0x169044)

(BuildId: 10e84c1c628567aebc403d7a17bc06a4b7816d4b)

In order to resolve this issue, the call to EVP_PKEY_encapsulate ought to be made in
such a way that enclen is not overwritten and enclen is adequately sized. If the length is
insufficient, an error should be returned to the caller.

7ASecurity © 2023
15

https://7asecurity.com

Pentest Report

DEF-01-005 WP1: Potential GREASE Fingerprinting via RNG Bias (Low)

Retest Notes: The DEfO-2 team fixed8 this issue and 7ASecurity confirmed that the fix
is valid.

While reviewing the HPKE generation code for GREASE9 values, it was noticed that the
random selection of KEM, AEAD and KDF can be slightly biased, which facilitates
implementation fingerprinting. Malicious endpoints could potentially use this information
to launch targeted attacks against a specific implementation or individual users.

OpenSSL provides the OSSL_HPKE_get_grease_value API function. This generates
random HPKE-like structured data, to be used by protocols like TLS, to ensure
implementations correctly reject unspecified extension identifiers. For HPKE, this
requires generating a valid suite with identifiers for the KEM, AEAD and KDF algorithms.

This is implemented by the ossl_HPKE_KEM_INFO_find_random,
ossl_HPKE_AEAD_INFO_find_random and ossl_HPKE_KDF_INFO_find_random utility
functions as shown below. All of these generate a random 1-byte value and use the
modulo operation to reduce the value range to the total number of valid identifiers. Using
modulo this way may introduce a slight bias, if the randomly generated number is not
divisible by the total number of value identifiers10. Please note such a bias will be
noticeable when an attacker is capable of collecting a large amount of output samples.

Since GREASE values for e.g. TLS will usually be sent with every handshake, this
seems practical. The importance of adequate randomly-generated GREASE values is
also explicitly mentioned in the security considerations section of RFC870111.

The HPKE implementation currently contains this modulo bias in a corner case, when it
selects a random AEAD function, and ChaCha20 or Poly1305 are not available. This
may also occur when more HPKE identifiers are specified and implemented in the future,
as the number of total entries increases.

The following snippet shows the random selection code for KEM, AEAD and KDF:

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke_util.c#L190

11 https://datatracker.ietf.org/doc/html/rfc8701#section-7
10 https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-...
9 https://datatracker.ietf.org/doc/html/rfc8701
8 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
16

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke_util.c#L190
https://datatracker.ietf.org/doc/html/rfc8701#section-7
https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
https://datatracker.ietf.org/doc/html/rfc8701
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

Affected Code:
const OSSL_HPKE_KEM_INFO *ossl_HPKE_KEM_INFO_find_random(OSSL_LIB_CTX *ctx)

{

unsigned char rval = 0;

int sz = OSSL_NELEM(hpke_kem_tab);

if (RAND_bytes_ex(ctx, &rval, sizeof(rval), 0) <= 0)

return NULL;

return &hpke_kem_tab[rval % sz];

}

[...]

const OSSL_HPKE_KDF_INFO *ossl_HPKE_KDF_INFO_find_random(OSSL_LIB_CTX *ctx)

{

unsigned char rval = 0;

int sz = OSSL_NELEM(hpke_kdf_tab);

if (RAND_bytes_ex(ctx, &rval, sizeof(rval), 0) <= 0)

return NULL;

return &hpke_kdf_tab[rval % sz];

}

[...]

const OSSL_HPKE_AEAD_INFO *ossl_HPKE_AEAD_INFO_find_random(OSSL_LIB_CTX *ctx)

{

unsigned char rval = 0;

/* the minus 1 below is so we don't pick the EXPORTONLY codepoint */

int sz = OSSL_NELEM(hpke_aead_tab) - 1;

if (RAND_bytes_ex(ctx, &rval, sizeof(rval), 0) <= 0)

return NULL;

return &hpke_aead_tab[rval % sz];

}

It is suggested to use rejection sampling or a similar strategy to remove this modulo bias
such that all HPKE suite identifiers are chosen with the same probability and
fingerprinting is not possible.

7ASecurity © 2023
17

https://7asecurity.com

Pentest Report

DEF-01-006 WP1: HPKE API Fails To Reject Weak PSK Values (Low)

Retest Notes: The DEfO-2 team fixed12 this issue and 7ASecurity confirmed that the fix
is valid.

