
Ground Truth Test Targets:
Website, Servers & Clients
Fuzzing & Test Case Creation
Server Config Audit
Cloud Config Audit
Supply Chain Implementation
Threat Model Documentation
Server & Client Privacy Audit

Pentest Report
Client:
Ground Truth

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Miroslav Štampar, PhD.
● Óscar Martínez, MSc.
● Patrick Ventuzelo, MSc.
● Stefan Nichula, PhD.
● Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 4
Scope 6
Identified Vulnerabilities 7

GRT-01-001 WP1/2: Multiple Censorship Spoofing via Error Handling (Medium) 7
GRT-01-002 WP1/2: Multiple DoS via crafted HTTP Responses (Medium) 11
GRT-01-003 WP1/2: Ground Truth RCE via Crafted Domain File (Critical) 15
GRT-01-004 WP1/2: Ground Truth RCEs via Crafted Config Files (Critical) 16
GRT-01-016 WP1: Censorship Detection Bypass via Hash Collision (High) 17
GRT-01-017 WP1: Censorship Misclassification via Proxyrack Logic Flaw (High) 20
GRT-01-019 WP1: Ground Truth RCEs & Spoofing via clear-text HTTP (Critical) 21

Hardening Recommendations 23
GRT-01-005 WP4: AWS Leaks via Unencrypted EBS Volumes & Snapshots (Low) 23
GRT-01-006 WP4: AWS Weaknesses in Vuln Management Processes (Medium) 24
GRT-01-007 WP4: Possible AWS Takeover via IAM Root Account Use (High) 26
GRT-01-008 WP4: Insufficient AWS Logging & Monitoring (High) 27
GRT-01-009 WP4: Lack of AWS/GCP Infrastructure Automation (Info) 29
GRT-01-010 WP3: Usage of Unsupported Ubuntu Version (Low) 30
GRT-01-011 WP4: Unrestricted Inbound Traffic on GCP (Medium) 30
GRT-01-012 WP4: Insufficient GCP Logging and Monitoring (Low) 32
GRT-01-013 WP4: Potential GCP PrivEsc via Privileged Service Account (Low) 33
GRT-01-014 WP3: Possible root Access via Passwordless sudo (Low) 34
GRT-01-015 WP3: Usage of Vulnerable Outdated Software (Low) 35
GRT-01-018 WP1: Possible Quota Exhaustion via Exposed Secrets (Low) 38
GRT-01-020 WP1: Possible DoS via Predictable Proxy IPs (Medium) 39

WP5: Supply Chain Implementation Analysis 41
Introduction and General Analysis 41
SLSA v1.0 Analysis and Recommendations 42

WP6: Ground Truth Lightweight Threat Model 46
Introduction 46
Relevant assets and threat actors 46
Attack surface 47

WP7: Privacy Analysis Findings 51
GRT-01-Q01: Files & Information gathered by Ground Truth (Unclear) 51
GRT-01-Q02: Insecure Ground Truth Traffic Leads to RCE & Spoofing (Proven) 56

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

GRT-01-Q03: Ground Truth does not store or deal with PII (Unclear) 58
GRT-01-Q04: Ground Truth does not protect Data at Rest or in Transit (Proven) 60
GRT-01-Q05: Ground Truth does not gather Excessive Data (Unclear) 61
GRT-01-Q06: Ground Truth does not Track Users (Unclear) 62
GRT-01-Q07: Ground Truth does not weaken Crypto (Unclear) 63
GRT-01-Q08: Ground Truth saves Data in Insecure Locations (Assumed) 64
GRT-01-Q09: Ground Truth contains RCE Vulnerabilities (Proven) 64
GRT-01-Q10: Ground Truth does not appear to contain Backdoors (Assumed) 65
GRT-01-Q11: Ground Truth does not try to gain Root Privileges (Unclear) 65
GRT-01-Q12: Ground Truth uses no Obfuscation (Unclear) 65

Conclusion 66

7ASecurity © 2023
3

https://7asecurity.com

Pentest Report

Introduction
“Disguiser - An Accurate, End-to-End Global Censorship Measurement Framework
The project aims to explore, develop, and deploy a framework that enables end-to-end
measurement for accurately and automatically investigating global Internet censorship
practices. The key idea is to provide a static payload as ground truth, which can be used
to indicate the occurrence of censorship when the static payload has been altered by
network devices. Moreover, the deployed end-to-end framework can facilitate extended
measurements for investigating more aspects of Internet censorship, for example,
pinpointing censor devices’ locations and exploring their policies and deployment.”

From https://e2ecensor.github.io/

This document outlines the results of a penetration test and whitebox security review
conducted against the Ground Truth platform. The project was solicited by Ground Truth,
funded by the Open Technology Fund (OTF), and executed by 7ASecurity from July until
September 2023. The audit team dedicated 57 working days to complete this
assignment. Please note that this is the first penetration test for this project.
Consequently, identification of new security weaknesses was expected to be easier
during this assignment, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure researchers using the Ground Truth framework can be provided with the best
possible security. This is particularly important, as Ground Truth deals with network
traffic potentially tampered by hostile government-sponsored adversaries.

The methodology implemented was whitebox: 7ASecurity was provided with access to a
staging environment, read-only cloud access, SSH server access, documentation and
source code. A team of 7 senior auditors carried out all tasks required for this
engagement, including preparation, delivery, documentation of findings and
communication.

A number of necessary arrangements were in place by July 2023, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The Ground Truth team had a number of difficulties to provide the necessary
access and information a number of times, which introduced multiple delays. As an
example, access to the Azure infrastructure could not be granted on time and had to be
left out of the scope during this iteration as a result. 7ASecurity provided regular updates
regarding the audit status and its interim findings during the engagement.

7ASecurity © 2023
4

https://e2ecensor.github.io/
https://7asecurity.com

Pentest Report

This audit split the scope items in the following work packages, which are referenced in
the ticket headlines as applicable:

● WP1: Whitebox Tests against Ground Truth Website, Servers and Clients
● WP2: Ground Truth Fuzzing and Fuzzing Test Case Creation
● WP3: Whitebox Tests against Ground Truth Servers, Infrastructure &

Configuration via SSH
○ Please note that the server configuration audited was for reference

purposes only and is not what users will implement in practice.
○ The Disguiser team put together a Checklist of Best Practices for

Deploying Secure and Reliable Cloud Instances as Backend Servers1,
based on this engagement.

● WP4: Whitebox Tests against Ground Truth Cloud Infrastructure on AWS &
Google Cloud

● WP5: Whitebox Tests against Ground Truth Supply Chain Implementation
● WP6: Ground Truth Lightweight Threat Model documentation
● WP7: Privacy tests against Ground Truth Servers & Clients

The findings of the security audit (WP1-4) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

7 13 20

Please note that the analysis of the remaining work packages (WP5-7) is provided
separately, in the following sections of this report:

● WP5: Supply Chain Implementation Analysis
● WP6: Ground Truth Lightweight Threat Model
● WP7: Privacy Analysis Findings

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained

1 https://github.com/e2ecensor/Disguiser_public/blob/main/...20Deployment.md

7ASecurity © 2023
5

https://github.com/e2ecensor/Disguiser_public/blob/main/Best%20Practices%20for%20Control%20Server%20Deployment.md
https://7asecurity.com

Pentest Report

throughout this test, as well as a summary of the perceived security posture of the
Ground Truth framework.

Scope

The following list outlines the items in scope for this project:
● WP1: Whitebox Tests against Ground Truth Website, Servers and Clients

○ Source code audit of the Ground Truth server scripts
■ https://github.com/e2ecensor/newDisguiser
■ https://github.com/e2ecensor/Disguiser_public

○ Ground Truth Website hosted on github:
■ URL: https://e2ecensor.github.io/
■ Code: https://github.com/e2ecensor/e2ecensor.github.io

● WP2: Ground Truth Fuzzing and Fuzzing Test Case Creation
○ As above

● WP3: Whitebox Tests against Ground Truth Servers, Infrastructure &
Configuration via SSH

○ SSH access to various servers was provided to 7ASecurity
● WP4: Whitebox Tests against Ground Truth Cloud Infrastructure on AWS &

Google Cloud
○ Read-only Cloud access was provided to 7ASecurity
○ NOTE: The Azure audit had to be skipped as access could not be granted

by the Ground Truth team.
● WP5: Whitebox Tests against Ground Truth Supply Chain Implementation

○ As above
● WP6: Ground Truth Lightweight Threat Model documentation

○ As above
● WP7: Privacy tests against Ground Truth Servers & Clients

○ As above

7ASecurity © 2023
6

https://github.com/e2ecensor/newDisguiser
https://github.com/e2ecensor/Disguiser_public
https://e2ecensor.github.io/
https://github.com/e2ecensor/e2ecensor.github.io
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. GRT-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

GRT-01-001 WP1/2: Multiple Censorship Spoofing via Error Handling (Medium)

While auditing and fuzzing the newDisguiser repository, it was found that multiple error
handling code snippets are either incorrect or too strict. This leads to false censorship
detection. A malicious attacker could leverage this weakness to tamper with Ground
Truth censorship statistics, creating false positives during the data gathering process,
and hence making Ground Truth collect inaccurate information. These issues can be
summarized as follows:

Issue 1: Multiple incorrect handling of BeautifulSoup exceptions

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_server_censorship.py#L72

Affected Code:
try:

vp_title = BeautifulSoup(vp_response, "html.parser").title.string

local_title = webpage_title_dic[domain]

if vp_title == local_title and local_title != '':

data['domain'][domain][url] = "no censorship"

title = True

else:

data['domain'][domain][url] = "detect censorship"

except:

data['domain'][domain][url] = "detect censorship"

Affected Files:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_analysis.py#L69
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_suspicious_server.py#L72

7ASecurity © 2023
7

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_server_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_server_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_analysis.py#L69
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_analysis.py#L69
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_suspicious_server.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_suspicious_server.py#L72
https://7asecurity.com

Pentest Report

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_server_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/http_analysis.py#L69

Affected Code:
try:

vp_title = BeautifulSoup(vp_response, "html.parser").title.string

local_title = webpage_title_dic[domain]

if vp_title == local_title and local_title != '':

data['domain'][domain][url] = "no censorship - correct title"

else:

data['domain'][domain][url] = "detect censorship - wrong title"

except:

data['domain'][domain][url] = "detect censorship - wrong http"

The above implementation flaw can be exploited using the following PoC, which triggers
an AssertionError in BeautifulSoup. This will be caught by the except clause of the
aforementioned code snippets, which leads to a flawed classification of the domain,
being incorrectly flagged as censored by Ground Truth:

PoC:
from bs4 import BeautifulSoup

html = """

<!DOCTYPE html>

<html>

<head>

<title>BS4 crash</title>

</head>

<body>

<div>

<pre>"¥<<![&t&"</pre>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</div>

</body>

</html>

"""

BeautifulSoup(html, 'html.parser')

Crash report:
Traceback (most recent call last):

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/replay_crash/bs4_html_parser/b

s4_html_parser.py", line 21, in <module>

BeautifulSoup(html(f.read().decode(encoding='unicode_escape')), 'html.parser')

7ASecurity © 2023
8

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_server_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_server_censorship.py#L72
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_analysis.py#L69
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/http_analysis.py#L69
https://7asecurity.com

Pentest Report

File

"/home/7asecurity/.cache/pypoetry/virtualenvs/groundtruth-audit-W5d_q9LE-py3.10/lib/pyt

hon3.10/site-packages/bs4/__init__.py", line 344, in __init__

raise ParserRejectedMarkup(

bs4.builder.ParserRejectedMarkup: The markup you provided was rejected by the parser.

