
Test Targets:
LeaveHomeSafe Android app
LeaveHomeSafe iOS app

Pentest Report
Client:
Hong Kong Democracy Council

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Various 7ASecurity members

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX
Introduction 3
Scope 5
Identified Vulnerabilities 6

LHS-01-001 WP1: MitM without Warnings via invalid TLS Certificates (Critical) 6
LHS-01-002 WP1: Possible Phishing via Task Hijacking on Android (Medium) 12
LHS-01-003 WP1: Leaks via Missing Security Screen on Android & iOS (Low) 15
LHS-01-007 WP1: COVID Status Access via Unsafe SD Card Usage (High) 18
LHS-01-008 WP1: COVID Status Access via Auth Bypass (High) 21
LHS-01-009 WP1: Weaknesses in iOS Keychain usage (Medium) 24
LHS-01-010 WP1: COVID Status Access via missing Data Protection (Medium) 26
LHS-01-011 WP1: Possible App Notification Access via iOS Backups (Low) 28

Hardening Recommendations 30
LHS-01-004 WP1: Missing Jailbreak/Root Detection on Android & iOS (Info) 30
LHS-01-005 WP1: Support of Insecure v1 Signature on Android (Info) 31
LHS-01-006 WP1: Android Binary Hardening Recommendations (Info) 32
LHS-01-012 WP1: Usage of Insecure Crypto functions and PRNG (Medium) 33

Privacy Analysis Findings 38
LHS-01-Q02 WP2: Files & Information gathered by LeaveHomeSafe (Assumed) 38
LHS-01-Q03 WP2: Where & How LeaveHomeSafe transmits Data (Unclear) 40
LHS-01-Q04 WP2:LeaveHomeSafe fails to protect PII at rest & in transit (Proven) 41
LHS-01-Q05 WP2: Visit Record Weaknesses in Transit & at Rest (Proven) 41
LHS-01-Q06 WP2: Presence of Face Recognition Code (Evident) 42
LHS-01-Q07 WP2: LeaveHomeSafe weakens TLS Communications (Proven) 48
LHS-01-Q08 WP2: LeaveHomeSafe insecure SD Card Usage (Proven) 49
LHS-01-Q09 WP2: Potential LeaveHomeSafe RCE Issues (Unclear) 49
LHS-01-Q10 WP2: Potential LeaveHomeSafe Backdoors (Unclear) 49
LHS-01-Q11 WP2: Potential LeaveHomeSafe root Access (Unclear) 50
LHS-01-Q12 WP2: Potential LeaveHomeSafe Obfuscation (Proven) 50
LHS-01-Q13 WP2: Identification of Companies behind LeaveHomeSafe (Evident) 53
LHS-01-Q14 WP2: LeaveHomeSafe vs. Study the Great Nation Relation (Unclear) 55

Conclusion 56

7ASecurity © 2022
2

https://7asecurity.com

Pentest Report

Introduction
“Let's Fight the Virus! Scan with "LeaveHomeSafe"[...]

help protect the community while protecting your privacy.”
From: https://www.leavehomesafe.gov.hk/en/

This document outlines the results of a blackbox security review and a privacy audit
conducted against the LeaveHomeSafe solution. The project was solicited by the Hong
Kong Democracy Council (HKDC), funded by the Open Technology Fund (OTF), and
executed by 7ASecurity in April and May 2022. The audit team dedicated 17 working
days to complete this assignment.

The background of this project is to address the general concern about the potential
security and privacy risks that might be introduced by the LeaveHomeSafe Android and
iOS applications12. Please note that this COVID-19 digital contact tracing application is
mandated in all government venues, hospitals, markets, shopping malls, supermarkets
and places of worship, among other places in Hong Kong at the time of writing34.

The goal of this engagement was therefore to have an independent third party verify
whether the official LeaveHomeSafe privacy and security claims are accurate.
7ASecurity downloaded and reviewed the official LeaveHomeSafe Android (3.1.0, 3.2.0,
3.2.3) and iOS (3.1.0, 3.2.0, 3.2.3) applications, which were the latest available during
this assignment. Please note retests were performed against LeaveHomeSafe 3.3.0 and
3.4.0, after the disclosure process.

The methodology implemented was blackbox. The 7ASecurity team had no access to
test users, documentation or source code. The lack of Hong Kong Health Code System
credentials, valid vaccination status QR codes and valid COVID testing status QR codes
were major limitations during this assignment, as the testers could not fully exercise the
application logic in those functional areas. All efforts were therefore focused on reverse
engineering, decompiling the applications and analyzing their behavior at runtime. A
team of 4 senior auditors executed all tasks required for this engagement, including
preparation, delivery, documentation of findings and communications.

All necessary arrangements were in place by March and April of 2022, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email as well as a shared Signal

4 https://zh.wikipedia.org/wiki/...
3 https://en.wikipedia.org/wiki/LeaveHomeSafe#Mandatory_use
2 https://www.scmp.com/news/hong-kong/health-environment/article/3166508/tracking-function-...
1 https://www.bloomberg.com/news/articles/2022-02-21/hong-kong-s-contact-tracing-app-...

7ASecurity © 2022
3

https://www.leavehomesafe.gov.hk/en/
https://zh.wikipedia.org/wiki/%E5%AE%89%E5%BF%83%E5%87%BA%E8%A1%8C#%E5%BC%B7%E5%88%B6%E4%BD%BF%E7%94%A8%E7%AF%84%E5%9C%8D
https://en.wikipedia.org/wiki/LeaveHomeSafe#Mandatory_use
https://www.scmp.com/news/hong-kong/health-environment/article/3166508/tracking-function-hong-kongs-leave-home-safe-app
https://www.bloomberg.com/news/articles/2022-02-21/hong-kong-s-contact-tracing-app-now-flags-unvaccinated-users
https://7asecurity.com

Pentest Report

chat group. The Hong Kong Democracy Council (HKDC) and OTF were helpful and
responsive throughout the audit.

The project was competently defined and organized, which facilitated the audit for the
test team. As a result, the testers did not have the need to frequently ask or wait for
answers, and hence, there were no notable blockers during this iteration. Overall, the
test went well and 7ASecurity provided regular updates regarding the audit status and its
interim findings during this exercise.

This exercise split the scope items in the following work packages, which are referenced
in the ticket headlines as applicable:

● WP1 - Mobile Security tests against LeaveHomeSafe Android & iOS apps
● WP2 - Privacy tests against LeaveHomeSafe Android & iOS apps

The findings of the security audit (WP1) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total

8 4 12

Please note that 3 of the findings in this report had an estimated severity level of high or
critical. This poor result strongly suggests that the LeaveHomeSafe mobile apps have
not been audited by any competent security firm previously. This is in stark contrast to
the documentation in the official LeaveHomeSafe website, which indicates the mobile
applications were audited previously on December 10th 20215, without any significant
findings.

Please note that, this audit was followed by a 30 day disclosure process in which
7ASecurity repeatedly sent the report to the vendor, and offered assistance to clarify any
queries6. Unfortunately, these disclosure attempts were ignored until the report was
public, at this stage the Office of the Government Chief Information Officer (OGCIO)
simply attempted to save face downplaying the findings7.

Subsequently, the high and critical security issues were confirmed to remain unfixed on
July 29th 2022 against LeaveHomeSafe 3.3.0, after the OGCIO press release. A more
comprehensive retest was then performed on August 22nd 2022 against
LeaveHomeSafe 3.4.0, where most issues, including the critical one, were confirmed to
remain unfixed. However, some medium severity findings were silently patched without

7 https://www.info.gov.hk/gia/general/202207/28/P2022072800632.htm
6 https://7asecurity.com/blog/2022/07/leavehomesafe-android-ios-apps/
5 https://www.leavehomesafe.gov.hk/en/technical-document/

7ASecurity © 2022
4

https://www.info.gov.hk/gia/general/202207/28/P2022072800632.htm
https://7asecurity.com/blog/2022/07/leavehomesafe-android-ios-apps/
https://www.leavehomesafe.gov.hk/en/technical-document/
https://7asecurity.com

Pentest Report

notifying the public. Please note that details about these retests can be found at the top
of each finding, where a brief retest summary is provided, and in some cases a link to a
demo.

Regarding the privacy audit (WP2), 7ASecurity directly answers 13 privacy-related
questions with a confidence level ranging from Unclear to Proven. These are described
in the Privacy Analysis Findings section of this report.

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security and privacy posture
of the LeaveHomeSafe platform.

Scope

The following list outlines the items in scope for this project:

WP1 - Mobile Security tests against LeaveHomeSafe Android & iOS apps

● Android (versions 3.1.0, 3.2.0, 3.2.3):
○ https://play.google.com/store/apps/details?id=hk.gov..leavehomesafe
○ https://www.leavehomesafe.gov.hk/en/download/
○ https://appgallery.huawei.com/#/app/C103081261

● iOS (versions 3.1.0, 3.2.0, 3.2.3):
○ https://apps.apple.com/app/leavehomesafe/id1536377801

WP2 - Privacy tests against LeaveHomeSafe Android & iOS apps
● As above

7ASecurity © 2022
5

https://play.google.com/store/apps/details?id=hk.gov.ogcio.leavehomesafe
https://www.leavehomesafe.gov.hk/en/download/
https://appgallery.huawei.com/#/app/C103081261
https://apps.apple.com/app/leavehomesafe/id1536377801
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. LHS-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

LHS-01-001 WP1: MitM without Warnings via invalid TLS Certificates (Critical)

Retest Notes:
● Not fixed. LeaveHomeSafe 3.3.0 is still vulnerable as of July 29th.
● LeaveHomeSafe 3.4.0 was still found to be vulnerable on August 22nd 2022.

It was found that the latest LeaveHomeSafe Android app at the time of writing (3.2.3)
fails to validate TLS certificates correctly, which allows MitM attacks without any user
warnings. This issue was verified on a non-rooted Google Nexus 5 device running
Android 6.0.1 (i.e. The last update available for this device), other supported devices are
likely affected. Please note that the iOS app is not affected by this issue. A malicious
attacker, with a valid domain name and able to manipulate network communications (i.e.
public Wi-Fi without guest isolation), could leverage this weakness to intercept traffic
between the LeaveHomeSafe application and its backend servers. For example, an
attacker could intercept the login to the Hong Kong Health Code System and gain
access to the Hong Kong Identity Card ID and password of the user. Other possibilities
include obtaining the personal One Time Password (OTP) provided by the Hong Kong
Centre for Health Protection (CHP) as well as intercepting user-reported COVID
infections. This issue was confirmed as follows:

Step 1: Configure MitM using CA-signed certificates for an invalid hostname

The Android device HTTP proxy settings were first changed to point to a test proxy
server, with capabilities to craft CA-signed certificates trusted by the device.

The proxy server configuration was then amended to always use certificates signed for
7asecurity.com, regardless of the inbound host header in the request:

7ASecurity © 2022
6

https://www.youtube.com/watch?v=oaXh9GMf1-4&list=PLvZRXGYanejRYboVq4jZQ4dygDVVSPB-H&index=3
https://7asecurity.com

Pentest Report

Fig.: Proxy settings for CA-signed certificates with a hostname of 7asecurity.com

The above configuration simulates a malicious attacker, able to supply a valid certificate
for 7asecurity.com to TLS clients. This configuration is invalid and should result in
security warnings for any TLS connection attempt to any host that is not 7asecurity.com.