During the code audit and implementation review of the OpenSSL user API provided for
HPKE, it was discovered that it allows setting weak, too short values for a Pre-Shared
Key (PSK). This opens the door for API users to choose easy-to-guess PSK values, and
hence, might lead to HPKE sender impersonation in a worst-case scenario.

HPKE supports two modes with a PSK which enable sender authentication. As specified
in RFC9180, the PSK must have at least 32 bytes of entropy and should be of length Nh
(length of KDF output)13. The OpenSSL API for setting the PSK is
OSSL_HPKE_CTX_set1_psk, which does validate the maximum length of a PSK, but
fails to check if the PSK has a minimum length above zero. Therefore the API allows
users to set short and weak PSK values which must not be allowed per specification.

This issue can be confirmed observing the following code:

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke.c#L875

Affected Code:
int OSSL_HPKE_CTX_set1_psk(OSSL_HPKE_CTX *ctx,

const char *pskid,

const unsigned char *psk, size_t psklen)

{

if (ctx == NULL || pskid == NULL || psk == NULL || psklen == 0) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);

return 0;

}

if (psklen > OSSL_HPKE_MAX_PARMLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

if (strlen(pskid) > OSSL_HPKE_MAX_PARMLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

if (ctx->mode != OSSL_HPKE_MODE_PSK

&& ctx->mode != OSSL_HPKE_MODE_PSKAUTH) {

13 https://datatracker.ietf.org/doc/html/rfc9180#section-9.5
12 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
18

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L875
https://datatracker.ietf.org/doc/html/rfc9180#section-9.5
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

/* free previous values if any */

OPENSSL_clear_free(ctx->psk, ctx->psklen);

ctx->psk = OPENSSL_memdup(psk, psklen);

if (ctx->psk == NULL)

return 0;

ctx->psklen = psklen;

OPENSSL_free(ctx->pskid);

ctx->pskid = OPENSSL_strdup(pskid);

if (ctx->pskid == NULL) {

OPENSSL_clear_free(ctx->psk, ctx->psklen);

ctx->psk = NULL;

ctx->psklen = 0;

return 0;

}

return 1;

}

It is recommended to add a check for the minimum PSK length to prevent API misuse
and the resulting implications of potential sender impersonation by malicious actors.

DEF-01-007 WP1: Unnecessary LabeledExtract in HPKE KeySchedule (Info)

Retest Notes: The DEfO-2 team fixed14 this issue and 7ASecurity confirmed that the fix
is valid.

While reviewing the HPKE key schedule code, it was noticed that an additional,
LabeledExtract15 operation is performed on the PSK. However, this serves no purpose
in the algorithm. It appears that this is leftover code from an earlier draft of the RFC.
While this has no security impact on its own, it unnecessarily increases complexity, and
hence, might indirectly increase the odds of potential security weaknesses in the future.
This can be confirmed reviewing the following section of the implementation:

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke.c#L729

Affected Code:
static int hpke_do_middle(OSSL_HPKE_CTX *ctx,

const unsigned char *info, size_t infolen)

{

15 https://datatracker.ietf.org/doc/html/rfc9180#section-4
14 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
19

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L729
https://datatracker.ietf.org/doc/html/rfc9180#section-4
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

[...]

if (ossl_hpke_labeled_extract(kctx, ks_context + 1 + halflen, halflen,

NULL, 0, OSSL_HPKE_SEC51LABEL,

suitebuf, sizeof(suitebuf),

OSSL_HPKE_INFOHASH_LABEL,

(unsigned char *)info, infolen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

ks_contextlen = 1 + 2 * halflen;

/* Extract and Expand variously... */

psk_hashlen = halflen;

if (ossl_hpke_labeled_extract(kctx, psk_hash, psk_hashlen,

NULL, 0, OSSL_HPKE_SEC51LABEL,

suitebuf, sizeof(suitebuf),

OSSL_HPKE_PSK_HASH_LABEL,

ctx->psk, ctx->psklen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

secretlen = kdf_info->Nh;

if (secretlen > OSSL_HPKE_MAXSIZE) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

if (ossl_hpke_labeled_extract(kctx, secret, secretlen,

ctx->shared_secret, ctx->shared_secretlen,

OSSL_HPKE_SEC51LABEL,

suitebuf, sizeof(suitebuf),

OSSL_HPKE_SECRET_LABEL,

ctx->psk, ctx->psklen) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

goto err;

}

It is suggested to remove this superfluous code to improve readability and
maintainability.