Trying a different parser or a different encoding may help.

Original exception(s) from parser:

AssertionError: expected name token at '<![&t&"</pre>\n '

It is recommended to adequately handle the BeautifulSoup AssertionError exception, as
well as any other unforeseen exceptions. For parsing exceptions, it is further
recommended to reanalyze the webpage using another available HTML parser prior to
assigning a censorship classification.

Issue 2: Incorrect censorship detection for CDNs and Anti-bot domains

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/landing_pages.py#L33

Affected Code:
def retrieve_landing_page(domain):

url = 'http://' + domain

headers = dict()

headers['User-Agent'] = 'Mozilla/5.0'

try:

response = requests.get(url, headers = headers, timeout = 10)

webpage = response.text

status_code = response.status_code

except:

webpage = 'ERROR'

status_code = '999'

landing_page_dic = {'domain': domain, 'status_code': status_code, 'webpage':

webpage}

return landing_page_dic

The use of the requests module to fetch data can lead to inaccurate statistics. If the
requested server uses Anti-Bot or scraper protection such as Cloudflare or Akamai, the
response will be different from the one received by a real user. For example, the HTML
title could be different as in this example taken from the domain_title_dict_2021.txt2 file:

2 https://github.com/e2ecensor/newDisguiser/blob/.../Analysis/domain_title_dict_2021.txt

7ASecurity © 2023
9

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/landing_pages.py#L33
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/landing_pages.py#L33
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/domain_title_dict_2021.txt
https://7asecurity.com

Pentest Report

{"003ms.ru": "Attention Required! | Cloudflare"}

It is recommended to detect if the requested page is not protected by a CDN or Anti-Bot
prior to censorship classification.

Issue 3: Possible censorship misclassification via uninitialized variables

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/proxyrack_client.py#L102

Affected Code:
def get_proxyrack_proxy_info(proxy, finished_countries):

release_time = 0

for _ in range(300):

need_release = False

proxy_info = proxyrack.get_proxy_info(proxy)

if proxy_info != None:

test_sequence = ['dns', 'http', 'sni']

[...]

if release_time == 300:

[...]

return proxy_info, test_sequence

It is recommended to initialize and assign test_sequence at the beginning of
get_proxyrack_proxy_info to prevent an UnboundLocalError exception if proxy_info is
None.

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/pinpoint_censor_auto.py#L150

Affected Code:
try:

tcp handshake

sock.connect((server, 53))

port = sock.getsockname()[1]

7ASecurity © 2023
10

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack_client.py#L102
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack_client.py#L102
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/pinpoint_censor_auto.py#L150
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/pinpoint_censor_auto.py#L150
https://7asecurity.com

Pentest Report

sock.setsockopt(socket.IPPROTO_IP, socket.IP_TTL, struct.pack('I', ttl))

send DNS-over-TCP query, receive response

sock.send(q)

raw_dns_response = sock.recv(1024)

is_timeout = False

addr = get_router_ip(icmp_sock, port)

close socket

sock.shutdown(socket.SHUT_RDWR)

sock.close()

except socket.timeout:

raw_dns_response = ''

is_timeout = True

addr = get_router_ip(icmp_sock, port)

It is recommended to initialize the port before calling get_router_ip in the handling of
socket.timeout exception. This will prevent an UnboundLocalError exception.

GRT-01-002 WP1/2: Multiple DoS via crafted HTTP Responses (Medium)

While fuzzing the newDisguiser codebase, it was found that the
process_raw_http_response function fails to implement adequate exception handling.
This led to the discovery of multiple unhandled exceptions that may result in Denial of
Service (DoS) within multiple scripts such as pinpoint_censor.py, china_client.py,
proxyrack_client.py, vpn_client.py and pinpoint_censor_auto.py. DoS of Ground Truth
clients may in turn lead to unsound censorship classification results, as well as general
disruption of censorship analysis by researchers. These issues were confirmed as
follows:

Issue 1: HTTP response parsing failure when the number of headers is too high

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/pinpoint_censor.py#L164

Affected Code:
def process_raw_http_response(raw_http_response, is_timeout):

[...]

response.begin()

[...]

PoC File:
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_max_head

7ASecurity © 2023
11

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_max_headers/crash-7cb2cf40c58ef3ccbe91df4b148a325e6544427a.txt
https://7asecurity.com

Pentest Report

ers/crash-7cb2cf40c58ef3ccbe91df4b148a325e6544427a.txt

PoC:
from targets.newDisguiser.Disguiser.code.pinpoint_censor import

process_raw_http_response

if __name__ == '__main__':

with

open('./replay_crash/process_raw_http_response_max_headers/crash-7cb2cf40c58ef3ccbe91df

4b148a325e6544427a.txt', 'rb') as f: # noqa: E501

process_raw_http_response(f.read(), False)

Crash report:
Traceback (most recent call last):

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/replay_crash/process_raw_http_

response_max_headers/process_raw_http_response_max_headers.py", line 5, in <module>

process_raw_http_response(f.read(), False)

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/targets/newDisguiser/Disguiser

/code/pinpoint_censor.py", line 192, in process_raw_http_response

response.begin()

File "/usr/lib/python3.10/http/client.py", line 337, in begin

self.headers = self.msg = parse_headers(self.fp)

File "/usr/lib/python3.10/http/client.py", line 234, in parse_headers

headers = _read_headers(fp)

File "/usr/lib/python3.10/http/client.py", line 219, in _read_headers

raise HTTPException("got more than %d headers" % _MAXHEADERS)

http.client.HTTPException: got more than 100 headers

When the number of HTTP headers in the response is more than 100, an
HTTPException exception is raised and it is recommended to catch it properly. It is also
suggested to revisit the http.client._MAXHEADERS parameter configuration to a higher
value, such as 1000 to prevent potential false positives.

Issue 2: HTTP response parsing failure when the protocol line is malformed

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/pinpoint_censor.py#L164

Affected Code:
def process_raw_http_response(raw_http_response, is_timeout):

[...]

response.begin()

7ASecurity © 2023
12

https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_max_headers/crash-7cb2cf40c58ef3ccbe91df4b148a325e6544427a.txt
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://7asecurity.com

Pentest Report

http_result['text'] = response.read(len(raw_http_response)).decode()

#http_result['url'] = raw_http_response.url

http_result['status_code'] = response.status

http_result['headers'] = dict(response.getheaders())

[...]

PoC File:
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unknown_
protocol/crash-b5725dd39bffc82d6434c39863ded9e7b11732b6.txt

PoC:
from targets.newDisguiser.Disguiser.code.pinpoint_censor import

process_raw_http_response

if __name__ == '__main__':

with

open('./replay_crash/process_raw_http_response_unknown_protocol/crash-b5725dd39bffc82d6

434c39863ded9e7b11732b6.txt', 'rb') as f: # noqa: E501

process_raw_http_response(f.read(), False)

Crash report:
File

"/home/7asecurity/Documents/consulting/groundtruth_audit/replay_crash/process_raw_http_

response_unknown_protocol/process_raw_http_response_unknown_protocol.py", line 5, in

<module>

process_raw_http_response(f.read(), False)

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/targets/newDisguiser/Disguiser

/code/pinpoint_censor.py", line 192, in process_raw_http_response

response.begin()

File "/usr/lib/python3.10/http/client.py", line 335, in begin

raise UnknownProtocol(version)

http.client.UnknownProtocol: HTTP/1.1

The protocol line may be malformed and raise an UnknownProtocol exception. It is
recommended to catch the http client exception properly when calling response.begin()
to resolve this issue.

Issue 3: HTTP response parsing failure on UnicodeDecodeError

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/pinpoint_censor.py#L164

Affected Code:

7ASecurity © 2023
13

https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unknown_protocol/crash-b5725dd39bffc82d6434c39863ded9e7b11732b6.txt
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unknown_protocol/crash-b5725dd39bffc82d6434c39863ded9e7b11732b6.txt
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/pinpoint_censor.py#L164
https://7asecurity.com

Pentest Report

def process_raw_http_response(raw_http_response, is_timeout):

[...]

http_result['text'] = response.read(len(raw_http_response)).decode()

[...]

PoC File:
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unicode_d
ecode/crash-fcd9af74a499d1c451ee733da0e3ab0171fe7842.txt

PoC:
from targets.newDisguiser.Disguiser.code.pinpoint_censor import

process_raw_http_response

if __name__ == '__main__':

with

open('./replay_crash/process_raw_http_response_unicode_decode/crash-fcd9af74a499d1c451e

e733da0e3ab0171fe7842.txt', 'rb') as f: # noqa: E501

process_raw_http_response(f.read(), False)

Crash report:
Traceback (most recent call last):

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/replay_crash/process_raw_http_

response_unicode_decode/process_raw_http_response_unicode_decode.py", line 5, in

<module>

process_raw_http_response(f.read(), False)

File

"/home/7asecurity/Documents/consulting/groundtruth_audit/targets/newDisguiser/Disguiser

/code/pinpoint_censor.py", line 193, in process_raw_http_response

http_result['text'] = response.read(len(raw_http_response)).decode()

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start

byte

The default encoding in response.read used to decode the raw_http_response is utf-8.
When decoding a non-utf-8 response, a UnicodeDecodeError will be raised since the
default encoding is not compatible with the one used by the server. It is recommended to
catch the UnicodeDecodeError exception and advise accordingly regarding the
censorship classification.

7ASecurity © 2023
14

https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unicode_decode/crash-fcd9af74a499d1c451ee733da0e3ab0171fe7842.txt
https://7as.es/GroundTruth_bERlScOlr1tj8/PoC/process_raw_http_response_unicode_decode/crash-fcd9af74a499d1c451ee733da0e3ab0171fe7842.txt
https://7asecurity.com

Pentest Report

GRT-01-003 WP1/2: Ground Truth RCE via Crafted Domain File (Critical)

While auditing the newDisguiser codebase, it was found that the read_domain function
fails to properly sanitize the content of the provided file. This led to the discovery of a
Remote Code Execution (RCE) vulnerability. A malicious attacker, able to entice a
Ground Truth researcher to use a crafted domain text file, could leverage this weakness
to run arbitrary code or commands in the system the Ground Truth client script is being
run from. This issue can be validated reviewing the following code snippet:

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/proxyrack.py#L53

Affected Code:
def read_domain(file):

"""

read domain info from plain file

args:

file: str. full file path or relevant file path

returns:

dict

raises:

None

"""

with open(file, "r") as f:

data = []

for r in f.readlines():

skip empty lines

if r == "\n":

continue

r = r.replace("false", "False")

r = r.replace("true", "True")

try:

convert string to dictionary

data.append(eval(r))

except Exception as e:

print(e)

return data

The eval function used to parse the dataset (.txt) in the script can lead to security
vulnerabilities. An attacker can craft and inject malicious code into this JSON-looking file
in order to achieve remote code execution (RCE) when this function will process the file.

It is recommended to use the json package to parse JSON data, as it eliminates this

7ASecurity © 2023
15

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/proxyrack.py#L53
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/proxyrack.py#L53
https://7asecurity.com

Pentest Report

attack vector.