Step 2: Verify the Android browser shows Security Warnings

The above setup supplies CA-signed certificates for 7asecurity.com to all TLS clients,
regardless of the hostname they attempt to connect to. Appropriate TLS validation
should reject such certificate, which can be verified in the Android browser as follows:

Run the following ADB Command:

ADB Command:
adb shell am start -a "android.intent.action.VIEW" -d https://www.leavehomesafe.gov.hk

The following security warning appears:

Fig.: The Android browser shows security warnings, as expected

7ASecurity © 2022
7

https://7asecurity.com

Pentest Report

Step 3: Confirm the complete lack of warnings in LeaveHomeSafe

Open the LeaveHomeSafe application, and try to login to the Hong Kong Health Code
System, use any randomly generated HKID, and any random password:

Fig.: Attempt to login with invalid credentials

Observe the captured login credentials without user warnings:

Captured HTTP Request:
POST /lhsapi/loginV2 HTTP/1.1

Host: apply.ehc.gov.hk

Accept: application/json, text/plain, */*

Content-Type: application/json;charset=utf-8

Content-Length: 197

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.12.1

Connection: close

{"docType":"0","docNum":"A1234563","docCountryCode":"HKG","hashId":"3600dd5f-9d40-414a

-b239-3205d0a29f7e","password":"TestPassword!123","lhsInstallDate":"1650525935885","se

cretCode":"JTp#-v4jN#@v"}

7ASecurity © 2022
8

https://7asecurity.com

Pentest Report

This issue can be further confirmed by submitting a report for COVID infection, entering
any random OTP:

Fig.: Steps to report an infection

Note how no user warnings were shown to the user following the above steps. Now
confirm that the OTP was successfully intercepted without any errors. The captured
HTTP request contains the personal One Time Password (OTP) provided by the Hong
Kong Centre for Health Protection (CHP), as well as the case number:

Resulting HTTP Request:
POST /app/pin/verify HTTP/1.1

Host: app.regqr.gov.hk

Accept: application/json, text/plain, */*

Content-Type: application/json;charset=utf-8

Content-Length: 113

Accept-Encoding: gzip, deflate

User-Agent: okhttp/3.12.1

Connection: close

{"verifyCode":"123456","uploadBatchSize":1,"caseNum":"123456788999","uid":"03f94924-43

60-4ced-a3f4-dcc09d013a2a"}

Please note that many more HTTP requests can be intercepted without warnings on
Android. The above steps are shown to illustrate this vulnerability in a concise manner.

The root cause for this issue appears to be in the following file:

7ASecurity © 2022
9

https://7asecurity.com

Pentest Report

Affected File (decompiled):
hk/gov/ogcio/leavehomesafe/e.java

Affected Code (decompiled):
public class e implements HostnameVerifier {

public e(MainApplication mainApplication) {

}

@Override // javax.net.ssl.HostnameVerifier

public boolean verify(String str, SSLSession sSLSession) {

Log.d("XANA", "verify: " + str);

if (str.contains("regqr.gov.hk") || str.contains("leavehomesafe.gov.hk") ||

str.contains("ehc.gov.hk")) {

return true;

}

return HttpsURLConnection.getDefaultHostnameVerifier().verify(str,

sSLSession);

}

}

It is recommended to improve the TLS validation of the Android app to resolve this issue.
The OWASP Pinning CheatSheet8 could then be used to secure TLS communications
further, so the application only trusts the expected server certificates.

8 https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html

7ASecurity © 2022
10

https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

LHS-01-002 WP1: Possible Phishing via Task Hijacking on Android (Medium)

Retest Notes: Fix Verified. LeaveHomeSafe 3.4.0 was found to implement the proposed
mitigation, exactly as recommended in the Proposed Fix below, on August 22nd 2022.

Testing confirmed that the Android app is currently susceptible to a number of task
hijacking attacks. The app is vulnerable to StrandHogg9 and other techniques
documented since 201510. A malicious app could leverage this weakness to manipulate
the way in which users interact with the app. More specifically, this would be instigated
by relocating a malicious attacker-controlled activity in the screen flow of the user, which
may be useful to perform Phishing, Denial-of-Service or capturing user-credentials. This
issue has been exploited by banking malware trojans in the past11.

Malicious applications typically exploit task hijacking using one or more of the following
techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2
wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim
application task stack.

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim application task to the malicious
application stack.

This issue can be confirmed by reviewing the AndroidManifest of the Android application,
which fails to set the android:taskAffinity attribute at both the application and activity
level:

Affected File:
AndroidManifest.xml

Affected Code:
<application android:theme="@style/AppTheme" android:label="@string/app_name"

11 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
10 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
9 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/

7ASecurity © 2022
11

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://7asecurity.com

Pentest Report

android:icon="@mipmap/ic_launcher"

android:name="hk.gov.ogcio.leavehomesafe.MainApplication" android:allowBackup="false"

android:usesCleartextTraffic="false" android:roundIcon="@mipmap/ic_launcher_round"

android:appComponentFactory="androidx.core.app.CoreComponentFactory">

<activity android:label="@string/app_name"

android:name="hk.gov.ogcio.leavehomesafe.MainActivity" android:exported="false"

android:launchMode="singleTask" android:screenOrientation="portrait"

android:configChanges="keyboard|keyboardHidden|orientation|screenSize|uiMode"

android:windowSoftInputMode="adjustPan" />

<activity android:label="@string/app_name"

android:name="hk.gov.ogcio.leavehomesafe.SplashActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

The issue was further validated at runtime using the AttackerApp12 from the
Task_Hijacking_Strandhogg github project13. Only the following change was made prior
to building the app:

File:
app/src/main/AndroidManifest.xml

Contents Before:
android:taskAffinity="com.zombie.ssa"

Contents After:
android:taskAffinity="hk.gov.ogcio.leavehomesafe"

To ease the understanding of this problem, an example of a malicious app was created
to demonstrate the exploitability of this weakness.

PoC Demo:
https://7as.es/LeaveHomeSafe_74nfKZHYc/LHS-01-002_LHS_Task_Hijacking.mp4

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity should be set to an empty string. This is best implemented in the
Android manifest at the application level, which will protect all activities and
ensure the fix works even if the launcher activity changes. The application should
use a randomly generated task affinity instead of the package name to prevent

13 https://github.com/az0mb13/Task_Hijacking_Strandhogg
12 https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp

7ASecurity © 2022
12

https://7as.es/LeaveHomeSafe_74nfKZHYc/LHS-01-002_LHS_Task_Hijacking.mp4
https://github.com/az0mb13/Task_Hijacking_Strandhogg
https://github.com/az0mb13/Task_Hijacking_Strandhogg/tree/main/AttackerApp
https://7asecurity.com

Pentest Report

task hijacking, as malicious apps will not have a predictable task affinity to target.
● The launchMode should then be changed to singleInstance (instead of

singleTask). This will ensure continuous mitigation in StrandHogg 2.014 while
improving security strength against older task hijacking techniques15.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag16.

Affected File:
AndroidManifest.xml

Proposed fix:
<application android:theme="@style/AppTheme" android:label="@string/app_name"

android:icon="@mipmap/ic_launcher"

android:name="hk.gov.ogcio.leavehomesafe.MainApplication" [...]

android:taskAffinity="">

<activity android:label="@string/app_name"

android:name="hk.gov.ogcio.leavehomesafe.MainActivity" android:exported="false"

android:launchMode="singleInstance" android:screenOrientation="portrait"

android:configChanges="keyboard|keyboardHidden|orientation|screenSize|uiMode"

android:windowSoftInputMode="adjustPan" />

<activity android:label="@string/app_name"

android:name="hk.gov.ogcio.leavehomesafe.SplashActivity"

android:launchMode="singleInstance" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

16 https://www.slideshare.net/phdays/android-task-hijacking
15 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
14 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../

7ASecurity © 2022
13

https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com

Pentest Report

LHS-01-003 WP1: Leaks via Missing Security Screen on Android & iOS (Low)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 Android and iOS applications were
still found to be vulnerable on August 22nd 2022.

It was found that the Android and iOS apps fail to render a security screen when they are
backgrounded. This allows attackers with physical access to an unlocked device to see
data displayed by the apps before they disappeared into the background. A malicious
app or an attacker with physical access to the device could leverage these weaknesses
to gain access to user-information, such as sensitive or compromising data related to
user visit records, Hong Kong Health Code System credentials or PII.

To replicate this issue in Android or iOS, simply navigate to some sensitive screen and
then send the application to the background. After that, show the open apps and
observe how the text which has been input can be read by the user. This text will be
readable even after a phone reboot.

Example 1: Hong Kong Health Code System HK ID & Credentials leak

Fig.: Login leak via missing security screen on Android (left) and iOS (right)

7ASecurity © 2022
14

https://7asecurity.com

Pentest Report

Example 2: PII and COVID infection leak on Report Infection screen

Fig.: COVID injection leak via missing security screen on Android (left) and iOS (right)

Example 3: Visit Record Leaks

Fig.: Possible ongoing visit leak on Android (left) & iOS (right)

7ASecurity © 2022
15

https://7asecurity.com

Pentest Report

Fig.: Possible visit record leaks on Android (left) and iOS (right)

It is recommended to render a security screen on top when the app is going to be sent to
the background:

For iOS apps, the application being sent into the background can be detected in Swift17

and Objective-C18. After that, a different screen, namely the security screen without
user-data, can be shown. A revised approach prevents leakage of sensitive information
via iOS screenshots. This is typically accomplished in the AppDelegate file, using the
applicationWillResignActive or applicationDidEnterBackground methods. Alternatively,
the react-native-privacy-snapshot plugin19 or a React Native approach based on
monitoring AppState20 transitions into the background state would also work for iOS21.

For Android apps, it is recommended to implement a security screen by capturing the
relevant backgrounding events, typically onActivityPause22 or the ON_PAUSE Lifecycle
event23 are used for such purposes. After that, if possible, ensure that all views have the
Android FLAG_SECURE flag24 set. This will guarantee that even apps running with root
privileges are unable to directly capture information displayed by the app on screen.
Alternatively, the MainActivity.java file could be amended to always set this flag,
regardless of the focus25. Unlike iOS, React Native Android apps cannot use the React
AppState to reliably implement a security screen2627, however, it is still possible to
prevent screenshots and achieve the security screen protection that way using the
expo-screen-capture package28.

28 https://docs.expo.io/versions/latest/sdk/screen-capture/
27 https://forums.expo.io/t/hide-screen-content-when-switching-apps/33355/3
26 https://medium.com/...creating-a-security-screen-on-ios-and-android-in-react-native-97703092e2de
25 https://gist.githubusercontent.com/jonaskuiler/.../raw/.../MainActivity.java
24 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
23 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
22 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...
21 https://forums.expo.io/t/how-to-blur-the-ios-screenshot-when-app-in-background/43526/4
20 https://reactnative.dev/docs/appstate
19 https://www.npmjs.com/package/react-native-privacy-snapshot
18 https://developer.apple.com/...-applicationwillresignactive?language=objc
17 https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-mo...ackground

7ASecurity © 2022
16

https://docs.expo.io/versions/latest/sdk/screen-capture/
https://forums.expo.io/t/hide-screen-content-when-switching-apps/33355/3
https://medium.com/@jonaskuiler/creating-a-security-screen-on-ios-and-android-in-react-native-97703092e2de
https://gist.githubusercontent.com/jonaskuiler/d2488301c314e2d540babb3428d9d08a/raw/b7fcadeb8d326d501de4ee83c7ec3b90cf1f45d2/MainActivity.java
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://forums.expo.io/t/how-to-blur-the-ios-screenshot-when-app-in-background/43526/4
https://reactnative.dev/docs/appstate
https://www.npmjs.com/package/react-native-privacy-snapshot
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622950-applicationwillresignactive?language=objc
https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-moves-to-the-background
https://7asecurity.com

Pentest Report

In addition to the above, some apps implement an app-specific PIN or password to
unlock the app. However, solutions like Face or Touch ID might be a more user-friendly
choice while providing users with strong security measures. In such cases, the app
would lock automatically when backgrounded and require Face or Touch ID to be
unlocked.