7ASecurity © 2023
20

https://7asecurity.com

Pentest Report

DEF-01-008 WP1: HPKE API Allows Invalid psk_id & psk Combinations (Low)

Retest Notes: The DEfO-2 team fixed16 this issue and 7ASecurity confirmed that the fix
is valid.

It was uncovered that the HPKE API fails to reject psk_id and psk value combinations
explicitly prohibited by RFC9180. Specifically, psk_id can be set to its default value
(empty string), while psk can be set to a non-empty string. This makes the API prone to
misuse, which might lead to potentially insecure configurations outside of the HPKE
specification. The root cause for this issue can be found in the code path below, which
shows the OSSL_HPKE_CTX_set1_psk function is used to set the psk and psk_id
values for a HPKE context type.

The identified behavior violates section 5.1. Creating the Encryption Context of
RFC9180, which states17:

“The psk and psk_id fields MUST appear together or not at all. That is, if a
non-default value is provided for one of them, then the other MUST be set to a
non-default value.”

However, as evident from the code below, there are only checks for psk_id and psk
being NULL and psklen == 0, but no check for strlen(psk_id) == 0. Thus, a caller may
accidentally supply a pointer to a valid buffer containing an empty string.

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke.c#L875

Affected Code:
int OSSL_HPKE_CTX_set1_psk(OSSL_HPKE_CTX *ctx,

const char *pskid,

const unsigned char *psk, size_t psklen)

{

if (ctx == NULL || pskid == NULL || psk == NULL || psklen == 0) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);

return 0;

}

if (psklen > OSSL_HPKE_MAX_PARMLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

if (strlen(pskid) > OSSL_HPKE_MAX_PARMLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

17 https://datatracker.ietf.org/doc/html/rfc9180#section-5.1
16 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
21

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L875
https://datatracker.ietf.org/doc/html/rfc9180#section-5.1
https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

return 0;

}

if (ctx->mode != OSSL_HPKE_MODE_PSK

&& ctx->mode != OSSL_HPKE_MODE_PSKAUTH) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

/* free previous values if any */

OPENSSL_clear_free(ctx->psk, ctx->psklen);

ctx->psk = OPENSSL_memdup(psk, psklen);

if (ctx->psk == NULL)

return 0;

ctx->psklen = psklen;

OPENSSL_free(ctx->pskid);

ctx->pskid = OPENSSL_strdup(pskid);

if (ctx->pskid == NULL) {

OPENSSL_clear_free(ctx->psk, ctx->psklen);

ctx->psk = NULL;

ctx->psklen = 0;

return 0;

}

return 1;

}

It is recommended to implement the specified checks on psk and psk_id from RFC9180
to eliminate the potential for API misuse.

DEF-01-009 WP1: Possible NULL Dereference in OSSL_HPKE_export (Info)

Retest Notes: The DEfO-2 team fixed18 this issue and 7ASecurity confirmed that the fix
is valid.

Close inspection of the HPKE export API showed that there is a possibility for a NULL
dereference. This may occur when providing NULL for the label argument, while labellen
is set to a positive value. However, as this can happen only when the API is used
incorrectly, this is simply mentioned as a hardening recommendation similar to
DEF-01-003.

The root cause for this issue can be observed in the following code path, where
OSSL_HPKE_export checks a number of arguments, but fails to verify whether label is
NULL. Instead, the pointer is relayed to ossl_hpke_labeled_expand which calls
WPACKET_memcpy without further verification:

18 https://github.com/openssl/openssl/pull/22493

7ASecurity © 2023
22

https://github.com/openssl/openssl/pull/22493
https://7asecurity.com

Pentest Report

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke.c#L1215

Affected Code:
int OSSL_HPKE_export(OSSL_HPKE_CTX *ctx,

unsigned char *secret, size_t secretlen,

const unsigned char *label, size_t labellen)

{

int erv = 0;

EVP_KDF_CTX *kctx = NULL;

unsigned char suitebuf[6];

const char *mdname = NULL;

const OSSL_HPKE_KDF_INFO *kdf_info = NULL;

if (ctx == NULL) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);

return 0;

}

if (labellen > OSSL_HPKE_MAX_PARMLEN) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

[...]