GRT-01-004 WP1/2: Ground Truth RCEs via Crafted Config Files (Critical)

While auditing the newDisguiser codebase, it was found that multiple Ground Truth code
paths fail to sanitize the extracted username, password and IP from configuration files,
prior to providing them as arguments to cURL commands. This may lead to Remote
Code Execution (RCE) as the cURL command gets executed. A malicious attacker, able
to entice a Ground Truth researcher to use a crafted configuration file, could leverage
this weakness to run arbitrary code or commands in the system the Ground Truth client
script is being run from. This can be confirmed reviewing the following code snippets:

Issue 1: RCEs in get_curl_cmd functions

Affected Files:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/proxyrack.py#L16
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Analysis/proxyrack.py#L67

Affected Code:
def get_curl_cmd(proxy, url):

proxy_address, proxy_port, username, password = unpack_proxy_args(proxy)

return 'curl -m 10 -s -x ' + proxy_address + ':' + str(proxy_port) + ' -U ' +

username + ':' + password + ' ' + url

def get_proxy_stats(proxy, timeout = 5):

url = 'http://api.proxyrack.net/stats'

curl_cmd = get_curl_cmd(proxy, url)

try:

stats = os.popen(curl_cmd).read()

Issue 2: RCE in Ripe Atlas integration

A similar case of command execution was identified in the Ripe Atlas integration in the
ripe_atlas_client.py that processes a list of IP addresses from a configuration text file
without any prior sanitization on the provided input.

Affected File:
https://github.com/e2ecensor/Disguiser_public/blob/6625710d013aeb78ac7588bbf0739e
9ea4e9843b/code/ripe_atlas_client.py#L280

7ASecurity © 2023
16

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack.py#L16
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack.py#L16
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/proxyrack.py#L67
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Analysis/proxyrack.py#L67
https://github.com/e2ecensor/Disguiser_public/blob/6625710d013aeb78ac7588bbf0739e9ea4e9843b/code/ripe_atlas_client.py#L280
https://github.com/e2ecensor/Disguiser_public/blob/6625710d013aeb78ac7588bbf0739e9ea4e9843b/code/ripe_atlas_client.py#L280
https://7asecurity.com

Pentest Report

Affected Code:
input_file = '../results/ripe_atlas/ripe_atlas_iran_results.txt'

with open(input_file, 'r') as f:

entries = f.read().strip().split('\n')

for entry in entries:

temp_dic = json.loads(entry)

ip = temp_dic['probe']

if ip not in ip_info_dic.keys():

while True:

try:

response = os.popen('curl -m 10 -s http://ip-api.com/json/' +

ip).read()

It is recommended to adequately escape user-controlled parameters to prevent
command injection. For enhanced protection, the current cURL and os.popen approach
ought to be replaced with a safer approach, such as using the requests library3 instead.
The proposed solution will eliminate this attack vector.

GRT-01-016 WP1: Censorship Detection Bypass via Hash Collision (High)

During the audit of the newDisguiser codebase, it was found that attackers may evade
censorship detection by exploiting a hash collision. Malicious adversaries could
accomplish this by utilizing an identical combination of HTML tags (DOM Tree), present
in both a maliciously crafted HTTP page and an existing website within the trusted
portfolio. This issue was confirmed as follows:

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/http_manual_validation.py#L30

Affected Code:
def get_webpages():

[...]

for subdir in subdirs:

if subdir.split('/')[-1].startswith('20'):

[...]

with open(subdir + '/' + 'http_manual_case.txt') as f:

[...]

for vp in vps:

[...]

for domain in vps[vp]['domain']:

[...]

soup = BeautifulSoup(webpage, 'html.parser')

3 https://pypi.org/project/requests/

7ASecurity © 2023
17

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/http_manual_validation.py#L30
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/http_manual_validation.py#L30
https://pypi.org/project/requests/
https://7asecurity.com

Pentest Report

document = soup.find_all()

tags = [x.name for x in document]

tags_string = ' '.join(tags)

webpage_hash = hashlib.md5(tags_string.encode()).hexdigest()

[...]

As can be seen in the code snippet above, the webpage_dic dictionary located in the
http_manual_validation.py file will be populated with MD5 hashes of the HTML tags of
the pages. Consequently, it is possible to bypass detection by crafting web pages that
will result in the same MD5 webpage_hash value, by simply using an identical HTML
structure as a trusted web page:

PoC: MD5 html.parser hash collision
import hashlib

from bs4 import BeautifulSoup

HTML_PAGE_1 = """

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<div>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</div>

</body>

</html>

"""

HTML_PAGE_2 = """

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<div>

<h1>My Second Heading</h1>

<p>My second paragraph.</p>

</div>

</body>

</html>

"""

7ASecurity © 2023
18

https://7asecurity.com

Pentest Report

def get_webpage_hash(content: str) -> str:

soup = BeautifulSoup(content, 'html.parser')

return hashlib.md5(' '.join([x.name for x in

soup.find_all()]).encode()).hexdigest()

if __name__ == '__main__':

print(f"Hash of HTML_PAGE_1: {get_webpage_hash(HTML_PAGE_1)}")

print(f"Hash of HTML_PAGE_2: {get_webpage_hash(HTML_PAGE_2)}")

Command:
python3 poc.py

Output:
Hash of HTML_PAGE_1: dcaf505af9b4d4a90a709e751f4eecae

Hash of HTML_PAGE_2: dcaf505af9b4d4a90a709e751f4eecae

Resolving this issue is particularly challenging. On one hand, if only HTML tags are
hashed, attackers can simply clone the page structure as described in this issue, plus
any censored text contents will be completely undetected. On the other hand, if Ground
Truth switches to hashing entire web pages any small text change or timestamp in the
HTML will result in a different hash. A more advanced approach is therefore required to
work around the aforementioned problems. This should include usage of Fuzzy hashing4

and Rolling hash5 algorithms, with particular care to ensure no text has been censored in
the pertinent HTML page. Moreover, if the complexity of the censored text comparison
allows it, a rolling hash algorithm such as Rabin-Karp6 can be applied in order to identify
the existence of certain subscripts in the entire webpage. This algorithm can be
leveraged to determine whether key components of the webpage are often prone to
censorship as the user controls the content of the experimental data.

6 https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
5 https://en.wikipedia.org/wiki/Rolling_hash
4 https://en.wikipedia.org/wiki/Fuzzy_hashing

7ASecurity © 2023
19

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Rolling_hash
https://en.wikipedia.org/wiki/Fuzzy_hashing
https://7asecurity.com

Pentest Report

GRT-01-017 WP1: Censorship Misclassification via Proxyrack Logic Flaw (High)

While auditing the newDisguiser codebase, it was found that proxyrack is always
released. Specifically, the need_release variable will always be set to True, which adds
unnecessary complexity to the code and increases false positives when checking for
censorship using different sticky proxy addresses when rotating different countries. This
can be confirmed by analyzing the following code snippet:

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/proxyrack_client.py#L76

Affected Code:
def get_proxyrack_proxy_info(proxy, finished_countries):

release_time = 0

for _ in range(300):

need_release = False

proxy_info = proxyrack.get_proxy_info(proxy)

if proxy_info != None:

test_sequence = ['dns', 'http', 'sni']

test_sequence = list(filter(lambda x:

finished_countries[x].get(proxy_info['country'], 0) < max_per_country, test_sequence))

if len(test_sequence) != 0:

break

else:

need_release = True

else:

need_release = True

[...]

It is recommended to simplify the function by removing the need_release variable and
always calling proxyrack.release_exit_node(proxy).

7ASecurity © 2023
20

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack_client.py#L76
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/proxyrack_client.py#L76
https://7asecurity.com

Pentest Report

GRT-01-019 WP1: Ground Truth RCEs & Spoofing via clear-text HTTP (Critical)

It was found that the RCE described in GRT-01-004, can not only be triggered via
crafted configuration files, but also through modification of clear-text HTTP
communications. This issue is particularly concerning given the nature of Ground Truth,
which deals with network traffic potentially tampered by government-sponsored
adversaries. In a worst-case scenario, a malicious Man-In-The-Middle (MitM) attacker,
with the ability to intercept and modify clear-text network communications (i.e. via BGP
hijacking7, DNS rebinding8, ISP MitM, public Wi-Fi without guest isolation, etc.), could
leverage this weakness to run arbitrary commands on the operating system of the
researcher running Ground Truth scripts such as proxyrack.py. Please note a malicious
attacker may additionally exploit this weakness to spoof censorship results. This issue
can be trivially confirmed by looking at the following code snippets:

Affected Files: Proxy Configuration Scripts
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/proxyrack.py#L50
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f448
7d8155f/Analysis/proxyrack.py#L69
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98b
a007b2e8e7/code/proxyrack.py#L19

Affected Code: Proxy set up
def get_proxy_info(proxy, timeout = 5):

url = 'http://ip-api.com/json'

curl_cmd = get_curl_cmd(proxy, url)

[...]

def get_curl_cmd(proxy, url):

proxy_address, proxy_port, username, password = unpack_proxy_args(proxy)

return 'curl -m 10 -s -x ' + proxy_address + ':' + str(proxy_port) + ' -U ' +

username + ':' + password + ' ' + url

def get_proxy_stats(proxy, timeout = 5):

url = 'http://api.proxyrack.net/stats'

curl_cmd = get_curl_cmd(proxy, url)

try:

[...]

def release_exit_node(proxy, timeout = 5):

url = 'http://api.proxyrack.net/release'

curl_cmd = get_curl_cmd(proxy, url)

8 https://en.wikipedia.org/wiki/DNS_rebinding
7 https://en.wikipedia.org/wiki/BGP_hijacking

7ASecurity © 2023
21

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack.py#L50
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack.py#L50
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Analysis/proxyrack.py#L69
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Analysis/proxyrack.py#L69
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/proxyrack.py#L19
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/proxyrack.py#L19
https://en.wikipedia.org/wiki/DNS_rebinding
https://en.wikipedia.org/wiki/BGP_hijacking
https://7asecurity.com

Pentest Report

flag = False

try:

response = os.popen(curl_cmd).read()

Affected Files: VPN Configuration Setup
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f448
7d8155f/Disguiser/code/vpn_client.py#L88
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f448
7d8155f/Disguiser/code/china_client.py#L64
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98b
a007b2e8e7/code/vpn_client.py#L88
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98b
a007b2e8e7/analysis/china_client.py#L64

Affected Code:
def get_vpn_info():

url = 'http://ip-api.com/json'

curl_cmd = 'curl -m 10 -s ' + url

try:

response = os.popen(curl_cmd).read()

response = json.loads(response)

Affected Files: Ripe Atlas Configuration
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f448
7d8155f/Disguiser/code/ripe_atlas_client.py#L280
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98b
a007b2e8e7/code/ripe_atlas_client.py#L280

Affected Code:
if ip not in ip_info_dic.keys():

while True:

try:

response = os.popen('curl -m 10 -s http://ip-api.com/json/' + ip).read()

probe_info = json.loads(response)

ip_info_dic[ip] = probe_info

time.sleep(2)

break

It is recommended to extrapolate the mitigation guidance offered under GRT-01-004 to
resolve this issue. Once that is done, protocols using clear-text traffic should be avoided
as much as possible to eliminate this attack vector. For example, while the TLS version
of https://ip-api.com/json is only available to paid subscribers, Ground Truth could

7ASecurity © 2023
22

https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/vpn_client.py#L88
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/vpn_client.py#L88
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/china_client.py#L64
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/china_client.py#L64
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/vpn_client.py#L88
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/vpn_client.py#L88
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/analysis/china_client.py#L64
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/analysis/china_client.py#L64
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/ripe_atlas_client.py#L280
https://github.com/e2ecensor/newDisguiser/blob/7b1ba206d22c17a33c7c042159f47f4487d8155f/Disguiser/code/ripe_atlas_client.py#L280
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/ripe_atlas_client.py#L280
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/code/ripe_atlas_client.py#L280
https://ip-api.com/json
https://7asecurity.com

Pentest Report

prompt researchers to enter their subscription key when they run the script and/or at
least warn them that the traffic may be tampered with over clear-text HTTP. Furthermore,
in situations where clear-text protocols are required for testing data, exposure to attacks
should be limited by implementing sandboxing on a pivoting service designed to route
inbound and outbound traffic. After that, for communications that use TLS, pinning may
be considered to further protect the integrity of network communications against
high-profile adversaries able to craft valid TLS certificates trusted by the operating
system. For additional guidance about Pinning, please see the OWASP Pinning Cheat
Sheet9.