LHS-01-007 WP1: COVID Status Access via Unsafe SD Card Usage (High)

Retest Notes: The LeaveHomeSafe 3.4.0 Android app was still found to be vulnerable
on August 22nd 2022.

It was found that the LeaveHomeSafe Android app stores COVID vaccination & COVID
test status images in the SD Card. This occurs when the user attempts to import such
QR Codes from safer locations, such as Google Drive. This finding is concerning
because the Android SD Card is an inappropriate location for sensitive data. For
example, an unskilled thief could extract the SD Card and plug it to a computer to read
this data, without having to know the PIN or unlock pattern. Similarly, anything stored in
the SD Card can be read or modified by all other apps on the device with SD Card
access. This issue was confirmed as follows:

Navigate to the import function to enter a COVID vaccination or test record:

Fig.: Navigation to the Electronic Vaccination/Testing import

7ASecurity © 2022
17

https://7asecurity.com

Pentest Report

Select any image from a safe location that requires authentication, such as Google
Drive, then complete the crop process by centering the QR code and clicking on the
check icon at the top right of the screen:

Fig.: Completing the Import process

Optionally, reboot the device, to verify that these images will remain in the SD Card even
after the app is closed and the device is restarted. Then, run the following ADB
command:

ADB Command:
adb shell ls "/mnt/sdcard/Android/data/hk.gov.ogcio.leavehomesafe/files/Pictures/"

Output:
9e4e788e-1961-4c13-87fe-cced0906be31.jpg

Result:
The scanned image remains in the SD Card, this can be trivially downloaded and verified
in a computer using the following ADB command:

ADB Command:
adb pull

"/mnt/sdcard/Android/data/hk.gov.ogcio.leavehomesafe/files/Pictures/9e4e788e-1961-4c13-

87fe-cced0906be31.jpg"

7ASecurity © 2022
18

https://7asecurity.com

Pentest Report

It is recommended to completely avoid the SD Card for storing sensitive data such as
COVID vaccination or COVID test status. Such images should instead be stored in the
internal storage of the application (i.e. /data/data/…), where Android can enforce
permissions. If needed, the application can then grant access to the relevant application
(i.e. Android Camera) utilizing a FileProvider29. Alternatively, at a minimum, the
application should consider encryption or regularly delete all SD Card QR Codes as
soon as they are used, as well as when the application is opened or closed. If this latter
approach is chosen, please note that even shredding30 is not guaranteed to safely erase
files for flash storage31. However, it will reduce the forensic recovery chances for an
attacker with SD Card access.

31 https://unix.stackexchange.com/questions/593181/is-shred-bad-for-erasing-ssds
30 https://www.gnu.org/software/coreutils/manual/html_node/shred-invocation.html
29 https://developer.android.com/training/secure-file-sharing/setup-sharing

7ASecurity © 2022
19

https://unix.stackexchange.com/questions/593181/is-shred-bad-for-erasing-ssds
https://www.gnu.org/software/coreutils/manual/html_node/shred-invocation.html
https://developer.android.com/training/secure-file-sharing/setup-sharing
https://7asecurity.com

Pentest Report

LHS-01-008 WP1: COVID Status Access via Auth Bypass (High)

Retest Notes:
● Not fixed. LeaveHomeSafe 3.3.0 is still vulnerable as of July 29th.
● Not fixed. The LeaveHomeSafe 3.4.0 Android and iOS have completely removed

this fingerprint feature, therefore, while the bypass no longer exists, an attacker
with access to an unlocked phone will directly gain access to all data, without
even having to perform the bypass. The screenshots below show the functionality
no longer exists:

Fig.: Missing functionality on Android (left) and iOS (right)

The LeaveHomeSafe Android and iOS apps have a feature to enable authentication to
access COVID vaccination and test status, this requires entering the PIN or fingerprint
for the device. It was found that this feature can be trivially bypassed due to a logic flaw.
A malicious attacker, with access to an unlocked phone, could gain access to the user
COVID vaccination and COVID test status by simply tapping through screens, hence
defeating the intended security feature with minimal effort and skill. In short, this security
control provides absolutely no security at the time of writing. This issue was verified
using the following steps on the Android and iOS apps:

Navigate to the app settings, enable Authentication and verify that the Fingerprint/PIN
appears to be required from that moment to access COVID vaccination or test status:

7ASecurity © 2022
20

https://www.youtube.com/watch?v=qAl0AhhVeC8&list=PLvZRXGYanejRYboVq4jZQ4dygDVVSPB-H&index=4
https://7asecurity.com

Pentest Report

Fig.: Enabling authentication (iOS) requires Touch ID to access COVID status data

The steps to enable authentication are identical for Android:

Fig.: Authentication (Android) requires the Fingerprint or PIN for COVID status data

7ASecurity © 2022
21

https://7asecurity.com

Pentest Report

Optionally, restart the device and open the app again to verify the intended restrictions.

On iOS, confirm Touch ID is still required, then disable authentication and confirm
access:

Fig.: Auth bypass in iOS

Following the same steps on Android results in an identical bypass:

Fig.: Auth bypass in Android

It is recommended to require the Fingerprint or PIN whenever the “Enable authentication
for accessing electronic vaccination and testing record” setting is enabled or disabled.

7ASecurity © 2022
22

https://7asecurity.com

Pentest Report

Furthermore, this feature should ideally protect the entire application, including the user
Visit Record, the Hong Kong Health Code System screens, etc.

LHS-01-009 WP1: Weaknesses in iOS Keychain usage (Medium)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 iOS app was still found to be
vulnerable on August 22nd 2022.

It was found that most information is saved in the iOS keychain with an access level of
AfterFirstUnlockThisDeviceOnly32. Although this prevents leaks via iCloud and iTunes
backups, it still keeps the keychain data accessible for the app and root processes while
the phone is locked. The data could therefore be leaked by physical attackers able to
scrape it from memory. Seemingly sensitive fields such as com.google.iid.checkin,
hk.gov.ogcio.leavehomesafe, and com.firebase.FIRInstallations.installations are
affected. Slightly more concerning is the use of AccessibleAfterFirstUnlock33 for the
encrypted Hong Kong Health Code System credentials, which may additionally leak via
iCloud or iTunes backups, this affects the hk.gov.ogcio.leavehomesafe.hcs field.

A malicious attacker with access to memory could leverage this weakness to gain
access to most iOS keychain fields and, thereby, effectively acquire insight or access to
citizen information. The level of iOS keychain access identified during the test is
summarized in the table below.

Level of Access Field Value(s)

AfterFirstUnlock hk.gov.ogcio.leavehomesafe.hcs SglUx[...]
8vmN[...]

AfterFirstUnlock
ThisDeviceOnly

hk.gov.ogcio.leavehomesafe 54095[...]:*

AfterFirstUnlock
ThisDeviceOnly

com.google.iid.checkin 52851300[...]|83[...]

AfterFirstUnlock
ThisDeviceOnly

com.firebase.FIRInstallations.installations 1:540[...]:ios:087048[..
.]__FIRAPP_DEFAUL
T

33 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlock
32 https://developer.apple.com/.../security/ksecattraccessibleafterfirstunlockthisdeviceonly

7ASecurity © 2022
23

https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlock
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://7asecurity.com

Pentest Report

For keychain items that are not required by processes running in the background, it is
recommended to use a more restricted level of access. The best options for approaching
this are noted below, ordered by the protection level they provide (i.e. ideal option first):

Option 1: AccessibleWhenPasscodeSetThisDeviceOnly34:

This is the absolute best option, it requires users to have a passcode set in the device
and makes keychain items only available while the device is unlocked. Data will not be
exported to backups and credentials will not be restored on another device when
backups are restored.

Please note this option can be further secured by requiring the user to authenticate via
Face or Touch ID prior to the application being able to access the relevant keychain
item35.

Option 2: AccessibleWhenUnlockedThisDeviceOnly36:

This is the best option if the data should not be exported to backups. Credentials will not
be restored on another device when the backup is restored.

Option 3: AccessibleWhenUnlocked37:

This is the best option if the data should be exported to backups Credentials will be
restored on another device when the backup is restored.

Please note that, for keychain items that require to be accessible while the device is
locked, the AccessibleAfterFirstUnlockThisDeviceOnly38 Keychain level of access will at
least prevent potential leaks via iCloud or iTunes backups.

38 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
37 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
36 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
35 https://developer.apple.com/.../accessing_keychain_items_with_face_id_or_touch_id
34 https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly

7ASecurity © 2022
24

https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
https://7asecurity.com

Pentest Report

LHS-01-010 WP1: COVID Status Access via missing Data Protection (Medium)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 iOS app was still found to be
vulnerable on August 22nd 2022.

It was found that the iOS app does not currently implement the available Data Protection
features in iOS. This means that most files are encrypted with the default
NSFileProtectionCompleteUntilFirstUserAuthentication39 encryption, which keeps the
decryption key in memory while the device is locked. Moreover, this is the least secure
form of data protection available on iOS. A malicious attacker with physical access to the
device could leverage this weakness to read the decryption key from memory and gain
access to local app data files, without needing to unlock the device. Further scrutiny
revealed that some of the unprotected files display COVID vaccination & test status, the
device Firebase FCM token, as well as alternative information.

To replicate this issue, a jailbroken phone was left at rest for a few minutes on the lock
screen, then all application files were retrieved for inspection of any potential data leak.
A handful of examples revealed by the app files retrieved during device lock can be
consulted below:

Example 1: Access to COVID vaccination and test status

In situations when the user imported the COVID vaccination or test status into the app
using the “Import” function, those files will be saved without encryption and are fully
readable while the device is on the lock screen:

Affected Files:
tmp/react-native-image-crop-picker/BF5AD9CD-5F28-4DE2-97E5-31D197FEF225.jpg
tmp/react-native-image-crop-picker/F2E827A0-8AA9-4890-A2A2-98928FB899CE.jpg

Example 2: Access to Firebase FCM token

Based on the application implementation, it appears that access to the Firebase device
token would allow an attacker to subscribe to LeaveHomeSafe notifications for the victim
user.

Affected File:
Library/Application
Support/hk.gov.ogcio.leavehomesafe/RCTAsyncLocalStorage_V1/manifest.json

39 https://developer.apple.com/.../nsfileprotectioncompleteuntilfirstuserauthentication

7ASecurity © 2022
25

https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
https://7asecurity.com

Pentest Report

Affected Contents:
{"ASYNC_SHOW_TNC":"true","ASYNC_AGREE_HCS":"true","ASYNC_BACK_TO_PREVIOUS_VENUE_DATA":"

","ASYNC_ENABLE_EVT_SECURITY":"false","ASYNC_FCM_TOKEN":"fPlJrBcYckRJgqj2rX_S41:APA91bH

LzBo[...]","ASYNC_LAST_DOWNLOAD_TS":"1651119311000","ASYNC_SHOW_NEW_FEATURE":"EVT_OPT_O

UT2","databases\/vaccineMapping_ts.txt":"1644199454005","ASYNC_JOIN_TS":"1650532198359"

,"databases\/revokeList_ts.txt":"164419945400","ASYNC_UID":"f36af6b8-8cdf-4c19-b252-208

ddd41983d","ASYNC_SHOW_TUTORIAL":"true","ASYNC_IN_PROGRESS_END_TS":"1651120808501","ASY

NC_VENUE_DB_TS":"1649378060000","ASYNC_LAST_DELETE_TS":"1651120036405","databases\/vacc

inePassMultipleStage_ts.txt":"1644199454006","ASYNC_IN_PROGRESS_START_TS":"165112080817

5","ASYNC_AGREE_EVT":"true","ASYNC_USER_UPDATE_TIME":"1651120808474","ASYNC_HC_RMB_ME":

"true"}

The extent of this issue is perhaps best illustrated by the output of the tar command,
which is able to read most files after the phone has remained passive on the lock screen
for a few minutes. This clearly demonstrates that most files are currently unprotected at
rest.