/* full suiteid as per RFC9180 sec 5.3 */

suitebuf[0] = ctx->suite.kem_id / 256;

suitebuf[1] = ctx->suite.kem_id % 256;

suitebuf[2] = ctx->suite.kdf_id / 256;

suitebuf[3] = ctx->suite.kdf_id % 256;

suitebuf[4] = ctx->suite.aead_id / 256;

suitebuf[5] = ctx->suite.aead_id % 256;

erv = ossl_hpke_labeled_expand(kctx, secret, secretlen,

ctx->exportersec, ctx->exporterseclen,

OSSL_HPKE_SEC51LABEL,

suitebuf, sizeof(suitebuf),

OSSL_HPKE_EXP_SEC_LABEL,

label, labellen);

EVP_KDF_CTX_free(kctx);

if (erv != 1)

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

return erv;

}

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke_util.c#L343

Affected Code:
int ossl_hpke_labeled_expand(EVP_KDF_CTX *kctx,

7ASecurity © 2023
23

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L1215
https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke_util.c#L343
https://7asecurity.com

Pentest Report

unsigned char *okm, size_t okmlen,

const unsigned char *prk, size_t prklen,

const char *protocol_label,

const unsigned char *suiteid, size_t suiteidlen,

const char *label,

const unsigned char *info, size_t infolen)

{

int ret = 0;

size_t label_hpkev1len = 0;

size_t protocol_labellen = 0;

size_t labellen = 0;

size_t labeled_infolen = 0;

unsigned char *labeled_info = NULL;

WPACKET pkt;

label_hpkev1len = strlen(LABEL_HPKEV1);

protocol_labellen = strlen(protocol_label);

labellen = strlen(label);

labeled_infolen = 2 + okmlen + prklen + label_hpkev1len

+ protocol_labellen + suiteidlen + labellen + infolen;

labeled_info = OPENSSL_malloc(labeled_infolen);

if (labeled_info == NULL)

return 0;

/* labeled_info = concat(okmlen, "HPKE-v1", suiteid, label, info) */

if (!WPACKET_init_static_len(&pkt, labeled_info, labeled_infolen, 0)

|| !WPACKET_put_bytes_u16(&pkt, okmlen)

|| !WPACKET_memcpy(&pkt, LABEL_HPKEV1, label_hpkev1len)

|| !WPACKET_memcpy(&pkt, protocol_label, protocol_labellen)

|| !WPACKET_memcpy(&pkt, suiteid, suiteidlen)

|| !WPACKET_memcpy(&pkt, label, labellen)

|| !WPACKET_memcpy(&pkt, info, infolen)

|| !WPACKET_get_total_written(&pkt, &labeled_infolen)

|| !WPACKET_finish(&pkt)) {

ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL);

goto end;

}

ret = ossl_hpke_kdf_expand(kctx, okm, okmlen,

prk, prklen, labeled_info, labeled_infolen);

end:

WPACKET_cleanup(&pkt);

OPENSSL_free(labeled_info);

return ret;

}

Please note that, while it appears the same issue applies for the secret parameter, this is
not the case, as that is mitigated deeper down the call-chain, by the KDF code itself.

7ASecurity © 2023
24

https://7asecurity.com

Pentest Report

It is suggested to check the export function inputs for being NULL and return an error in
such a case.

DEF-01-010 WP1: Hardcoded Buffer Size in hpke_aead_enc (Info)

During code audit of hpke_aead_enc, it was discovered that the buffer size for the
authentication tag is hardcoded to 16 bytes. This is acceptable for the currently specified
AEAD ciphers, as they all have a tag size of 16 bytes. However, as the code uses the
exposed tag size of AEAD ciphers as the buffer size, this might become a potential
weakness in the future, when ciphers with different tag lengths are added. For example,
future additions of AEAD ciphers with a larger tag length might introduce a buffer
overflow vulnerability.