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

GRT-01-005 WP4: AWS Leaks via Unencrypted EBS Volumes & Snapshots (Low)

A number of Ground Truth volumes across all used regions were found to be stored
without prior encryption at rest. In case sensitive data is stored on these unencrypted
volumes, this may not only leak data, but also violate compliance with multiple
frameworks. It should be noted that, when the encryption option is disabled, potential
flaws in the AWS implementation might allow unauthorized attackers to access the
volume. This might occur through an AWS access control flaw, as well as physical
attacks where hard/SSD drives are replaced in the data center. Hence, encryption
provides an additional security layer for such scenarios and minimizes potential
unintentional data disclosure.

Affected Resources:
AWS Account 781265170134

This issue can be confirmed navigating to the EC2 Volumes or Snapshots areas on the
AWS Management Console in the us-east-1 region:

URL:

9 https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html

7ASecurity © 2023
23

https://cheatsheetseries.owasp.org/cheatsheets/Pinning_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

https://us-east-1.console.aws.amazon.com/ec2/home?region=us-east-1#Volumes:v=3;e
ncrypted=false

Fig.: Unencrypted Volume

It is recommended to enable encryption, ideally by default, for all newly created
volumes10.

GRT-01-006 WP4: AWS Weaknesses in Vuln Management Processes (Medium)

During the configuration audit of the AWS production account, it was discovered that
multiple AWS security-relevant services are not configured correctly. Failure to leverage
these services can leave the infrastructure open to attacks due to insufficient hardening.

Affected Resources:
AWS Account 781265170134

Please note that, as most of the AWS services are region-based, it is important to
determine which regions are used first, to focus the analysis on the regions that are
actually in use. Regions with defined resources in the analyzed environment are:
us-west-1, us-east-1, sa-east-1, me-south-1, eu-west-3, eu-west-2, af-south-1

Issue 1: Security Hub is not enabled

Security Hub11 is a region-based service that provides a comprehensive view of security
issues from regions where it is enabled. The following command describes the status of
Security Hub for the regions in use:

Command:
aws securityhub describe-hub

11 https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html
10 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

7ASecurity © 2023
24

https://us-east-1.console.aws.amazon.com/ec2/home?region=us-east-1#Volumes:v=3;encrypted=false
https://us-east-1.console.aws.amazon.com/ec2/home?region=us-east-1#Volumes:v=3;encrypted=false
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://7asecurity.com

Pentest Report

Output:
An error occurred (InvalidAccessException) when calling the DescribeHub operation:

Account 781265170134 is not subscribed to AWS Security Hub

Issue 2: Guard Duty is not enabled

The following command describes the status of Guard Duty12 for various regions, which
confirms Guard Duty is not enabled.

Command:
aws guardduty list-detectors

Output:
{ "DetectorIds": []}

[...]

Issue 3: AWS Config is not enabled

AWS Config13 is a service that maintains the configuration history for AWS resources
and evaluates best practices. The following command can be used to confirm AWS
Config is not enabled on the used region:

Command:
aws configservice get-status

Output:
Configuration Recorders:

Delivery Channels:

It is recommended to implement as many AWS Security related services as possible.
This should include tools like Security Hub14, Config15, Guard Duty16, Macie17 and
Inspector18. After this, the infrastructure team should ensure that all relevant services,
and equivalent products, are enabled for the whole environment in all used regions.

18 https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
17 https://aws.amazon.com/macie/
16 https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
15 https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
14 https://aws.amazon.com/security-hub/
13 https://aws.amazon.com/blogs/mt/aws-config-best-practices/
12 https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_settingup.html

7ASecurity © 2023
25

https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://aws.amazon.com/macie/
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/config/latest/developerguide/security-best-practices.html
https://aws.amazon.com/security-hub/
https://aws.amazon.com/blogs/mt/aws-config-best-practices/
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_settingup.html
https://7asecurity.com

Pentest Report

Furthermore, any reported issues should be regularly reviewed and remediated. This
should ideally be accomplished by leveraging an infrastructure-as-code approach such
as Terraform19, which would significantly simplify applying the same settings across all
AWS accounts. Please note that cloud-native security tools are not perfect, however they
provide a solid baseline for each environment. Special consideration should be given to
Security Hub and Config, as they allow to streamline and discover common
misconfigurations.

GRT-01-007 WP4: Possible AWS Takeover via IAM Root Account Use (High)

It was found that the analyzed environment uses only the main AWS root account for
actions that could be performed with more restricted accounts. AWS root accounts are
the main and most privileged accounts in the AWS environment. Using a root account,
either via the API or interactively via the AWS Web Console, unnecessarily increases the
likelihood of unauthorized access. In certain cases, this may also weaken the security
policy, as commonly MFA is enabled only for Web Console access and is disabled for
the API.

Affected Resources:
AWS Account 781265170134

The following example illustrates how to identify root account activity within last 90 days:

Example: Confirm recent root user activity
1. Navigate to the global EC2 view, on the AWS Management Console:

URL:
https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/ev
ents?Username=root

2. Adjust filters to make sure the name attribute is set to root and select an
adequate timespan.

3. Review the logs from different regions or adjust filters in any external logging
solution integrated with the environment to review all activities across all regions.

Result:
Multiple actions performed by the root account were logged.

19 https://www.terraform.io/use-cases/infrastructure-as-code

7ASecurity © 2023
26

https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/events?Username=root
https://us-east-1.console.aws.amazon.com/cloudtrail/home?region=us-east-1#/events?Username=root
https://www.terraform.io/use-cases/infrastructure-as-code
https://7asecurity.com

Pentest Report

Fig.: Recent root account actions in us-east-1

It is recommended to protect AWS root accounts. This should be accomplished utilizing
a strong password and MFA, ideally a hardware-based MFA mechanism. These
accounts should only be used occasionally, instead personal accounts for daily
operations20 should be created and configured to only have the absolute minimum
permissions necessary to perform their function.

GRT-01-008 WP4: Insufficient AWS Logging & Monitoring (High)

It was found that AWS CloudTrail21 is not enabled for all regions. This tool records all
activities in an AWS account as events. Without adequate logging, it may be impossible
to monitor malicious activities, or use integrated tools that analyze CloudTrail for
anomalies, all of which may be critical in the event of a security breach.

Affected Resources:
AWS Account 781265170134

Regions with defined resources in the analyzed environment are: us-west-1, us-east-1,
sa-east-1, me-south-1, eu-west-3, eu-west-2, af-south-1 and all were found to be
affected.

Issue 1: CloudTrail is not enabled

The following command reveals there are no trails defined:

21 https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
20 https://aws.amazon.com/iam/identity-center/

7ASecurity © 2023
27

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://aws.amazon.com/iam/identity-center/
https://7asecurity.com

Pentest Report

Command:
aws cloudtrail list-trails

Output:
{ "Trails": [] }

Issue 2: No VPC flow logs defined

No VPC flow logs were found to be defined. At a minimum, these should be listed for the
VPCs with the main workloads (ECS). This can be confirmed by reviewing the VPC flow
logs like so:

1. Open the AWS Management Console
2. Navigate to the VPC Settings and select a VPC to check.

PoC URL:
https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDet
ails:VpcId=vpc-0f19e3ec3e547f2a8

3. Review the Flow Logs tab.

The following command confirms there are no flow logs defined in the regions for the
AWS accounts provided during this assignment:

Command:
aws ec2 describe-flow-logs

Output:
{ "FlowLogs": [] }

It is recommended to enable CloudTrail for all regions, and ensure logs are automatically
archived in encrypted S3 buckets that belong to a separate AWS account. By default
CloudTrail stores only the last 90 days of activity in AWS, thus archiving is crucial for
potential forensic investigations in case of a breach. Additionally, logs from virtual
machines should be considered to be integrated with a centralized logging system for
better coverage.

In general, all logging and monitoring settings should be adjusted depending on the
threat model, compliance requirements and volume of generated data. Excessively
verbose logs may increase the overall infrastructure cost significantly, however, lack of
appropriate logging and monitoring decreases the chances of successful threat detection
and analysis in case of a breach. It is advised to review and improve the logging and

7ASecurity © 2023
28

https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDetails:VpcId=vpc-0f19e3ec3e547f2a8
https://us-east-1.console.aws.amazon.com/vpc/home?region=us-east-1#VpcDetails:VpcId=vpc-0f19e3ec3e547f2a8
https://7asecurity.com

Pentest Report

monitoring configuration in the context of a potential incident response case rather than
just regular daily operations of the infrastructure22.

GRT-01-009 WP4: Lack of AWS/GCP Infrastructure Automation (Info)

The Ground Truth environment, despite being a multi-cloud solution, fails to leverage
infrastructure as code to create and manage the supported cloud configurations. All
analyzed cloud environments were found to be created manually. Hence, they are prone
to human errors and inconsistencies, which may expose the environment to
unnecessary threats. Environments without adequate automation cannot be easily
deployed in a repeatable fashion and are difficult to manage over time.

Affected Resources:
AWS Account 781265170134
GCP Project ID 117546701090 (operating-bolt-366020)

It is recommended to review, research and employ all or some of the following solutions:
● Terraform, or similar solutions, to implement an infrastructure as code approach

in a multi-cloud environment.
● Robust configuration to automate deployments via Github Actions.
● Github Secrets, HashiCorp Vault, or similar, for secret management, which

should be exercised during the deployment process.
● Ansible or similar solutions to automate the provisioning of virtual machines.

Additionally, it is advised to consistently bind all cloud accounts to a single management
email account for billing and management purposes instead of using personal emails.

22 https://docs.aws.amazon.com/whitepapers/.../aws-security-incident-response...html

7ASecurity © 2023
29

https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/logging-and-events.html
https://7asecurity.com

Pentest Report

GRT-01-010 WP3: Usage of Unsupported Ubuntu Version (Low)

During whitebox testing against Ground Truth servers over SSH, the backed control
servers with IP address 35.180.190.69 and 20.115.40.63 were found to have Ubuntu
18.04.6 LTS installed. That Ubuntu version is end-of-life and no longer receives
updates23. Therefore newly discovered vulnerabilities or security issues cannot be fixed.
While no public exploit was found for that version at the time of the assessment, this is
still a bad practice that could result in unwanted security vulnerabilities and highlights
room for improvement in the current software patching processes. This issue can be
trivially confirmed with the following commands:

Command:
lsb_release -a

Output:
Description: Ubuntu 18.04.6 LTS

Command:
pro status

Output:
This machine is not attached to an Ubuntu Pro subscription.