Commands:
tar cvfz files_locked.tar.gz * > unprotected_files.txt 2> protected_files.txt

wc -l protected_files.txt

wc -l unprotected_files.txt

Output:
5 protected_files.txt

80 unprotected_files.txt

It is recommended to add the Data Protection capability at the application level40. This
will ensure that application data files are protected at rest with the strongest form of
encryption available on iOS: NSFileProtectionComplete41. Furthermore, in order to
protect cached entries, it is possible to subclass NSURLCache with a custom subclass
that stores URL responses in a custom SQLite database with file protection set to
NSFileProtectionComplete42. Alternatively, before the request is sent, caching could be
disabled with a code snippet similar to the one shown below.

Proposed fix (to be used before a request is sent):
configuration.requestCachePolicy = .reloadIgnoringCacheData

An alternative mitigatory action could be to clear all cached responses after the response
is received.

42 https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
41 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
40 https://developer.apple.com/documentation/.../com_apple_developer_default-data-protection

7ASecurity © 2022
26

https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_default-data-protection
https://7asecurity.com

Pentest Report

Proposed fix (for after the response is received):
URLCache.shared.removeAllCachedResponses()

In addition to the above, SQL Cipher43 could be considered to encrypt SQLite databases
at rest. The encryption key should be stored in the iOS keychain while data remains
protected. For additional mitigation guidance, please see the blog post titled “Best
practices to avoid security vulnerabilities in your iOS app”44.

LHS-01-011 WP1: Possible App Notification Access via iOS Backups (Low)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 iOS app was still found to be
vulnerable on August 22nd 2022.

It was found that the iOS Firebase device token is leaked in iOS backups. A malicious
attacker with access to the iOS backups of a LeaveHomeSafe user could leverage this
weakness to receive messages intended for the victim user, which might potentially
reveal sensitive information. This issue was found to affect both encrypted and
unencrypted iOS backups. Please note that the Android application is not affected by
this issue, as it explicitly disables backups. To replicate this issue, simply backup the iOS
device with iTunes and review the backup contents:

Affected File:
Library/Application
Support/hk.gov.ogcio.leavehomesafe/RCTAsyncLocalStorage_V1/manifest.json

Affected Contents:
{"ASYNC_SHOW_TNC":"true","ASYNC_AGREE_HCS":"true","ASYNC_BACK_TO_PREVIOUS_VENUE_DATA":"

","ASYNC_ENABLE_EVT_SECURITY":"false","ASYNC_FCM_TOKEN":"fPlJrBcYckRJgq[...]","ASYNC_LA

ST_DOWNLOAD_TS":"1651119311000","ASYNC_SHOW_NEW_FEATURE":"EVT_OPT_OUT2","databases\/vac

cineMapping_ts.txt":"1644199454005","ASYNC_JOIN_TS":"1650532198359","databases\/revokeL

ist_ts.txt":"164419945400","ASYNC_UID":"f36af6b8-8cdf-4c19-b252-208ddd41983d","ASYNC_SH

OW_TUTORIAL":"true","ASYNC_IN_PROGRESS_END_TS":"1651120808501","ASYNC_VENUE_DB_TS":"164

9378060000","ASYNC_LAST_DELETE_TS":"1651120036405","databases\/vaccinePassMultipleStage

_ts.txt":"1644199454006","ASYNC_IN_PROGRESS_START_TS":"1651120808175","ASYNC_AGREE_EVT"

:"true","ASYNC_USER_UPDATE_TIME":"1651120808474","ASYNC_HC_RMB_ME":"true"}

It is recommended to exclude this file from iOS backups45 or encrypt this information at
rest to avoid potential attacks. Please note that, while iOS backups cannot be disabled

45 https://developer.apple.com/documentation/foundation/optimizing_your_app_s_data_.../
44 http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
43 https://www.zetetic.net/sqlcipher/ios-tutorial/

7ASecurity © 2022
27

https://developer.apple.com/documentation/foundation/optimizing_your_app_s_data_for_icloud_backup/
http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
https://www.zetetic.net/sqlcipher/ios-tutorial/
https://7asecurity.com

Pentest Report

entirely, a number of features exist to limit what iTunes and iCloud will back up46.

46 https://docs.microsoft.com/en-us/answers/questions/731588/xamarin-ios-disable-back-up....html

7ASecurity © 2022
28

https://docs.microsoft.com/en-us/answers/questions/731588/xamarin-ios-disable-back-up-and-restore-for-applic.html
https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, require an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

LHS-01-004 WP1: Missing Jailbreak/Root Detection on Android & iOS (Info)

Retest Notes: The LeaveHomeSafe 3.4.0 Android and iOS apps were still found to be
vulnerable on August 22nd 2022.

It was found that the Android and iOS apps do not currently implement any form of Root
or Jailbreak detection features at the time of writing. Hence, the applications fail to alert
users about the security implications of running the app in such an environment47. This
issue can be confirmed by installing the application on a jailbroken/rooted device and
validating the complete lack of application warnings.

It is recommended to implement a comprehensive Jailbreak and root detection solution
to address this problem. Please note that, since the user has root access and the
application does not, the application is always at a disadvantage. Mechanisms like
these should always be considered bypassable when enough dedication and skill
characterize the attacker.

Some freely available libraries for iOS are IOSSecuritySuite48 and
DTTJailbreakDetection49, although custom checks are also possible in Swift
applications50. Such solutions should be considered bypassable but sufficient to warn
users about the dangers of running the application on a jailbroken device. For best
results, it is recommended to test some commercial and open source5152 solutions

52 https://github.com/securing/IOSSecuritySuite
51 https://github.com/thii/DTTJailbreakDetection
50 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
49 https://github.com/thii/DTTJailbreakDetection
48 https://cocoapods.org/pods/IOSSecuritySuite
47 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515

7ASecurity © 2022
29

https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
https://7asecurity.com

Pentest Report

against well-known Cydia tweaks like LibertyLite53, Shadow54, tsProtector 8+55 or
A-Bypass56. Based on this, LeaveHomeSafe could determine the most solid approach.

The freely available rootbeer library57 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

Please note that React Native applications may easily implement the aforementioned
recommendations using third party solutions such as jail-monkey5859 or
react-native-jailbreak60, both of which support Android and iOS.

LHS-01-005 WP1: Support of Insecure v1 Signature on Android (Info)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 Android app was still found to be
vulnerable on August 22nd 2022.

It was found that the Android build currently in production is signed with an insecure v1
APK signature. Using the v1 signature makes the app prone to the known Janus61

vulnerability on devices running Android < 7. The problem lets attackers smuggle
malicious code into the APK without breaking the signature. At the time of writing, the
app supports a minimum SDK of 16 (Android 4.1), which also uses the v1 signature,
hence being vulnerable to this attack. Furthermore, Android 4.1 devices no longer
receive updates and are vulnerable to many security issues, it can be assumed that any
installed malicious app may trivially gain root privileges on those devices using public
exploits626364.

The existence of this flaw means that attackers could trick users into installing a
malicious attacker-controlled APK which matches the v1 APK signature of the legitimate
Android application. As a result, a transparent update would be possible without
warnings appearing in Android, effectively taking over the existing application and all of

64 https://en.wikipedia.org/wiki/Dirty_COW
63 https://github.com/davidqphan/DirtyCow
62 https://www.exploit-db.com/exploits/35711
61 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures
60 https://www.npmjs.com/package/react-native-jailbreak
59 https://infinitbility.com/how-to-detect-device-rooted-or-jailbroken-in-react-native/
58 https://github.com/GantMan/jail-monkey
57 https://github.com/scottyab/rootbeer
56 https://repo.rpgfarm.com/
55 http://apt.thebigboss.org/repofiles/cydia/
54 https://ios.jjolano.me/
53 http://ryleyangus.com/repo/

7ASecurity © 2022
30

https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.npmjs.com/package/react-native-jailbreak
https://infinitbility.com/how-to-detect-device-rooted-or-jailbroken-in-react-native/
https://github.com/GantMan/jail-monkey
https://github.com/scottyab/rootbeer
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://7asecurity.com

Pentest Report

its data.

It is recommended to increase the minimum supported SDK level to at least 24 (Android
7) to ensure that this known vulnerability cannot be exploited on devices running older
Android versions. In addition, future production builds should only be signed with v2 and
greater APK signatures.

LHS-01-006 WP1: Android Binary Hardening Recommendations (Info)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 Android app was still found to be
vulnerable on August 22nd 2022.

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application more at risk for such
issues.

Issue 1: Missing usage of -D_FORTIFY_SOURCE=2 on most binaries

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries:
lib/arm64-v8a/libnative-imagetranscoder.so
lib/arm64-v8a/libglog_init.so
lib/arm64-v8a/libhermes-executor-release.so
lib/arm64-v8a/libucrop.so
lib/arm64-v8a/libjsijniprofiler.so
[...]

Issue 2: Missing RELRO on some binaries

A number of binaries leave the GOT section writable. Without the RELRO flag, buffer
overflows on a global variable can overwrite GOT entries.

Affected Binaries:
lib/arm64-v8a/libnative-imagetranscoder.so
lib/arm64-v8a/libucrop.so
lib/arm64-v8a/libconceal.so

7ASecurity © 2022
31

https://7asecurity.com

Pentest Report

lib/arm64-v8a/libnative-filters.so
lib/arm64-v8a/libimagepipeline.so

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Regarding RELRO, two mitigation options are available:

Option 1: Using -z,relro,-z,now

This will enable full RELRO and is the best protection available

Option 2: Using only -z,relro

This will enable partial RELRO

LHS-01-012 WP1: Usage of Insecure Crypto functions and PRNG (Medium)

Retest Notes: Not Fixed. The LeaveHomeSafe 3.4.0 Android app was still found to be
vulnerable on August 22nd 2022.

It was found that the LeaveHomeSafe Android app makes use of a number of
cryptographic functions with known security weaknesses, either directly or through
inherited libraries. Specifically, AES/CBC may be vulnerable to padding oracle attacks65,
MD5 and SHA1 are obsolete hashing algorithms with known weaknesses6667.
Furthermore, the code audit revealed that multiple values are generated with the weak
random number generator java.util.Random. This does not provide secure random
numbers in terms of a Cryptographically-Secure Pseudorandom Number Generator
(CSPRNG)68. Usage of these suboptimal choices makes the security of the Android app
more brittle and should be avoided.

Issue 1: Usage of insecure hashing functions (MD5, SHA1)

This appears to be an obfuscated version of SecureHashUtil from
com.facebook.common.util, with potentially low security implications in practice69.