The root cause for this issue can be found in the following code path, which displays the
hardcoded buffer size for tag in hpke_aead_enc and that hctx->aead_info->taglen is
used as size of the buffer. This is problematic, since there is no assertion for
hctx->aead_info->taglen always being 16:

Affected File:
https://github.com/openssl/openssl/blob/50b3[…]/crypto/hpke/hpke.c#L220

Affected Code:
static int hpke_aead_enc(OSSL_HPKE_CTX *hctx, const unsigned char *iv,

const unsigned char *aad, size_t aadlen,

const unsigned char *pt, size_t ptlen,

unsigned char *ct, size_t *ctlen)

{

int erv = 0;

EVP_CIPHER_CTX *ctx = NULL;

int len;

size_t taglen = 0;

unsigned char tag[16];

taglen = hctx->aead_info->taglen;

if (*ctlen <= taglen || ptlen > *ctlen - taglen) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT);

return 0;

}

[...]

*ctlen += len;

/* Get tag. Not a duplicate so needs to be added to the ciphertext */

if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag) != 1) {

ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);

7ASecurity © 2023
25

https://github.com/openssl/openssl/blob/50b3c47b65e47a4f52ed1c47a0f248beb890193e/crypto/hpke/hpke.c#L220
https://7asecurity.com

Pentest Report

goto err;

}

memcpy(ct + *ctlen, tag, taglen);

*ctlen += taglen;

erv = 1;

err:

if (erv != 1)

OPENSSL_cleanse(ct, *ctlen);

EVP_CIPHER_CTX_free(ctx);

return erv;

}

It is suggested to use a buffer size matching the selected AEAD cipher. While this will
currently always be 16 bytes, modifications to future AEAD ciphers will not lead to any
unforeseen buffer overflows.

7ASecurity © 2023
26

https://7asecurity.com

Pentest Report

Conclusion

The DEfO-2 OpenSSL PR modifications provided a number of positive impressions
during this assignment that must be mentioned here:

● 7ASecurity was unable to identify any directly exploitable vulnerability on the
DEfO-2 implementation. This unusual result is particularly remarkable for a first
security audit.

● Similarly, the code audit of the HPKE codebase failed to spot any significant
issue.

● Other noteworthy code review impressions from the test team include the clarity
and simplicity of the implementation. Which not only made the investigation
process straightforward, but also made evident that the development team is
well-aware of best-practices in terms of secure programming.

● Furthermore, the code implements RFC9180 very concisely, which makes it
robust and avoids undefined protocol behavior, while reducing the attack surface
substantially.

● The coding style could perhaps be best defined as elegant, clean and defensive,
which fits a cryptographic library like OpenSSL.

The security of the DEfO-2 enhancements may be improved further with a focus on the
following areas:

● Input Validation: In order to enhance security, developers should implement
rigorous input validation checks to ensure that user-supplied data meets the
expected criteria, thereby preventing malicious input from compromising the
system. Additionally, meticulously validating return values from functions and
methods is crucial, as it ensures the appropriate execution of operations and
allows developers to handle errors effectively.

● Fuzzing Test Cases: In terms of dynamic testing, several fuzz testing harnesses
were developed by the audit team during this assignment. While testing is
essential for any project, its importance grows with the scale of the endeavor.
Testing is, therefore, essential for the overall security of the OpenSSL project,
especially since it is implemented in C, which is a language often prone to
memory corruption vulnerabilities. Therefore, integrating fuzzing harnesses for
the HPKE feature into the codebase would be beneficial.

● Automated CI/CD Tests: More unit tests could to be deployed to ensure similar
weaknesses are not re-introduced in the future. This could be accomplished by
integrating automated tests in the OpenSSL and/or DEfO-2 CI/CD pipelines.
Some examples to consider in this regard would be the fuzzers, CodeQL and
semgrep rules.

7ASecurity © 2023
27

https://7asecurity.com

Pentest Report

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
implementation significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another code audit, is highly recommended to ensure adequate security
coverage of the platform. This will be particularly crucial following the incorporation of the
Encrypted Client Hello (ECH) as an application of HPKE into the codebase.

It is suggested to test the implementation regularly, at least when substantial changes
are going to be deployed, to make sure new features do not introduce undesired security
vulnerabilities. This proven strategy will reduce the number of security issues
consistently and make OpenSSL highly resilient against online attacks over time.

7ASecurity would like to take this opportunity to sincerely thank Stephen Farrell and the
rest of the DEfO-2 team, for their exemplary assistance and support throughout this
audit. Last but not least, appreciation must be extended to the Open Technology Fund
(OTF) for sponsoring this project.

7ASecurity © 2023
28

https://7asecurity.com