It is recommended to upgrade the backed control server to a supported Ubuntu version,
such as 20.04 LTS or 22.04 LTS.

GRT-01-011 WP4: Unrestricted Inbound Traffic on GCP (Medium)

It was discovered that the Google Cloud Platform (GCP) firewall rules fail to restrict
access to virtual machines. This weakness appears to be due to VPC usage, which
creates insecure firewall rules by default. This implies that services launched by
administrators, which listen on a network interface, will be immediately exposed to
attacks from the Internet. For example, malicious adversaries that constantly scan the
Internet for easy targets might be able to exploit misconfigurations in the exposed
services. This issue was confirmed as follows:

Affected Resources:
GCP Project ID 117546701090 (operating-bolt-366020)

23 https://ubuntu.com/about/release-cycle

7ASecurity © 2023
30

https://ubuntu.com/about/release-cycle
https://7asecurity.com

Pentest Report

Issue: All ports are exposed to the Internet

The following command reveals the firewall rule that allows all connections on all ports
from the Internet:

Command:
gcloud compute firewall-rules list

Output:
default-allow-http

INGRESS 1000 tcp:80

default-allow-https

INGRESS 1000 tcp:443

default-allow-icmp

INGRESS 65534 icmp

default-allow-internal

INGRESS 65534 tcp:0-65535,udp:0-65535,icmp

default-allow-rdp

INGRESS 65534 tcp:3389

default-allow-ssh

INGRESS 65534 tcp:22

The following command can be used to scan a sample IP address belonging to a virtual
machine from the internet.

Command:
nmap -Pn --top-ports 1000 --open 34.155.45.233

Output:
PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 1.89 seconds

It is recommended to remove default VPC as multiple insecure firewall rules are defined
automatically24 when a default VPC is in use. It is further suggested to restrict traffic to
ports that have to be exposed to the Internet. In case of management access to the
virtual machines, either SSH should be open to limited IP addresses, or OS Login with

24 https://cloud.google.com/firewall/docs/firewalls#more_rules_default_vpc

7ASecurity © 2023
31

https://cloud.google.com/firewall/docs/firewalls#more_rules_default_vpc
https://7asecurity.com

Pentest Report

multi-factor authentication should be used. For additional mitigation guidance, please
see the CIS Google Cloud Computing Platform Benchmark25.

GRT-01-012 WP4: Insufficient GCP Logging and Monitoring (Low)

It was found that the Ground Truth GCP environment lacks adequate logging and
monitoring, which is crucial for compromise detection. Currently, only basic logs from the
environment are collected, using a default retention policy, and no agents collecting logs
inside virtual machines are installed. Specifically, none of the virtual machines in the
environment have Ops Agent installed. This was confirmed as follows:

Affected Resources:
GCP Project ID 117546701090 (operating-bolt-366020)

Example: Confirming the lack of an installed monitoring agent
1. Navigate to the Monitoring view, on the Google Cloud Platform Web Console:

URL:
https://console.cloud.google.com/monitoring/...

2. Review the Agent column.
3. Alternatively navigate to Monitoring > Overview and verify the status of VMs with

ops agent.

Result:

Fig.: Agents are not installed on any virtual machine

It is advised to consider employing a centralized logging solution, which may be
implemented either using cloud-native services26 or via third-party software like Splunk27,

27 https://dev.splunk.com/observability/docs/integrations/gcp_integration_overview/
26 https://cloud.google.com/stackdriver/docs/solutions/agents/ops-agent/third-party/apache
25 https://www.cisecurity.org/benchmark/google_cloud_computing_platform

7ASecurity © 2023
32

https://console.cloud.google.com/monitoring/dashboards/resourceList/gce_instance;duration=P30D?orgonly=true&project=operating-bolt-366020&supportedpurview=organizationId&pageState=(%22vmDetailsFlyout%22:(),%22fleetview%22:(%22g%22:%5B%22resource.labels.zone%22,%22metadata.systemLabels.name%22%5D,%22d%22:%5B%5D,%22s%22:%22COUNT%22),%22category%22:(%22f%22:%22missingAgent%22))
https://dev.splunk.com/observability/docs/integrations/gcp_integration_overview/
https://cloud.google.com/stackdriver/docs/solutions/agents/ops-agent/third-party/apache
https://www.cisecurity.org/benchmark/google_cloud_computing_platform
https://7asecurity.com

Pentest Report

ElasticStack28, or similar. As the environment consists mainly of virtual machines, it is
recommended to forward all collected logs (from auditd, apache, etc.) to a centralized
logging solution. Additionally, depending on business requirements, it might be
necessary to adjust the default retention policies29.

GRT-01-013 WP4: Potential GCP PrivEsc via Privileged Service Account (Low)

It was uncovered that the Ground Truth GCP environment employs virtual machines that
use a default Compute Engine service account, which has the Editor role on the
project30. Please note that the exploitability of this issue from the internet is limited, this is
due to the restrictions in the Cloud API access scope for the affected role.

PoC Steps:
These example steps confirm that the default editor role is attached to a virtual machine:

Step 1: Navigate to a sample virtual machine

From the Compute Engine > VM instances view, on the Google Cloud Platform Web
Console:

URL:
https://console.cloud.google.com/compute/instancesDetail/zones/australia-southeast1-b/
instances/australia-server2?project=operating-bolt-366020

Step 2: Review the API column on the identity management section

Result:

Fig.: Default Compute Engine Service Account

Step 3: Confirm the default service accounts

From the IAM and admin section:

30 https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
29 https://cloud.google.com/logging/quotas#logs_retention_periods
28 https://docs.elastic.co/integrations/gcp

7ASecurity © 2023
33

https://console.cloud.google.com/compute/instancesDetail/zones/australia-southeast1-b/instances/australia-server2?project=operating-bolt-366020
https://console.cloud.google.com/compute/instancesDetail/zones/australia-southeast1-b/instances/australia-server2?project=operating-bolt-366020
https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
https://cloud.google.com/logging/quotas#logs_retention_periods
https://docs.elastic.co/integrations/gcp
https://7asecurity.com

Pentest Report

URL:
https://console.cloud.google.com/iam-admin/iam?referrer=search&project=operating-bolt
-366020

Result:

Fig.: Editor role attached to a Default Compute Engine Service Account

It is recommended to remove the default service account and create a custom restricted
service account to follow the least privilege principle.

GRT-01-014 WP3: Possible root Access via Passwordless sudo (Low)

During whitebox testing against Ground Truth servers over SSH, the backed control
server with IP address 20.115.40.63 was found to have a passwordless sudo
implementation for the testing1 user. Leaving passwordless sudo on any server presents
a security risk31 and should be avoided. The following quote from the StackExchange
thread “How secure is NOPASSWD in passwordless sudo mode?”32 summarizes this
issue:

“NOPASSWD doesn't have a major impact on security.[...] Nonetheless, requiring the
password does raise the bar for the attacker. In many cases, protection against
unsophisticated attackers is useful, particularly in unattended-workstation scenarios
where the attack is often one of opportunity and the attacker may not know how to find
and configure discreet malware at short notice.”

This issue can be trivially confirmed with the following command:

Command:
sudo -l

Output:
User testing1 may run the following commands on Viginia-server:

32 https://security.stackexchange.com/a/45728
31 https://attack.mitre.org/techniques/T1548/003/

7ASecurity © 2023
34

https://console.cloud.google.com/iam-admin/iam?referrer=search&project=operating-bolt-366020
https://console.cloud.google.com/iam-admin/iam?referrer=search&project=operating-bolt-366020
https://security.stackexchange.com/a/45728
https://attack.mitre.org/techniques/T1548/003/
https://7asecurity.com

Pentest Report

(ALL) NOPASSWD: ALL

It is recommended to require a password when running the sudo command to resolve
this issue.

GRT-01-015 WP3: Usage of Vulnerable Outdated Software (Low)

During whitebox testing against Ground Truth servers over SSH, the backed control
servers with IP address 35.180.190.69 and 20.115.40.63 were found to use a number of
outdated software components with known vulnerabilities. While no public exploits were
found at the time of evaluation, this is still a bad practice that could result in unwanted
security vulnerabilities and highlights room for improvement in the current software
patching processes. The following table summarizes the vulnerabilities identified in the
installed software:

Software Vulnerabilities

busybox-initramfs_1:1.27.2-2ubuntu3.4
busybox-static_1:1.27.2-2ubuntu3.4

BusyBox incorrectly handled certain
malformed gzip archives and did
not properly validate user input
when performing certain arithmetic
operations.33

libpython2.7_2.7.17-1~18.04ubuntu1.11
libpython2.7-minimal_2.7.17-1~18.04ubuntu1.11
libpython2.7-stdlib_2.7.17-1~18.04ubuntu1.11
python2.7_2.7.17-1~18.04ubuntu1.11
python2.7-minimal_2.7.17-1~18.04ubuntu1.11

Python could be made to crash or
leak sensitive information if it
received specially crafted input.34
Python could be made to bypass
blocklisting methods if a specially
crafted URL was provided.35

python3-requests_2.18.4-2ubuntu0.1
Requests could be made to expose
sensitive information over the
network.36

openssh-client_1:7.6p1-4ubuntu0.7
openssh-server_1:7.6p1-4ubuntu0.7
openssh-sftp-server_1:7.6p1-4ubuntu0.7

OpenSSH could be made to run
programs as your login when using
ssh-agent forwarding.37

37 https://ubuntu.com/security/notices/USN-6242-2
36 https://ubuntu.com/security/notices/USN-6155-2
35 https://ubuntu.com/security/notices/USN-6139-1
34 https://ubuntu.com/security/notices/USN-6354-1
33 https://ubuntu.com/security/notices/USN-6335-1

7ASecurity © 2023
35

https://ubuntu.com/security/notices/USN-6242-2
https://ubuntu.com/security/notices/USN-6155-2
https://ubuntu.com/security/notices/USN-6139-1
https://ubuntu.com/security/notices/USN-6354-1
https://ubuntu.com/security/notices/USN-6335-1
https://7asecurity.com

Pentest Report

open-iscsi_2.0.874-5ubuntu2.11

Open-iSCSI incorrectly handled
certain checksums for IP packets,
certain parsing TCP MSS options,
and certain TCP data.38

vim_2:8.0.1453-1ubuntu1.13
vim-common_2:8.0.1453-1ubuntu1.13
vim-runtime_2:8.0.1453-1ubuntu1.13
vim-tiny_2:8.0.1453-1ubuntu1.13
xxd_2:8.0.1453-1ubuntu1.13

Vim was using uninitialized memory
when fuzzy matching, which could
lead to invalid memory access. Vim
was not properly performing bounds
checks when processing register
contents, which could lead to a
NULL pointer dereference. Vim was
not properly limiting the length of
substitution expression strings,
which could lead to excessive
memory consumption. Etc.394041

libcap2_1:2.25-1.2
libcap2-bin_1:2.25-1.2
libpam-cap_1:2.25-1.2

libcap could be made to crash or
possibly execute arbitrary code if it
received a specially crafted input.42

bind9-host_1:9.11.3+dfsg-1ubuntu1.18
dnsutils_1:9.11.3+dfsg-1ubuntu1.18
libbind9-160_1:9.11.3+dfsg-1ubuntu1.18