69 https://github.com/facebook/fresco/issues/965
68 https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
67 https://en.wikipedia.org/wiki/SHA-1#Attacks
66 https://en.wikipedia.org/wiki/MD5#Overview_of_security_issues
65 https://jiang-zhenghong.github.io/blogs/PaddingOracle.html

7ASecurity © 2022
32

https://github.com/facebook/fresco/issues/965
https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/SHA-1#Attacks
https://en.wikipedia.org/wiki/MD5#Overview_of_security_issues
https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
https://7asecurity.com

Pentest Report

Affected File (decompiled):
g/e/e/k/c.java

Affected Code (decompiled):
public static String a(byte[] bArr) {

try {

MessageDigest instance = MessageDigest.getInstance("SHA-1");

instance.update(bArr, 0, bArr.length);

return Base64.encodeToString(instance.digest(), 11);

} catch (NoSuchAlgorithmException e2) {

throw new RuntimeException(e2);

}

}

The following example corresponds to the RNFetchBlobUtils.getMD5 function from
com.RNFetchBlob70. This appears to be used for generating temporary file names71.

Affected File (decompiled):
com/RNFetchBlob/h.java

Affected Code (decompiled):
public static String b(String str) {

try {

try {

MessageDigest instance = MessageDigest.getInstance("MD5");

instance.update(str.getBytes());

[...]

It is recommended to replace MD5 and SHA1 with adequate replacements without
cryptographic weaknesses72. It has to be noted that certain secrets should be stored in a
deliberately slow manner to avoid brute force attacks, these require a different set of
hashing algorithms for secure storage as explained in the OWASP Password Storage
Cheat Sheet73.

Issue 2: Usage of AES/CBC

The below example appears to be from the FingerprintCipher.java file of the

73 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
72 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
71 https://github.com/joltup/rn-fetch-blob/issues/708#issuecomment-755337764
70 https://github.com/joltup/rn-fetch-blob/.../RNFetchBlob/RNFetchBlobUtils.java#L22-L44

7ASecurity © 2022
33

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://github.com/joltup/rn-fetch-blob/issues/708#issuecomment-755337764
https://github.com/joltup/rn-fetch-blob/blob/master/android/src/main/java/com/RNFetchBlob/RNFetchBlobUtils.java#L22-L44
https://7asecurity.com

Pentest Report

react-native-touch-id third-party module74.

Affected File (decompiled):
com/rnfingerprint/c.java

Affected Code (decompiled):
public Cipher b() {

Cipher cipher = this.a;

if (cipher != null) {

return cipher;

}

try {

KeyStore a = a();

this.a = Cipher.getInstance("AES/CBC/PKCS7Padding");

It is recommended to change the current value from "AES/CBC/PKCS7Padding" to
"AES/CTR/NoPadding". The reason for this is that alternative implementations using
Cipher Mode Chaining mode (CBC) may be vulnerable to padding oracle attacks75.
Counter mode (CTR) is considered a better choice because it is free from weaknesses.

Issue 3: Usage of insecure PRNG

LeaveHomeSafe makes use of java.util.Random for cryptographic purposes on multiple
locations:

Affected File (decompiled):
k/a/a/b/g.java

Affected Code (decompiled):
import java.util.Random;

[...]

protected byte[] d(int i2) throws a {

if (i2 > 0) {

byte[] bArr = new byte[i2];

Random random = new Random();

for (int i3 = 0; i3 < i2; i3++) {

bArr[i3] = b((byte) random.nextInt(256));

}

return bArr;

}

throw new a("size is either 0 or less than 0, cannot generate header for

standard encryptor");

75 https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
74 https://github.com/naoufal/react-native-touch-id/.../rnfingerprint/FingerprintCipher.java

7ASecurity © 2022
34

https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
https://github.com/naoufal/react-native-touch-id/blob/master/android/src/main/java/com/rnfingerprint/FingerprintCipher.java
https://7asecurity.com

Pentest Report

}

Affected File (decompiled):
g/f/a/c/i/b/b.java

Affected Code (decompiled):
import java.util.Random;

[...]

public final class b {

private static final Random a = new Random();

public static String a() {

byte[] bArr = new byte[16];

a.nextBytes(bArr);

return Base64.encodeToString(bArr, 11);

}

}

Please note that the above code appears to be inherited from zip4j, which fixed this
issue in 202076. This proves that LeaveHomeSafe uses older versions of Java libraries,
potentially putting users at risk through inherited publicly-known vulnerabilities.

It is recommended to replace all occurrences of java.util.Random with a
cryptographically-secure alternative such as java.security.SecureRandom77. The PRNG
will then be sufficiently safeguarded against cryptographic attacks, whilst ensuring all
functionality remains backwards compatible.

Issue 4: Usage of a weak initialization vector

The following code suggests that the LeaveHomeSafe app is using a weak initialization
vector (IV) containing only zeros, which weakens the overall security of the cryptographic
implementation:

Affected File:
hk/gov/ogcio/leavehomesafe/BuildConfig.java

Affected Code:
public static final String HKCT_IV = "0000000000000000";

77 https://developer.android.com/reference/java/security/SecureRandom
76 https://github.com/srikanth-lingala/zip4j/commit/613279a7843045d180b6e5b0d64bc682178b3f5a

7ASecurity © 2022
35

https://developer.android.com/reference/java/security/SecureRandom
https://github.com/srikanth-lingala/zip4j/commit/613279a7843045d180b6e5b0d64bc682178b3f5a
https://7asecurity.com

Pentest Report

Its usage was also identified inside the Hermes compiled binary:

Affected File:
resources/assets/index.android.bundle

Affected Code (decompiled):
Function<x>8338(3 params, 16 registers, 0 symbols):

GetEnvironment Reg8:0, UInt8:0

LoadFromEnvironment Reg8:1, Reg8:0, UInt8:12

GetById Reg8:1, Reg8:1, UInt8:1, UInt16:11287

; Oper[3]: String(11287) 'enc'

[...]

GetById Reg8:1, Reg8:1, UInt8:5, UInt16:13145

; Oper[3]: String(13145) 'HKCT_IV'

Call2 Reg8:1, Reg8:2, Reg8:3, Reg8:1

LoadFromEnvironment Reg8:2, Reg8:0, UInt8:12

GetById Reg8:5, Reg8:2, UInt8:6, UInt16:14094

; Oper[3]: String(14094) 'AES'

GetById Reg8:4, Reg8:5, UInt8:7, UInt16:10811

; Oper[3]: String(10811) 'encrypt'

NewObject Reg8:3

PutNewOwnByIdShort Reg8:3, Reg8:1, UInt8:127

; Oper[2]: String(127) 'iv'

It is recommended to generate IVs randomly for better security. For additional mitigation
guidance, please see the CWE-1204: Generation of Weak Initialization Vector (IV)
page78.

78 https://cwe.mitre.org/data/definitions/1204.html

7ASecurity © 2022
36

https://cwe.mitre.org/data/definitions/1204.html
https://7asecurity.com

Pentest Report

Privacy Analysis Findings

This section covers the privacy-related analysis results that attempt to answer 13
questions for WP2 - Privacy tests against LeaveHomeSafe Android & iOS apps. For this
portion of the engagement, the 7ASecurity team utilizes the following classification to
specify the level of certainty regarding the documented findings. Given that this research
occurred on the basis of reverse-engineering, and needed to be executed in a stealthy
manner, it is necessary to classify the findings to address the level of confidence that can
be assumed for each discovery:

● Proven: Source code and runtime activity clearly confirm the finding as fact
● Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
● Assumed: Indications of a potential privacy concern was found but a broader

context remains unknown.
● Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

LHS-01-Q02 WP2: Files & Information gathered by LeaveHomeSafe (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q2: What files/information are gathered by the Android & iOS apps?

7ASecurity found evidence of the existence of source code that collects user information
in LeaveHomeSafe dependencies. However, during dynamic analysis such data was not
conclusively found to be collected by the app or sent to the LeaveHomeSafe servers at
runtime. Hence, this appears to be an artifact, rather than a malicious privacy violation.
Furthermore, this type of code is common in the dependencies of commercial
applications.

An example of this is the react-native-device-info module79, used by both the Android &
iOS apps, which contains a large number of functions to collect device information, such
as MAC address80, phone number81, among other data. The following source code
snippet shows the retrieval of carrier information from the decompiled app:

81 https://github.com/react-native-device-info/react-native-device-info#getphonenumber
80 https://github.com/react-native-device-info/react-native-device-info#getmacaddress
79 https://github.com/react-native-device-info/react-native-device-info

7ASecurity © 2022
37

https://github.com/react-native-device-info/react-native-device-info#getphonenumber
https://github.com/react-native-device-info/react-native-device-info#getmacaddress
https://github.com/react-native-device-info/react-native-device-info
https://7asecurity.com

Pentest Report

Affected Packages:
com.learnium.RNDeviceInfo.RNDeviceModule
com.learnium.RNDeviceInfo.DeviceType
com.learnium.RNDeviceInfo.Device.p049d.TypeResolver
com.learnium.RNDeviceInfo.p049d.DeviceIdResolver

Example Affected Code:
@ReactMethod(isBlockingSynchronousMethod = true)

public String getCarrierSync() {

TelephonyManager telephonyManager = (TelephonyManager)

getReactApplicationContext().getSystemService("phone");

if (telephonyManager != null) {

return telephonyManager.getNetworkOperatorName();

}

System.err.println("Unable to get network operator name. TelephonyManager was

null");

return "unknown";

}

In summary the identified third-party components may obtain the following information:
1. General phone information: Device ID, system name, model, brand, device type
2. Connection information: WiFi SSID, carrier, IP address, MAC address, etc.
3. User-information: UIDs, cookies, session, event, page and track IDs
4. Available location providers
5. Running processes and services

Please note that, while the capability is there for this information to be captured, its
usage could not be confirmed at runtime.

A related behavior noticed while instrumenting the applications was a number of read
and write operations on the following files, however, upon further inspection they were
found to be empty:

Affected Files:
/data/user/0/hk.gov.ogcio.leavehomesafe/shared_prefs/react-native-device-info.xml
/data/user/0/hk.gov.ogcio.leavehomesafe/shared_prefs/react-native-device-info.xml.bak

7ASecurity © 2022
38

https://7asecurity.com

Pentest Report

LHS-01-Q03 WP2: Where & How LeaveHomeSafe transmits Data (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q3: Where and how are the files/information gathered transmitted?

The LeaveHomeSafe application contains a number of third-party dependencies with
capabilities to collect information about the device (LHS-01-Q02). However, 7ASecurity
did not find evidence of sensitive data exfiltration at runtime. Please note that the test
team was not able to access all functionality in the mobile applications, this was due to
lack of data such as valid Hong Kong Health Code System credentials, which was a
major limitation during this assignment.

This being said, the decompiled code declares the following endpoints for
communication:

Affected File (decompiled):
hk/gov/ogcio/leavehomesafe/BuildConfig.java

Affected Code (decompiled):
public static final String HCS_BASE_URL = "https://apply.ehc.gov.hk/lhsapi";

public static final String HCS_REG_URL = "https://register.ehc.gov.hk";

public static final String HCS_WEB_URL = "https://www.ehc.gov.hk";

public static final String HKEN_BASE_URL = "https://www.leavehomesafe.gov.hk";

public static final String HKEN_DEFAULT_BASE_URL = "https://app.regqr.gov.hk/app";

public static final String HKEN_JSON_BASE_URL = "https://regqr.gov.hk/app";

public static final String HKEN_WEB_URL = "https://www.leavehomesafe.gov.hk";

Based on the analysis of the Hermes/React binary, the main communication endpoints of
the application are https://app.regqr.gov.hk/app and https://regqr.gov.hk/app. Those are
used for communication between the application internals and the backend servers.
Additionally, they appear within the first web calls during the start of the application:

Command:
curl "https://www.leavehomesafe.gov.hk/site.json"

Output:
{"api":"https://app.regqr.gov.hk/app", "json":"https://www.regqr.gov.hk/app" }

7ASecurity © 2022
39

https://7asecurity.com

Pentest Report

Please note that traffic to the above endpoints was noticed while exercising the Android
and iOS applications, however, no PII or device information was observed in transit.