Bind could be made to crash if it
received specially crafted network
traffic.43

libldap-2.4-2_2.4.45+dfsg-1ubuntu1.11
libldap-common_2.4.45+dfsg-1ubuntu1.11

OpenLDAP could be made to crash
if it received specially crafted
input.44

libnghttp2-14_1.30.0-1ubuntu1 nghttp2 could be made to crash if it
opened a specially crafted file.45

libx11-6_2:1.6.4-3ubuntu0.4
libx11-data_2:1.6.4-3ubuntu0.4
libx11-xcb1_2:1.6.4-3ubuntu0.4

libx11 could be made to crash if it
received specially crafted network
traffic.46

46 https://ubuntu.com/security/notices/USN-6168-2
45 https://ubuntu.com/security/notices/USN-6142-1
44 https://ubuntu.com/security/notices/USN-6197-1
43 https://ubuntu.com/security/notices/USN-6183-2
42 https://ubuntu.com/security/notices/USN-6166-2
41 https://ubuntu.com/security/notices/USN-6302-1
40 https://ubuntu.com/security/notices/USN-6270-1
39 https://ubuntu.com/security/notices/USN-6154-1
38 https://ubuntu.com/security/notices/USN-6259-1

7ASecurity © 2023
36

https://ubuntu.com/security/notices/USN-6168-2
https://ubuntu.com/security/notices/USN-6142-1
https://ubuntu.com/security/notices/USN-6197-1
https://ubuntu.com/security/notices/USN-6183-2
https://ubuntu.com/security/notices/USN-6166-2
https://ubuntu.com/security/notices/USN-6302-1
https://ubuntu.com/security/notices/USN-6270-1
https://ubuntu.com/security/notices/USN-6154-1
https://ubuntu.com/security/notices/USN-6259-1
https://7asecurity.com

Pentest Report

libcups2_2.2.7-1ubuntu2.10
CUPS could be made to crash or
expose sensitive information over
the network.47

screen_4.6.2-1ubuntu1.1
GNU Screen could be made to
crash applications if it received
specially crafted input.48

libdw1_0.170-0.4ubuntu0.1
libelf1_0.170-0.4ubuntu0.1

elfutils incorrectly handled certain
malformed files and incorrectly
handled bounds checks in certain
functions when processing
malformed files.49

libavahi-client3_0.7-3.1ubuntu1.3
libavahi-common-data_0.7-3.1ubuntu1.3
libavahi-common3_0.7-3.1ubuntu1.3

Avahi could be made to crash if it
received specially crafted DBus
traffic.50

open-vm-tools_2:11.0.5-4ubuntu0.18.04.2 open-vm-tools could be made to
bypass authentication.51

openssh-client_1:7.6p1-4ubuntu0.7
openssh-server_1:7.6p1-4ubuntu0.7
openssh-sftp-server_1:7.6p1-4ubuntu0.7

OpenSSH has an observable
discrepancy leading to an
information leak in the algorithm
negotiation.52

It is recommended to upgrade all vulnerable software to the latest version. Furthermore,
a software patching program ought to be implemented to ensure vulnerabilities in
installed software are patched in a timely fashion. A common way to do this is to have a
nightly job that looks for vulnerabilities in installed software and alerts a system
administrator if any new issues affect any installed software. Automated tools such as
vulnerability scanners could be helpful to facilitate this process.

52 https://ubuntu.com/security/notices/USN-6279-1
51 https://ubuntu.com/security/notices/USN-6257-1
50 https://ubuntu.com/security/notices/USN-6129-2
49 https://ubuntu.com/security/notices/USN-6322-1
48 https://ubuntu.com/security/notices/USN-6198-1
47 https://ubuntu.com/security/notices/USN-6184-2

7ASecurity © 2023
37

https://ubuntu.com/security/notices/USN-6279-1
https://ubuntu.com/security/notices/USN-6257-1
https://ubuntu.com/security/notices/USN-6129-2
https://ubuntu.com/security/notices/USN-6322-1
https://ubuntu.com/security/notices/USN-6198-1
https://ubuntu.com/security/notices/USN-6184-2
https://7asecurity.com

Pentest Report

GRT-01-018 WP1: Possible Quota Exhaustion via Exposed Secrets (Low)

While auditing the newDisguiser codebase, it was found that some APIs keys are
exposed publicly. Attackers might reuse, abuse those APIs or might try to blacklist them
in order to disrupt other users. Please note the impact of this issue is lowered by the
fact that the ATLAS_API_KEY is no longer valid. Additionally, in a worst-case scenario
the ipinfo.io token leak could only be used to exceed the API quota of 50k requests per
month.

Example 1: Atlas API Key

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/ripe_atlas_client.py#L19

Affected Code:
ATLAS_API_KEY = 'f53[...]'

Example 2: ipinfo Token Leak

Affected File:
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e
1be4a01/Disguiser/code/filtered_request.py#L37

Affected Code:
url = 'http://ipinfo.io/' + ip + '?token=8342[...]'

It is recommended to remove all hard-coded credentials, tokens and private keys from
the affected repositories. Once that is done, the git history ought to be scrubbed from
these secrets. This could be accomplished utilizing tools like BFG Repo-Cleaner53. It is
advised to invalidate all identified credentials and generate new ones. Automated tools
such as GitGuardian54, TruffleHog55 and Git Secrets commit hooks56 should be then
considered for inclusion in the development process. This will drastically reduce the
potential for similar issues in the future, due to repositories being scanned for secrets as
developers commit code, and regularly.

56 https://github.com/awslabs/git-secrets
55 https://github.com/trufflesecurity/trufflehog
54 https://www.gitguardian.com/
53 https://rtyley.github.io/bfg-repo-cleaner/

7ASecurity © 2023
38

https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/ripe_atlas_client.py#L19
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/ripe_atlas_client.py#L19
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/filtered_request.py#L37
https://github.com/e2ecensor/newDisguiser/blob/d75edcf6bdd19815954d3c33c1fb70f5e1be4a01/Disguiser/code/filtered_request.py#L37
https://github.com/awslabs/git-secrets
https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/
https://rtyley.github.io/bfg-repo-cleaner/
https://7asecurity.com

Pentest Report

Regarding the removal of credentials from the source code, please note that while
environment variables would be better than hard-coding secrets in the source code (i.e.
use a .env file added to a .gitignore file to store them and avoid publishing them
publicly), these still have downsides and a dedicated secret management tool should be
preferred57. Instead, applications should retrieve credentials from AWS Secrets
Manager58 or an equivalent secure vault that provides the application with credentials as
needed at runtime but encrypts them at rest. This ensures that the applications can keep
using the credentials while not being available to potential adversaries with access to
leaked source code, a developer machine, or any other leak. Furthermore, credentials,
secrets, and API keys should be randomly generated to mitigate the potential for brute
force or password-guessing attacks. For additional mitigation guidance, please see the
OWASP Cryptographic Storage Cheat Sheet59 and the CWE-798: Use of Hard-coded
Credentials page60.

More broadly, it is important to have appropriate processes in place to:
● Regularly rotate credentials
● Revoke and replace credentials in the event of a compromise

GRT-01-020 WP1: Possible DoS via Predictable Proxy IPs (Medium)

It was found that Ground Truth routes traffic through pre-defined vantage points, such as
the proxyrack setup, which can be prone to data corruption if the proxy provider is
compromised. More broadly, the list of static IP addresses may be leveraged as a
vantage point by scripts, or could become targets of attacks in order to cause data
misclassification or damage the service availability. This issue can be confirmed
reviewing the following code snippet example:

Affected File: Proyrack configuration script
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/setup.py#L4

Affected Code: Set up
def setup(platform):

if platform == 'proxyrack':

proxyrack proxy setup

proxyrack_proxy = dict()

60 https://cwe.mitre.org/data/definitions/798.html
59 https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
58 https://aws.amazon.com/.../aws-secrets-manager-store-distribute-and-rotate-credentials.../
57 https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-env…

7ASecurity © 2023
39

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/setup.py#L4
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/setup.py#L4
https://cwe.mitre.org/data/definitions/798.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/
https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-environmental-variables-for-secret-data
https://7asecurity.com

Pentest Report

proxyrack_proxy['username'] = 'linjin'

proxyrack_proxy['password'] = 'd16dc4-8d5895-7a81c6-df52b2-ae9182'

proxyrack_proxy['proxy_address'] = 'megaproxy.rotating.proxyrack.net'

lower_port = 10000

upper_port = 10249

proxyrack_proxy['proxy_port'] = random.randint(lower_port, upper_port)

proxy = proxyrack_proxy

concurrency = 20

result_path = '../results/proxyrack/'

result_suffix = '_proxyrack_censorship_json.txt'

cert_filename = '../results/proxyrack/proxyrack_certs.json'

finished_countries_file = 'proxyrack_finished_countries.json'

log_file_path = '../results/proxyrack/'

timeout = 15

dns_server = '184.73.92.183'

http_server = '100.26.203.116'

sni_server = '54.166.38.207'

sni_server = '54.235.225.189'

It is recommended to switch from the current framework proxy setup, which relies on
hardcoded services that may easily become targeted, to a dynamic configuration where
user-specific configuration data could be added to avoid a single point of failure.

7ASecurity © 2023
40

https://7asecurity.com

Pentest Report

WP5: Supply Chain Implementation Analysis

Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202261,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta62, Github63, Magento64, SolarWinds65

and Codecov66, among many others. In order to mitigate this concerning trend, Google
released an End-to-End Framework for Supply Chain Integrity in June 202167, named
Supply-Chain Levels for Software Artifacts (SLSA)68.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the Ground Truth project, as audited against the SLSA framework.
SLSA assesses the security of software supply chains and aims to provide a consistent
way to evaluate the security of software products and their dependencies.

The following sections elaborate on the results against version 1.0 of the SLSA
standard.

In general, the first notable finding was that the Ground Truth team had no formal
documentation for processes or procedures specific to supply chain security.

At the time of this assignment, components in scope can be grouped into:
● Web server

○ https://e2ecensor.github.io/
○ https://github.com/e2ecensor/e2ecensor.github.io

● Python scripts
○ https://github.com/e2ecensor/Disguiser_public
○ https://github.com/e2ecensor/newDisguiser

● Backend Control Server(s)

68 https://slsa.dev/spec/
67 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
66 https://blog.gitguardian.com/codecov-supply-chain-breach/
65 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
64 https://sansec.io/research/rekoobe-fishpig-magento
63 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
62 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
61 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2023
41

https://e2ecensor.github.io/
https://github.com/e2ecensor/e2ecensor.github.io
https://github.com/e2ecensor/Disguiser_public
https://github.com/e2ecensor/newDisguiser
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

The web server and Python scripts are hosted in Github. The web server is powered by
the al-folio69 theme with Jekyll and is created automatically from source code using
Github Actions70, generating unsigned metadata71 about how the build is created and the
deployment is performed. The python scripts are simple files and no build process was
found based on them. These scripts have been included in the analysis because
researchers need information to decide whether or not to trust the scripts.

Finally, the backend control servers only have ports 80, 443, and 53 open for
simultaneously accepting HTTP, HTTPS, and DNS requests hosted in AWS. These
services have been installed by default and have almost no additional configuration. For
this reason, backend control servers have not been included in the Supply Chain
Implementation Analysis.

In order to produce artifacts with a specific SLSA level, the responsibility is split between
the Producer and the Build platform. Broadly speaking, the Build platform must
strengthen the security controls in order to achieve a specific level, while the Producer
must choose and adopt a Build platform capable of achieving a desired SLSA level,
implementing security controls as specified by the chosen platform.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees, represents the lack of SLSA72.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge73.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance74.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection75.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

75 https://slsa.dev/spec/v1.0/levels#build-l3
74 https://slsa.dev/spec/v1.0/levels#build-l2
73 https://slsa.dev/spec/v1.0/levels#build-l1
72 https://slsa.dev/spec/v1.0/levels#build-l0
71 https://github.com/e2ecensor/e2ecensor.github.io/actions
70 https://github.com/features/actions
69 https://github.com/alshedivat/al-folio

7ASecurity © 2023
42

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://github.com/e2ecensor/e2ecensor.github.io/actions
https://github.com/features/actions
https://github.com/alshedivat/al-folio
https://7asecurity.com

Pentest Report

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

Producer - Web server

Ground Truth selected Github as the build platform. Github is capable of producing Build
Level 3 provenance. The build process is consistent, as all steps are scripted using
Github Actions. Given that each time the Build is run, the Build platform generates logs
that would be considered as valid unstructured Provenance, sufficient to comply with
Level 1 of SLSA v1.0.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ✅ ⛔ ⛔

Producer - Python scripts

Ground Truth selected Github to host python scripts. Github is capable of producing
Build Level 3 provenance. The python scripts are simply stored files and no build
process was found based on them.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ⛔ ⛔ ⛔

Distribute provenance ⛔ ⛔ ⛔

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and

7ASecurity © 2023
43

https://7asecurity.com

Pentest Report

organizations that may influence the build. A build platform is often a hosted,
multi-tenant build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

Build platform - Web server

The build process is scripted using Github Actions, meeting the Hosted requirement.
Given that each time the Build is run, the Build platform generates unsigned logs that
would be considered as valid unstructured Provenance, sufficient to comply with Level 1
of SLSA v1.0.

Requirement Degree L1 L2 L3

Provenance generation Exists ✅ ✅ ✅

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ✅ ✅

Isolated ⛔

Build platform - Python scripts

Ground Truth selected Github to host python scripts. The python scripts are simple files
and no build process was found based on them.

Requirement Degree L1 L2 L3

Provenance generation Exists ⛔ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ⛔ ⛔

Isolated ⛔

In conclusion, only the Ground Truth Web server component is SLSA Build L1 (v1.0)
compliant. Since the Web server and Python scripts components are stored in Github,

7ASecurity © 2023
44

https://7asecurity.com

Pentest Report

due to the available GitHub tools it is possible to improve the Build level as follows:
● From the python scripts, build a python package and upload76 it to the Python

Package Index (PyPI)77.
● GitHub Actions7879 should be leveraged to build and release the new python

package. This would satisfy the requirement for choosing an appropriate build
platform, as well as resolve the provenance-generation issue, given that each
time the build is run, the build log would be considered as a valid unstructured
provenance, sufficient to comply with SLSA Build L1 (v1.0).

● After the above, automated tools like slsa-github-generator80 and slsa-verifier81,
could be integrated into the build process for the Web server and python scripts
components to further harden the supply chain implementation.

81 https://github.com/slsa-framework/slsa-verifier
80 https://github.com/slsa-framework/slsa-github-generator
79 https://pythonprogramming.org/automatically-building-python-package-using-github-actions/
78 https://docs.github.com/en/actions
77 https://pypi.org/
76 https://packaging.python.org/en/latest/tutorials/packaging-projects/

7ASecurity © 2023
45

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://pythonprogramming.org/automatically-building-python-package-using-github-actions/
https://docs.github.com/en/actions
https://pypi.org/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://7asecurity.com

Pentest Report

WP6: Ground Truth Lightweight Threat Model

Introduction

The Disguiser and newDisguiser tools aim to provide an end-to-end framework for
measuring Internet censorship practices with Ground Truth. The project involves the
deployment of various components, datasets, and vantage points to accurately
investigate global Internet censorship practices.

Threat model analysis assists organizations to proactively identify potential security
threats and vulnerabilities, enabling them to develop effective strategies to mitigate
these risks before they are exploited by attackers. Furthermore, this often helps to
improve the overall security and resilience of a system or application.

The aim of this section is to facilitate the identification of potential security threats and
vulnerabilities that may be exploited by adversaries, along with possible outcomes and
appropriate mitigations.

Relevant assets and threat actors

The following assets are considered important for the Ground Truth project:
● Ground Truth source code
● Underlying Ground Truth dependencies
● Ground Truth researcher device (client)
● Ground Truth backend control server infrastructure
● Ground Truth project results
● Ground Truth project documentation

The following threat actors are considered relevant to the Ground Truth project:
● External malicious attackers (TA1)
● Internal collaborator (TA2)
● Third-party libraries (TA3)

7ASecurity © 2023
46

https://7asecurity.com

Pentest Report

Attack surface

In threat modeling, an attack surface refers to any possible point of entry that an attacker
might use to exploit a system or application. This includes all the paths and interfaces
that an attacker may use to access, manipulate or extract sensitive data from a system.
By understanding the attack surface, organizations are typically able to identify potential
attack vectors and implement appropriate countermeasures to mitigate risks. The
following diagram provides an overview of potential attacks against the framework as
envisioned by 7ASecurity:

Fig.: Possible attacks

The identified threats against the Ground Truth components are as follows:

Threat 1 (TID1): Leakage of hard-coded credentials

Overview: Sensitive data extracted from the publicly available source code may allow
attackers to gain unauthorized access to internal systems or services used by the
environment.

7ASecurity © 2023
47

https://7asecurity.com

Pentest Report

Possible Outcome: Service disruption and financial loss in case of access to paid 3rd
party services. Potential privilege escalation, in case of access to internal infrastructure
resources (e.g. cloud environments, virtual machines).

Attack Scenario: The attacker extracts publicly available credentials hard-coded in the
source code to access 3rd party services like IPinfo82, ProxyRacks83, RIPE Atlas84, etc.

Recommendation: Utilization of secret scanning solutions to prevent storing sensitive
data in the source code. Specialized solutions to store and manage secrets. Automated
and parameterized build and deployment strategies. Separate development, testing and
production environments compliant with appropriate security standards.

Threat 2 (TID2): Man-in-the-middle attacks against the client scripts

Overview: Data transferred over insecure, especially plaintext protocols may be easily
modified by a malicious third party.

Possible Outcome: In-transit data modification or data sniffing may lead to service
disruptions, censorship evasion, incorrect data collection, sensitive data disclosure and
attacks against the scripts/libraries used by the researchers potentially leading to a
compromise of the underlying machines.

Attack Scenario:
In-transit data modification to 3rd party services like IPinfo. Sniffing data to ProxyRack
HTTP proxy. DNS rebinding attacks. Crafting HTML responses to target internal libraries.

Recommendation: Adequate input validation and exception handling should be
implemented to prevent attackers from injecting malicious code. Parsing libraries ought
to be regularly patched and any parser-related code needs to be reviewed to ensure
secure coding practices are enforced in order to minimize the risk of introducing
user-input parsing vulnerabilities.

Threat 3 (TID3): Unauthorized access to servers via management interfaces

Overview: Exposed management interfaces, such as SSH, may be used by attackers to
gain a foothold within the environment.

84 https://atlas.ripe.net/docs/apis/rest-api-manual/api_keys.html
83 https://help.proxyrack.com/en/articles/5821332-authentication-and-ip-whitelisting
82 https://ipinfo.io/developers#authentication

7ASecurity © 2023
48

https://atlas.ripe.net/docs/apis/rest-api-manual/api_keys.html
https://help.proxyrack.com/en/articles/5821332-authentication-and-ip-whitelisting
https://ipinfo.io/developers#authentication
https://7asecurity.com

Pentest Report

Possible Outcome: The attacker may gain access to the underlying operating system.

Attack Scenario: An exposed SSH interface with a weak password may be easily
brute-forced by the attacker to gain access to the remote machine.

Recommendation:
Configure firewalls to prevent management interface access from unknown IP
addresses. Harden the underlying operating systems and use strong authentication
methods. Configure automatic updates to promptly apply security patches. use only
strong authentication methods. Create personal accounts for all users to ensure proper
accountability and follow the least privilege principle. Configure logging, monitoring and
adequate alerts for early detection and contention of potential attacks.

Threat 4 (TID4): Exploitation of a known vulnerability in a service

Overview: Outdated software may contain known vulnerabilities that may be easily
exploited using publicly known methods.

Possible Outcome: The attacker may gain access to the underlying operating system
and tamper the Ground Truth data leading to service disruption or incorrect data
collection.

Attack Scenario: Enumerate the version of the services running on the virtual machine.
Exploitation using a publicly known exploit.

Recommendation: Operating system and service hardening including a configuration of
automatic updates. Server banner removal to prevent easy version enumeration. Robust
logging and monitoring as well as WAF configuration to detect and block exploitation
attempts. Strict firewall rules to expose only necessary resources.

Threat 5 (TID5): Exploitation of a known vulnerability in a library used by the
software

Overview: Outdated libraries may be used by more sophisticated attackers to target the
researchers running the software.

Possible Outcome: Attacking the parsers used by the software may vary from low-level
issues disrupting the service (denial-of-service) to critical issues (remote code execution)
targeting researcher machines.

7ASecurity © 2023
49

https://7asecurity.com

Pentest Report

Attack Scenario: The attacker may monitor the dependencies used by the software to
identify vulnerable libraries. In the case of parsers, the attacker may potentially craft a
malicious HTML page to trigger the vulnerability and potentially gain control over the
underlying machine.

Recommendation: Dependency vulnerability scanning should be regularly leveraged to
scan the source code. The development team ought to be alerted in the event of the
identification of a vulnerable dependency. Consideration should be given to pinning the
dependencies to known stable versions, as this prevents supply chain attacks, when the
provider of the library is compromised and pushes malicious code to the public
repository.

Threat 6 (TID6): Compromised GitHub Collaborator

Overview: An attacker with privileged access may tamper with the source code and
pivot to various environments.

Possible Outcome: All resources executing tampered source code may get
compromised, leading to sensitive data leakage, service disruption and reputation
damage.

Attack Scenario: The attacker gains access to a GitHub account (e.g. via a phishing
campaign) of a user who has collaborator privileges and pushes malicious code to the
main branch.

Recommendation: A robust DevSecOps process ought to be employed to protect all
possible phases of the software development life cycle. Consideration should be given to
automated, but staged builds which require multiple collaborators to review and accept
changes to the source code before it is deployed. Security settings (e.g. MFA) should be
enforced for services used by staff. Security awareness and sensitive data handling
training may then be provided to staff members. Emergency accounts must then be in
place, in case a highly privileged account is compromised. security procedures may then
be tested using a scenario-based approach to validate in practice security processes.

7ASecurity © 2023
50

https://7asecurity.com

Pentest Report

WP7: Privacy Analysis Findings

This section covers the privacy-related analysis results that attempt to answer 12
questions forWP7: Privacy tests against Ground Truth Servers & Clients. For this portion
of the engagement, the 7ASecurity team utilizes the following classification to specify the
level of certainty regarding the documented findings. Given that this research occurred
on the basis of reverse engineering, and source code analysis, it is necessary to classify
the findings to address the level of confidence that can be assumed for each discovery:

● Proven: Source code and runtime activity clearly confirm the finding as fact
● Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
● Assumed: Indications of a potential privacy concern was found but a broader

context remains unknown.
● Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

GRT-01-Q01: Files & Information gathered by Ground Truth (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q1: What files/information are gathered by the Ground Truth scripts and servers?