LHS-01-Q04 WP2:LeaveHomeSafe fails to protect PII at rest & in transit (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q4: Is sensitive PII such as COVID Vaccination/Infection status information insecurely
stored or easily retrievable from the apps?

The security review of the LeaveHomeSafe application comprehensively proves that
COVID Vaccination/Infection status data is not sufficiently protected:

1. On at least some supported Android devices, LeaveHomeSafe fails to validate
TLS certificates correctly, which can result in access to COVID data in transit, as
well as Hong Kong Health Code System credentials, among other possibilities
(LHS-01-001).

2. COVID status (and other information) can be leaked via Android and iOS
screenshots, due to a missing security screen (LHS-01-003).

3. COVID status may be available to unauthenticated physical attackers able to
extract the SD Card from an Android device, as well as malicious applications
with SD Card access (LHS-01-007).

4. The COVID PIN/Fingerprint protection feature can be trivially bypassed on both
Android & iOS simply tapping through screens (LHS-01-008).

5. COVID status may additionally be leaked to attackers with physical access to a
locked iOS device due to failure to leverage the appropriate iOS file system
protection features (LHS-01-010).

LHS-01-Q05 WP2: Visit Record Weaknesses in Transit & at Rest (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q5: Do the apps protect the user visit record appropriately at rest and in transit?

The LeaveHomeSafe apps were found to contain the following weaknesses related to
this question during the security review:

1. On at least some supported Android devices, LeaveHomeSafe fails to validate
TLS certificates correctly, which can result in access to the Visit Record data in

7ASecurity © 2022
40

https://7asecurity.com

Pentest Report

transit, as well as Hong Kong Health Code System credentials, among other
possibilities (LHS-01-001).

2. The Visit Record (and other information) can be leaked via Android and iOS
screenshots, due to a missing security screen (LHS-01-003).

This being said, the Android & iOS apps were found to use the HKEN.db SQLite
database to store user PII, the Visit Record and other information encrypted at rest:

Affected Files:
/data/user/0/hk.gov.ogcio.leavehomesafe/databases/HKEN.db [Android]
/var/mobile/Containers/Data/Application/[...]/Library/LocalDatabase/HKEN.db [iOS]

Example UserInfoData from the HealthCodeUse Table (encrypted):
1|a30110f9-3ed9-4c01-83b6-7c2d14cf359e|U2FsdGVkX182Hl08n3l1Ngji+Tmo/ITLy5DJY4Tg
q8jEZ9mELeoxSe8/Pu0XO/igR9p5f3B1TbSz5W2w1PsL/pVP2fncIsMLihK6cxDyX6g=

Example UserVisitData from the LocalHistory Table (encrypted):
1|2751123|YgzNLVh+7PNBbTy9awcoCbcLn5P4FUAjKRtAX1n7dElsic/o2PoDyfl9t4n5n3stNQ0vC
NpPxzh4GLWmYYfDI4v246QIUDwyEP9GuoyoknS8w/3Px272Qz5M233hpaePOR6aOl6SBJma2RUivgB4
ZkIJLEXpDFBzJWzqXzOnagtnnjPKVZ959SmSl5q7SMpkBeV0VodQukIBjbyiB6J9/36HVzE1mPAXzW9
wnvhtNeQdmPfbQWMZ5w0mNmj2a/MwM4Oe96yHflO2dbQ1sk1MxMcFK/G931O5mio+Fg5z3uJ93W5rtl
MKqtZykwMdcCGQ5SGA5SQ1YHtoE3v+Zi+HqA==|0|0
2|2751124|wbqsr8KUp2g71zVhxSPBhJRdbky112jHGZx5kHF2sKaS2fBhEDYiE0duzyUnTGc25XHId
7KaUjxPPGKobpM0X5oY+aCi7FUTq8WFby0W2aaN/RJ4X3p0cvC7mmAekiSV|0|0

Please note that due to the lack of Hong Kong Health Code System credentials,
7ASecurity was not able to access all functionality related to this area. However, given
credentials can be intercepted (LHS-01-001), it has been assumed that the visit record
will either be retrievable in transit or accessible from the Hong Kong Health Code
System.

LHS-01-Q06 WP2: Presence of Face Recognition Code (Evident)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q6: Do the apps implement any sort of user tracking function via location or other
means?

A concerning finding during the privacy analysis was the presence of multiple face
detection artifacts in the decompiled Android application, although usage of these could
not be confirmed at runtime. Please note that no equivalent face recognition traces could

7ASecurity © 2022
41

https://7asecurity.com

Pentest Report

be found on the iOS app. For example, analysis of the Android app revealed face
recognition code from the following libraries:

● Google Face detector82

● React Native Face Detector83

Evidence of code from the aforementioned libraries was found in multiple files:

Google Face Detector Example

The affected files appear to be located within the decompiled directory
com/google/android/gms/vision/face/. The following examples prove presence of code
for the following face recognition factory classes in the latest Android version (3.2.3):

● INativeFaceDetectorCreator
● NativeFaceDetectorV2Creator
● ChimeraNativeFaceDetectorCreator

Affected File Example (decompiled):
com/google/android/gms/vision/face/internal/client/k.java

Affected Code Example (decompiled):
package com.google.android.gms.vision.face.internal.client;

import android.os.IBinder;

import android.os.IInterface;

import k.f.a.c.i.o.a;

public abstract class k extends a implements h {

public static h k0(IBinder iBinder) {

if (iBinder == null) {

return null;

}

IInterface queryLocalInterface =

iBinder.queryLocalInterface("com.google.android.gms.vision.face.internal.client.INativ

eFaceDetectorCreator");

if (queryLocalInterface instanceof h) {

return (h) queryLocalInterface;

}

return new j(iBinder);

}

}

83 https://github.com/huutaiit/react-native-camera/.../RNFaceDetector.java
82 https://developers.google.com/android/reference/com/google/android/gms/vision/face/FaceDetector

7ASecurity © 2022
42

https://github.com/huutaiit/react-native-camera/blob/master/android/src/general/java/org/reactnative/facedetector/RNFaceDetector.java
https://developers.google.com/android/reference/com/google/android/gms/vision/face/FaceDetector
https://7asecurity.com

Pentest Report

Affected File (decompiled):
com/google/android/gms/vision/face/internal/client/b.java

Affected Code (decompiled):
@Override // k.f.a.c.i.o.v6

protected final /* synthetic */ g a(DynamiteModule dynamiteModule, Context context)

throws RemoteException, DynamiteModule.a {

h hVar;

if (w6.a(context, "com.google.android.gms.vision.dynamite.face")) {

hVar =

k.k0(dynamiteModule.c("com.google.android.gms.vision.face.NativeFaceDetectorV2Creator"

));

} else {

hVar =

k.k0(dynamiteModule.c("com.google.android.gms.vision.face.ChimeraNativeFaceDetectorCre

ator"));

}

if (hVar == null) {

return null;

}

k.f.a.c.f.a n0 = k.f.a.c.f.b.n0(context);

f fVar = this.f1068i;

q.j(fVar);

return hVar.C(n0, fVar);

}

Please note that the above classes are used in some obfuscated Java files, outside of
the google vision directory. However, upon further inspection it was discovered this
appears to be an obfuscated version of the following library file:
com.google.android.gms:play-services-vision@@20.1.3

Affected File (decompiled, obfuscated path):
k/f/a/c/n/e/c.java

Affected Code (decompiled):
import com.google.android.gms.vision.face.internal.client.b;

import com.google.android.gms.vision.face.internal.client.f;

[...]

public a d(float f) {

if (f < 0.0f || f > 1.0f) {

StringBuilder sb = new StringBuilder(47);

sb.append("Invalid proportional face size: ");

sb.append(f);

7ASecurity © 2022
43

https://7asecurity.com

Pentest Report

throw new IllegalArgumentException(sb.toString());

}

this.f3212g = f;

return this;

}

Example 2: React Native Face Detector

Similarly, traces of the React Native FaceDetectorModule were also found during the
privacy audit in the decompiled org/reactnative/facedetector and org/reactnative/camera
directories. The following example illustrates some of this evidence:

Affected File (decompiled):
org/reactnative/camera/c.java

Affected Code (decompiled):
import org.reactnative.facedetector.FaceDetectorModule;

[...]

public class c implements ReactPackage {

@Override // com.facebook.react.ReactPackage

public List<NativeModule> createNativeModules(ReactApplicationContext

reactApplicationContext) {

return Arrays.asList(new RCTCameraModule(reactApplicationContext), new

CameraModule(reactApplicationContext), new

FaceDetectorModule(reactApplicationContext));

}

Please note that, unlike the Google Face Detector example above, no usage of the
React Native Face Detector could be found outside of the org/reactnative/camera
directory, within the decompiled java files.

All this being said, while testing the application at runtime only the rear camera was
found to be used, hence this potential privacy issue could not be validated at runtime:

ADB Logcat Examples:
I/CameraService(258): CameraService::connect call (PID 2835

"hk.gov.ogcio.leavehomesafe", camera ID 0) for HAL version default and Camera API

version 1

I/CameraService::connect call (PID 2835 "hk.gov.ogcio.leavehomesafe", camera ID 0) for

HAL version default and Camera API version 1

I/CameraService(258): CameraService::connect call (PID 2835

"hk.gov.ogcio.leavehomesafe", camera ID 0) for HAL version default and Camera API

7ASecurity © 2022
44

https://7asecurity.com

Pentest Report

version 1

Furthermore, extensive analysis of the LeaveHomeSafe Hermes binary revealed no
signs of face detection usage. While an onFaceDetected event handler is present, this
code appears to be inherited from an underlying library and no indicators of usage could
be found either at rest during reversing or at runtime while instrumenting the application.

Additionally, the Android & iOS apps were not found to request any location tracking in
their permissions or at runtime.

For Android, in the AndroidManifest.xml file only the android.permission.GET_TASKS
permission seems suspicious. This allows LeaveHomeSafe to retrieve information about
currently and recently running tasks, which appears unnecessary for what the app is
supposed to do. However, no Android location tracking permissions84 are requested.

Similarly, for iOS the Info.plist only requests NSCameraUsage, NSFaceIDUsage,
NSMotionUsage and NSPhotoLibraryUsage. Hence, the apps are simply unable to track
the user location directly.

This said, as already mentioned in LHS-01-Q02, functionality present in the underlying
dependencies of the apps, such as the the react-native-device-info module85 used by
both the Android & iOS apps, contain some tracking-related code. For example, the
following decompiled code snippet reveals how this module may obtain location
providers availables in the phone:

Affected File (decompiled):
com/learnium/RNDeviceInfo/RNDeviceModule.java

Affected Code (decompiled):
public WritableMap getAvailableLocationProvidersSync() {

LocationManager locationManager = (LocationManager)

getReactApplicationContext().getSystemService("location");

WritableMap createMap = Arguments.createMap();

try {

for (String str : locationManager.getProviders(false)) {

createMap.putBoolean(str, locationManager.isProviderEnabled(str));

}

} catch (Exception unused) {

85 https://github.com/react-native-device-info/react-native-device-info
84 https://developer.android.com/training/location/permissions

7ASecurity © 2022
45

https://github.com/react-native-device-info/react-native-device-info
https://developer.android.com/training/location/permissions
https://7asecurity.com

Pentest Report

System.err.println("Unable to get location providers. LocationManager was

null");

}

return createMap;

While reversing the compiled React part of the Android application, the
RNDeviceModule, particularly RNDeviceInfo, contains code to handle the usage of
location features, which can be seen by the appearance of the following strings inside
the decompiled code:

● saveLocationHistoryToDB
● getLocationHistoryList
● getLocationHistoryToUpload
● markLocationHistoryAsUploaded
● deleteAllLocationHistory
● deleteOverRetentionDays
● deleteLocationHistoryAfterRetenDays
● getMyLocationHistoryList

Similarly, the above strings are also present in the minified main.jsbundle JavaScript file
of the analyzed iOS application:

Affected File:
Payload/LeaveHomeSafe.app/main.jsbundle

Affected Code (Minified JavaScript):
__d(function(g,r,i,a,m,e,d){var

t=r(d[0]),n=r(d[1]);Object.defineProperty(e,"__esModule",{value:!0}),e.saveLocationHis

toryToDB=function(t){return

c.default.async(function(n){for(;;)switch(n.prev=n.next){case 0:return

n.abrupt("return",new Promise(function(n,o){var

c=null;h.initLocationHistoryDB().then(function(s){c=s,Promise.all([L(s,t)]).then(funct

ion(u){if(console.log('saveLocationHistoryToDB values:',u),u.length>0)[...]

All this being said, 7ASecurity did not find any evidence of this data being collected at
runtime.

7ASecurity © 2022
46

https://7asecurity.com

Pentest Report

LHS-01-Q07 WP2: LeaveHomeSafe weakens TLS Communications (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q7: Do the apps intentionally weaken cryptographic procedures to ensure third-party
decryption?

It is unclear whether this weakening is intentional or simply a bug, however, evidence of
defeating TLS validation with a faulty hostname verifier was found and proven at runtime
against the Android app during this assignment (LHS-01-001). The bug allows malicious
third parties to intercept traffic between the app and backend servers, when the host
name contains the strings regqr.gov.hk, leavehomesafe.gov.hk or ehc.gov.hk.

Affected File (decompiled):
hk/gov/ogcio/leavehomesafe/e.java

Affected Code (decompiled):
public class e implements HostnameVerifier {

public e(MainApplication mainApplication) {

}

@Override // javax.net.ssl.HostnameVerifier

public boolean verify(String str, SSLSession sSLSession) {

Log.d("XANA", "verify: " + str);

if (str.contains("regqr.gov.hk") || str.contains("leavehomesafe.gov.hk") ||

str.contains("ehc.gov.hk")) {

return true;

}

return HttpsURLConnection.getDefaultHostnameVerifier().verify(str,

sSLSession);

}

}

Additionally, other cryptographic weaknesses were identified and reported during the
security review in LHS-01-012. Nevertheless, it is not as evident that those weaknesses
are intentional to facilitate third party decryption.

7ASecurity © 2022
47

https://7asecurity.com

Pentest Report

LHS-01-Q08 WP2: LeaveHomeSafe insecure SD Card Usage (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q8: Is data dumped in the SD Card from where it could be retrieved later without even
entering the PIN to unlock the device?

While the LeaveHomeSafe Android and iOS apps generally encrypt user PII and data at
rest, a scenario was found during the security audit demonstrating that COVID
vaccination status can be available to unauthenticated physical attackers able to extract
the SD Card from an Android device, as well as malicious applications with SD Card
access, this is explained in more detail in LHS-01-007.

LHS-01-Q09 WP2: Potential LeaveHomeSafe RCE Issues (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q9: Do the apps contain vulnerabilities or shell commands that could lead to RCE in any
way?

7ASecurity could not find any evidence of potential vulnerabilities, shell commands or
any other weakness that could lead to RCE in the Android or iOS applications during this
engagement.

LHS-01-Q10 WP2: Potential LeaveHomeSafe Backdoors (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q10: Do the apps have any kind of backdoor?

The 7ASecurity team was unable to find any evidence of process or command execution
calls commonly used by backdoors and malware in the Android and iOS applications.

7ASecurity © 2022
48

https://7asecurity.com

Pentest Report

LHS-01-Q11 WP2: Potential LeaveHomeSafe root Access (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q11: Do the apps attempt to gain root access through public Android/iOS vulnerabilities
or in other ways?

At the time of writing, no evidence could be identified to suggest that the mobile
applications are trying to leverage or exploit platform-specific vulnerabilities. Additionally,
the applications are not making any reference to the root status of the device or
checking for any privilege at the device level.

LHS-01-Q12 WP2: Potential LeaveHomeSafe Obfuscation (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q12: Do the apps use obfuscation techniques to hide code and if yes for which files and
directories?

The Android application is using code obfuscation methods for package, class and
function names, where they are renamed to single character strings. These findings
indicate that identifier renaming is enabled, while string encryption is not used and Java
reflection was not present.

However, there are specific instances that have names untampered, including the
hk.gov.ogcio.leavehomesafe.hkbu package. In that case, inline local strings and method
parameters are not altered.

Example Classes (with code obfuscation):
package i.e.a
package f.a.a.a.a

Affected Code (decompiled, obfuscated):
package p123g.p124a.p125a;

/* renamed from: g.a.a.b */

/* loaded from: classes.dex */

public class C2309b extends Exception {

private int errorCode;

7ASecurity © 2022
49

https://7asecurity.com

Pentest Report

public C2309b(String str, int i) {

super(str);

this.errorCode = i;

}

public C2309b(String str, int i, Throwable th) {

super(str, th);

this.errorCode = i;

}

/* renamed from: a */

public int m10173a() {

return this.errorCode;

}

}

Decompilation error examples:
WARN - Code restructure failed: missing block: B:116:0x0234, code lost:

r6 = true;

in method: g.f.a.c.i.e.p2.p(T, byte[], int, int, int, int, int, int, long, int, long,

g.f.a.c.i.e.w):int, file: class

es.dex

WARN - Code restructure failed: missing block: B:117:0x0236, code lost:

r6 = false;

in method: g.f.a.c.i.e.p2.p(T, byte[], int, int, int, int, int, int, long, int, long,

g.f.a.c.i.e.w):int, file: class

es.dex

WARN - Code restructure failed: missing block: B:118:0x0237, code lost:

r11.m5828h(r6);

in method: g.f.a.c.i.e.p2.p(T, byte[], int, int, int, int, int, int, long, int, long,

g.f.a.c.i.e.w):int, file: class

es.dex

Similarly, on iOS the JavaScript code of the React Native application is minified but not
encrypted:

Affected File:
Payload/LeaveHomeSafe.app/main.jsbundle

Affected Code:
var

__BUNDLE_START_TIME__=this.nativePerformanceNow?nativePerformanceNow():Date.now(),__DE

V__=false,process=this.process||{};process.env=process.env||{};process.env.NODE_ENV=pr

ocess.env.NODE_ENV||"production";

7ASecurity © 2022
50

https://7asecurity.com

Pentest Report

!(function(r){"use strict";r.__r=o,r.__d=function(r,i,n){if(null!=e[i])return;var

o={dependencyMap:n,factory:r,hasError:!1,importedAll:t,importedDefault:t,isInitialized

:!1,publicModule:{exports:{}}};e[i]=o},r.__c=n,r.__registerSegment=function(r,e){s[r]=

e};var e=n(),t={},i={}.hasOwnProperty;function n(){return e=Object.create(null)}[...]

On Android, while not directly considered as a code obfuscation technique, the Hermes
JavaScript engine is used to run the compiled React Native application. The binary
contains more than 21k functions and over 1M lines of hardly readable disassembled
Hermes Bytecode, with automatically removed identifier names. Many third-party React
libraries are embedded inside, making the analysis considerably harder because of the
inherited complexity. These statements can be confirmed as follows:

Affected File:
resources/assets/index.android.bundle

Command (disassemble binary):
hbctool disasm "resources/assets/index.android.bundle" "/tmp/hermes"

Output:
[*] Disassemble 'resources/assets/index.android.bundle' to '/tmp/hermes' path

[*] Hermes Bytecode [Source Hash: 9e5ed8d62eae2a3bf69181e4de71af46863fe442, HBC

Version: 74]

[*] Done

Commands (retrieve instruction metrics):
cd "/tmp/hermes"; ls -sh instruction.hasm; wc -l instruction.hasm

Output (size and count of instructions):
39M instruction.hasm

1143657 instruction.hasm

Commands (count functions):
cat instruction.hasm | grep EndFunction | wc -l

Output (number of functions):
21352

Command (show start of file):
head instruction.hasm

7ASecurity © 2022
51

https://7asecurity.com

Pentest Report

Output (decompiled function example):
Function<global>0(1 params, 19 registers, 0 symbols):

DeclareGlobalVar UInt32:18173

; Oper[0]: String(18173) '__BUNDLE_START_TIME__'

DeclareGlobalVar UInt32:18161

; Oper[0]: String(18161) '__DEV__'

DeclareGlobalVar UInt32:105

; Oper[0]: String(105) 'process'

LHS-01-Q13 WP2: Identification of Companies behind LeaveHomeSafe (Evident)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q13: Which external companies help build and maintain these apps?

While checking the downloaded APK file, it was found that the digital signer of it is the
Hong Kong SAR Government (HKSARG) / Office of the Government Chief Information
Officer (OGCIO). This was confirmed as follows:

Command:
jarsigner -verify -certs -verbose LeaveHomeSafe_3.1.0.apk | grep X.509 | sort | uniq

Output:
X.509, CN=LeaveHomeSafe (APK Download), OU=OGCIO, O=HKSARG, L=HK, ST=HK, C=CN

Similarly, the iOS page for LeaveHomeSafe reveals the same developer:

URL:
https://apps.apple.com/app/leavehomesafe/id1536377801

Contents:
App Privacy
The developer, Office of the Government Chief Information Officer, Hong Kong SAR
Government

Seller
Office of the Government CIO of Hong Kong Special Administrative Region

The above can also be found on the latest iOS app at the time of writing (3.2.3):

7ASecurity © 2022
52

https://apps.apple.com/app/leavehomesafe/id1536377801
https://7asecurity.com

Pentest Report

Affected File:
Payload/LeaveHomeSafe.app/main.jsbundle

Affected Contents:
This mobile application and related system [...] is developed by the Office of the
Government Chief Information Officer of the Government of the Hong Kong Special
Administrative Region

The same developer account seems to be responsible for a number of HK government
related applications on Android86 and iOS87: iAM Smart, LeaveHomeSafe, Tell
me@1823, StayHomeSafe, GovHK Apps, GovHK Notifications, EventHK.

Nevertheless, at the Google Play page for the LeaveHomeSafe application, the
developer contact information can be seen:

URL:
https://play.google.com/store/apps/details?id=hk.gov.ogcio.leavehomesafe

Output:
Developer

info@cherrypicks.com

This email address is related to a company called Cherrypicks, which defines itself as
follows88:
“Established in 2000, Cherrypicks is a home-grown technology startup headquartered in
Hong Kong and now a subsidiary of NetDragon Websoft Holdings Limited (HKSE:
777). The company is a regional Mobile Technology and Mobile eCommerce leader
specializing in smart city, augmented reality, artificial intelligence, eWallet and location
intelligence.”

Even though Cherrypicks is headquartered in Hong Kong, a quick search for NetDragon
Websoft Holdings Ltd, reveals that the parent company is in China:

URL:
http://www.netdragon.com/about/overview.shtml

88 https://www.cherrypicks.com/about-us/
87 https://apps.apple.com/app/leavehomesafe/id1536377801
86 https://play.google.com/store/apps/developer?id=GovHK,+OGCIO,+HKSARG&hl=en

7ASecurity © 2022
53

https://play.google.com/store/apps/details?id=hk.gov.ogcio.leavehomesafe
http://www.netdragon.com/about/overview.shtml
https://www.cherrypicks.com/about-us/
https://apps.apple.com/app/leavehomesafe/id1536377801
https://play.google.com/store/apps/developer?id=GovHK,+OGCIO,+HKSARG&hl=en
https://7asecurity.com

Pentest Report

“NetDragon Websoft Holdings Limited (Stock Code: 00777.HK), established in 1999, is a
global leading creator of internet communities. Its headquarters are located in Fuzhou,
Fujian, China.”

At the same time, there is no mention of that same company inside the decompiled
Android or iOS files.

LHS-01-Q14 WP2: LeaveHomeSafe vs. Study the Great Nation Relation (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question during
the audit:

Q14: What is the relationship between the LeaveHomeSafe apps and the "Study the
Great Nation" app from mainland China if any?

7ASecurity participated in the “Study the Great Nation” app analysis together with
Cure53 in 201989, and delivered talks at multiple security conferences about it
afterwards9091. During this assignment no relationship could be found between these
apps. In particular, all major characteristics and fingerprints were cross-checked without
yielding any clear match, among other attempts, the audit team failed to spot any
connection between the apps while checking for:

● Reporting URLs
● Domains
● Characteristic DES based encryption
● Checking for sudo
● Execution of arbitrary commands
● Base64 obfuscated strings
● Package existence checks
● As well as other matching attempts

In short, LeaveHomeSafe and “Study the Great Nation” were not found to share any
similarities.

91 https://www.youtube.com/watch?v=chBky3M70KE
90 https://www.youtube.com/watch?v=kuJJ1Jjwn50
89 https://7asecurity.com/reports/analysis-report_sgn.pdf

7ASecurity © 2022
54

https://www.youtube.com/watch?v=chBky3M70KE
https://www.youtube.com/watch?v=kuJJ1Jjwn50
https://7asecurity.com/reports/analysis-report_sgn.pdf
https://7asecurity.com

Pentest Report

Conclusion

This exercise involved both a privacy audit and a security audit of the LeaveHomeSafe
Android and iOS apps. The privacy audit could not conclusively prove malicious intent or
unauthorized tracking of Hong Kong citizens. However, the security audit demonstrated
that these applications have not been professionally audited by any competent security
firm before, and that significant flaws exist in the current software security development
lifecycle.

The 7ASecurity team had significant limitations during this assignment. This made
certain areas of the application simply untestable at runtime, hence it was not possible
for the test team to validate the security or privacy promises of the application in certain
functional areas. The most significant shortcomings during this assignment were:

1. Lack of Hong Kong Health Code System credentials
2. Lack of valid Hong Kong COVID Vaccination QR codes
3. Lack of valid Hong Kong COVID Test QR codes

Regarding the security audit, despite the poor results, a number of positive impressions
deserve a mention:

● The Android & iOS apps generally do not leak sensitive information in the
filesystem (where data is encrypted) or in logs. It was particularly interesting that
Hong Kong Health Code System credentials are not leaked in HTTP caching
artifacts on Android or iOS, notwithstanding other not-security-relevant data
being present in such locations.

● The Android app explicitly disables backups and clear-text HTTP traffic in the
Android manifest. Which improves security by eliminating backup leak attack
vectors as well as clear-text MitM attacks.

● The iOS app does not implement insecure custom URL schemes or ATS
exceptions to weaken TLS protections. Hence avoiding well-known URL hijacking
attacks and potential MiTM attacks.

● The hardcoded Google API keys on the Android and iOS apps were found to be
correctly restricted to prevent abuse.

● The Android and iOS apps generally protect application secrets well, leveraging
the appropriate hardware-backed security enclave for the platform. Namely, the
Android KeyStore and the iOS KeyChain. Furthermore, all user information and
the visit record were found to be encrypted at rest.

● The Firebase device registration implementation appears to be a good balance to
provide COVID-19 contact tracing capabilities without compromising user

7ASecurity © 2022
55

https://7asecurity.com

Pentest Report

privacy92. The application appears to use this functionality to subscribe users to
notifications.

The LeaveHomeSafe mobile applications were found to be affected by a number of
common misconfigurations. Their security posture will improve significantly with a focus
on the following areas:

● Protection of Network Communications: A concerning weakness identified
during this exercise had to do with a faulty hostname verifier which allows
interception of TLS traffic between the Android app and the backend servers
without any warnings, allowing the capture of Hong Kong Health Code System
credentials, among other possibilities (LHS-01-001). This type of vulnerability
suggests a complete lack of internal security code reviews or third party
penetration testing of the mobile applications before each release. Please note
this finding was verified on all Android versions between 3.2.0-3.2.3, more
versions are likely affected.

● Authentication Implementation: The Android and iOS apps were found to
implement an authentication feature to protect the COVID vaccination and test
status data, however, this can be currently bypassed on both platforms by simply
tapping through screens (LHS-01-008). This issue currently provides users with a
false sense of security. Furthermore, biometric protection should be considered
for the entire app instead of the COVID status alone. For example, the Hong
Kong Health Code System or the Visit Record are currently unprotected for
attackers with access to an unlocked device.

● Protection of Data at Rest: The most concerning finding in this regard was the
leakage of COVID data in the Android SD Card (LHS-01-007), this issue should
be resolved as soon as possible. Generally, the mobile apps correctly make use
of the Android KeyStore and iOS Keychain for storing sensitive information.
However, the iOS app could improve its iOS Keychain and Backup
implementation to avoid leaks in backups and against attackers with physical
access (LHS-01-009, LHS-01-011), the iOS app should then additionally protect
its files at rest through the iOS Data Protection features (LHS-01-010).

● Mitigation of Task Hijacking Attacks: The Android app should mitigate
well-known Task Hijacking attacks (LHS-01-002).

● Avoidance of Screenshot Leaks: The Android and iOS apps would both benefit
from implementing a security screen to avoid leaks through screenshots and app
backgrounding (LHS-01-003). This is a common security feature in targeted
mobile apps such as banking applications.

● General Hardening: Other less important hardening recommendations include

92 https://firebase.google.com/docs/cloud-messaging

7ASecurity © 2022
56

https://firebase.google.com/docs/cloud-messaging
https://7asecurity.com

Pentest Report

implementing a root/jailbreak detection mechanism to alert users about security
risks prior to using the application (LHS-01-004), a number of settings that could
be improved to better protect users on older supported devices (LHS-01-005,
LHS-01-006), and usage of dependencies with known vulnerabilities that
implement insecure cryptographic mechanisms (LHS-01-012)

Regarding the privacy audit, the concerns expressed by the media are reasonable,
especially as the application continues to be mandated in a number of Hong Kong
locations. For background, LeaveHomeSafe is mandated in all government venues,
hospitals, markets, shopping malls, supermarkets and places of worship, and the
number of places where the app is mandated is increasing93.

While no clear privacy violation could be conclusively proven during the audit at runtime,
a number of application artifacts, likely inherited from underlying dependencies or simply
security vulnerabilities introduced by mistake, were found during this exercise and could
be summarized as follows:

● Usage of Obfuscation: Usage of obfuscation techniques was proven during this
assignment (LHS-01-Q12). While this is common in commercial applications as
well, it only decreases citizen trust in the government mandating this application.
The ideal solution, to help solve this trust issue, would be to make the entire
LeaveHomeSafe application open source and remove obfuscation completely.
This way the government can prove that it has nothing to hide, as the code is
fully open to third-party scrutiny.

● Usage of Libraries with Traces of User Tracking: Given the natural reluctance
of the population to use mandated software, together with the use of obfuscation
(LHS-01-Q12), traces of Face Recognition functionality identified in the Android
application (LHS-01-Q06), only makes this trust problem worse. Please note that
these privacy concerns appear to be artifacts inherited from underlying libraries
and could not be proven to be used by the application at runtime. It is
recommended to completely remove all device tracking and face recognition
libraries from the codebase to help resolve the obvious question of “Why is this in
the application in the first place?”.

● Data Gathering: Data gathered by the application did not appear to be sensitive
during this assignment, however a number of artifacts inherited from underlying
libraries complicate the aforementioned trust problem (LHS-01-Q02). Removing
all dependencies that contain any code that gathers device data will substantially
improve the way in which the application is perceived.

● Protection of Data in Transit and at Rest: The LeaveHomeSafe Android and
iOS applications contain a number of security vulnerabilities that appear to be

93 https://zh.wikipedia.org/wiki/%E5%AE%89%E5...

7ASecurity © 2022
57

https://zh.wikipedia.org/wiki/%E5%AE%89%E5%BF%83%E5%87%BA%E8%A1%8C#%E5%BC%B7%E5%88%B6%E4%BD%BF%E7%94%A8%E7%AF%84%E5%9C%8D
https://7asecurity.com

Pentest Report

introduced due to lack of security training for the development team, as well as a
complete lack of regular penetration testing of the mobile applications prior to
releasing them to the public. In short, LeaveHomeSafe fails to properly protect
user data at rest and in transit (LHS-01-Q04), a number of weaknesses exist to
expose the Visit Record both at rest and in transit (LHS-01-Q05), at least some
Android users are exposed to MitM attacks whereby their Hong Kong Health
Code System credentials could be intercepted (LHS-01-Q07), and COVID
information can be accessed from the SD card in at least some scenarios
(LHS-01-Q08).

● Data Sending: No clear evidence could be identified where the mobile
applications send sensitive data from users to the backend servers
(LHS-01-Q03). However, a major limitation for the audit team in this regard was
the complete lack of valid Hong Kong Health Code System credentials.

● Potential Malicious Behavior: This is perhaps the most positive privacy
analysis aspect of the engagement, as no backdoors (LHS-01-Q10), RCE
exploits (LHS-01-Q09) or root privilege escalation (LHS-01-Q11) code could be
identified during the test window.

● Company Behind LeaveHomeSafe: The company behind LeaveHomeSafe
appears to be successfully identified as CherryPicks (LHS-01-Q13), a Hong Kong
based subsidiary of NetDragon Websoft Holdings Limited, which is based in
mainland China.

● Similarities with Study the Great Nation: 7ASecurity was unable to find any
similarities between the “Study the Great Nation” app analyzed in 201994 and
LeaveHomeSafe. Thus, the apps appear to be completely unrelated.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review,
including a full code audit, is highly recommended to ensure adequate security coverage
of the platform. This provides auditors with an edge over possible malicious adversaries
that do not have significant time or budget constraints. Please note that future audits
should ideally allow for a greater budget so that test teams are able to deep dive into
more complex attack scenarios.

It is suggested to test the platform regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security

94 https://7asecurity.com/reports/analysis-report_sgn.pdf

7ASecurity © 2022
58

https://7asecurity.com/reports/analysis-report_sgn.pdf
https://7asecurity.com

Pentest Report

issues consistently and make the platform highly resilient against online attacks
overtime.

7ASecurity would like to take this opportunity to sincerely thank the Hong Kong
Democracy Council (HKDC) team, for their exemplary assistance and support
throughout this audit. Last but not least, appreciation must be extended to the Open
Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2022
59

https://7asecurity.com