During the audit, it was confirmed that Ground Truth does not collect sensitive
information, as the framework mainly deals with censorship statistics. However,
7ASecurity identified a number of cases where the scripts are prone to Denial of Service
attacks through crafted HTTP responses. The vulnerabilities are especially important as
they may compromise data gathering processes and alter the collected statistics directly
from the censor-level sending the response back to the client (GRT-01-002).

By design, the Ground Truth framework processes information provided by the control
server deployed and acts as a static payload used for experimental data. The same
information is being processed for censorship detection purposes and the results are
interpreted, compared and stored in local files. Among the primary information stored by
the framework, the team noted various text and JSON formatted files containing
configuration data or a list of domain names gathered from public data. The results are
saved using either CSV or JSON file extensions. The following examples illustrate the
non-sensitive nature of the information gathered:

Example File: Configuration File Loading
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d

7ASecurity © 2023
51

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/proxyrack.py#L208
https://7asecurity.com

Pentest Report

22dade26/Analysis/proxyrack.py#L208

Example Code: Proxy Script
if __name__ == "__main__":

start = time.time()

country_count = {}

while True:

end = time.time()

if end - start > 86400 * 7:

break

if len(country_count) != 0:

flag = True

for item_count in country_count.items():

if item_count[1]<=20:

flag = False

break

if flag:

break

read domain

data = read_domain("./http_overall.txt")

read proxy info

with open("./proxy.json") as f:

proxy = json.loads(f.read())

Example File Contents: http_overall.txt
{"country": "Japan", "total_domains": 1914, "domain": ["www.serials.ws", "go-text.me",

"astalavista.box.sk", "cultdeadcow.com", "insecure.org", "metasploit.com", "rarbg.to",

"thepiratebay.org", "www.3sk.co", "www.52pojie.cn", "www.abortionno.org",

"www.blackhat.be", "www.darknet.org.uk", "www.exploit-db.com", "www.hackcanada.com",

"www.hackforums.net", "www.hackhull.com", "www.hacktivismo.com", "www.kinogo.by",

"www.oovoo.com", "www.royalvegas.com", "www.seasonvar.ru", "www.yts.mx",

"www.fadsabs.com", "www.fadsecs.com", "www.fadsims.com", "www.fadsips.com",

"www.fadskis.com", "www.fadslims.com", "www.fadsoks.com", "www.fadspms.com",

"www.sadsecz.com", "secure.proxpn.com", "www.ladbible.com", "www.phenoelit.org"],

"category": ["Illegal or Unethical", "Instant Messaging", "Illegal or Unethical",

"Hacking", "Information Technology", "Information Technology", "Illegal or Unethical",

"Illegal or Unethical", "Information Technology", "Newsgroups and Message Boards",

"Abortion", "Hacking", "Information Technology", "Hacking", "Hacking", "Hacking",

"Hacking", "Hacking", "Illegal or Unethical", "Internet Telephony", "Gambling",

"Illegal or Unethical", "Illegal or Unethical", "Advertising", "Spam URLs", "Spam

URLs", "Spam URLs", "Malicious Websites", "Advertising", "Spam URLs", "Malicious

Websites", "Spam URLs", "Proxy Avoidance", "Personal Websites and Blogs", "Hacking"],

"text": [13964, 28998, 3451, 3448, 3445, 3447, 3649, 3665, 3458, 3462, 3621, 3448,

3451, 3451, 3451, 3451, 3449, 3452, 3461, 3611, 3621, 3464, 3447, 3458, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 21510, 21510, 21510, 21510, 21510, 21512, 21510, 21510, 21510],

"is_timeout": [false, false, false, false, false, false, false, false, false, false,

false, false, false, false, false, false, false, false, false, false, false, false,

7ASecurity © 2023
52

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/proxyrack.py#L208
https://7asecurity.com

Pentest Report

false, false, true, true, true, true, true, true, true, true, true, false, false,

false, false, false, false, false, false, false, false, false, false, false],

"total_requests": 344520, "count": 35, "percentage": 0.018286311389759665}[...]

Example File: Domain File loading
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Analysis/allDomain/processAllDomain.py#L4

Example Code: Domain Loading
import sys, os

import json

def main():

with open("allDomain.txt", "r") as f:

data = f.read()

domainJson = json.loads(data)

domainList = domainJson.keys()

for domain in domainList:

print(domain)

return 0

if __name__ == '__main__':

main()

Example File Contents: allDomain.txt
{

"www.serials.ws": [

"Japan",

"Mexico",

"Italy",

"Thailand",

"South Korea",

"France",

"Argentina",

"Chile",

"Australia",

"Kazakhstan",

"United Arab Emirates",

"Ukraine",

"Germany",

"United Kingdom",

"New Zealand",

"Taiwan",

"Czechia",

7ASecurity © 2023
53

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/allDomain/processAllDomain.py#L4
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/allDomain/processAllDomain.py#L4
https://7asecurity.com

Pentest Report

"Ecuador",

"Panama",

"Palestine",

"Israel",

"Nicaragua",

"Moldova",

"Kuwait",

"El Salvador",

"Palestinian Territory",

"Yemen"

],[...]

The HTTP analysis results are saved in excel files and correlated to determine the
number of suspicious censored traffic:

Fig.: Results from HTTP analysis

Furthermore, interpreted results are saved in Excel files and contain numbers resulting
from the experimental data sent back and forth between the control server, the client and
the censor list selected with the applied logic evaluation.

7ASecurity © 2023
54

https://7asecurity.com

Pentest Report

Fig.: Experimental results file

Depending on the protocol chosen by the user to execute censorship tests, the scripts
perform different traffic analysis operations and save the results in local files.

Example File: Proxyrack Process Script
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/proxyrack_process.py#L232

Example Code: How results are saved
with open('../materials/domain_webpage/valid_domains.txt') as f:

valid_domains = f.read().strip().split()

valid_domain_dic = dict()

for domain in valid_domains:

valid_domain_dic[domain] = True

protocol = sys.argv[1]

if protocol == 'dns':

result_dic = process_dns()

if protocol == 'http':

result_dic = process_http()

7ASecurity © 2023
55

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L232
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L232
https://7asecurity.com

Pentest Report

if protocol == 'sni':

result_dic = process_sni()

with open(result_path + start_date + '/' + start_date + '_' + protocol + '_final.txt',

'w') as f:

for country in result_dic.keys():

json_string = json.dumps(result_dic[country])

f.write(json_string + '\n\n')

As illustrated in the examples above, since the nature of the data gathered is not
sensitive, there is no action required from the Ground Truth team to improve the privacy
posture in regards to this question.

GRT-01-Q02: Insecure Ground Truth Traffic Leads to RCE & Spoofing (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q2: Where and how are the files/information gathered transmitted?
What information can the ISP see, if a user is using the scripts in a high risk scenario?

Ground Truth was found to use clear-text HTTP communications for a number of
purposes, which enables the exploitation of Remote Command Execution (RCE)
vulnerabilities (GRT-01-004, GRT-01-019), as well as spoofing and misclassification of
censorship results, via modification of clear-text HTTP traffic (GRT-01-019).

Additionally, in regard to the censorship results and analysis process, the team noted a
number of vulnerabilities that could create potential false positives, misclassifications or
spoofed results (GRT-01-001, GRT-01-017).

Regarding where the information is transmitted, Ground Truth sends data generated
from public sources when making the setup for the framework. The control server
contains static payloads that are used for censorship tests and the traffic is sent to the
list of censors.

Example File: Framework Setup Script
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/setup.py#L4

Example Code: Set up
def setup(platform):

if platform == 'proxyrack':

7ASecurity © 2023
56

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/setup.py#L4
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/setup.py#L4
https://7asecurity.com

Pentest Report

proxyrack proxy setup

proxyrack_proxy = dict()

proxyrack_proxy['username'] = 'linjin'

proxyrack_proxy['password'] = 'd16dc4-8d5895-7a81c6-df52b2-ae9182'

proxyrack_proxy['proxy_address'] = 'megaproxy.rotating.proxyrack.net'

lower_port = 10000

upper_port = 10249

proxyrack_proxy['proxy_port'] = random.randint(lower_port, upper_port)

proxy = proxyrack_proxy

concurrency = 20

result_path = '../results/proxyrack/'

result_suffix = '_proxyrack_censorship_json.txt'

cert_filename = '../results/proxyrack/proxyrack_certs.json'

finished_countries_file = 'proxyrack_finished_countries.json'

log_file_path = '../results/proxyrack/'

timeout = 15

dns_server = '184.73.92.183'

http_server = '100.26.203.116'

sni_server = '54.166.38.207'

sni_server = '54.235.225.189'

if platform == 'vpn':

proxy = dict()

concurrency = 50

result_path = '../results/vpn/'

result_suffix = '_vpn_censorship_json.txt'

cert_filename = '../results/vpn/vpn_certs.json'

finished_countries_file = ''

log_file_path = '../results/vpn/'

timeout = 5

dns_server = '3.91.105.244'

http_server = '52.91.166.212'

sni_server = '18.207.203.33'

#sni_server = '3.80.202.200'

Example File: HTTP Analysis Script
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Analysis/http_analysis.py#L8

Example Code: Censhorship Analysis
url_list = ["", "", "", "", "", "", ""]

correct_http_page = 'http\n'

[...]

for domain in data['domain']:

for url in url_list:

vp_response = data['domain'][domain][url]['text']

7ASecurity © 2023
57

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/http_analysis.py#L8
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Analysis/http_analysis.py#L8
https://7asecurity.com

Pentest Report

if vp_response == correct_http_page:

data['domain'][domain][url] = "no censorship - correct http"

else:

try:

vp_title = BeautifulSoup(vp_response,

"html.parser").title.string

local_title = webpage_title_dic[domain]

if vp_title == local_title and local_title != '':

data['domain'][domain][url] = "no censorship - correct

title"

else:

data['domain'][domain][url] = "detect censorship - wrong

title"

except:

data['domain'][domain][url] = "detect censorship - wrong http"

It is recommended to extrapolate the mitigation guidance offered under GRT-01-019 to
resolve this issue.

GRT-01-Q03: Ground Truth does not store or deal with PII (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q3: Is sensitive PII insecurely stored or easily retrievable from the scripts or servers?

During the testing and code review processes, the audit team did not identify any
processing of sensitive PII data. The results of the scripts are stored locally and they
only contain statistical information about the experiment. Furthermore, any emails
contained in the scripts belong to the Ground Truth developers.

Example File: HTTP Analysis Request Script
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98b
a007b2e8e7/analysis/http_heuristics.py#L9

Example Code:
correct_http_page = 'http\n'

correct_http_contact = 'linjin@udel.edu'

result_path = '../results/proxyrack/'

start_date = sys.argv[1]

suffix = 'http_proxyrack_censorship_json.txt'

7ASecurity © 2023
58

https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/analysis/http_heuristics.py#L9
https://github.com/e2ecensor/Disguiser_public/blob/8ec0f0ae76ecb894e68e2b810fa98ba007b2e8e7/analysis/http_heuristics.py#L9
https://7asecurity.com

Pentest Report

with open('../results/proxyrack/excluded/excluded_http_probe.txt') as f:

http_excluded_ip = f.read().strip().split()

with open('../results/proxyrack/excluded/excluded_http_probe_manual.txt') as f:

http_excluded_ip_manual = f.read().strip().split()

with open('../materials/domain_webpage/valid_domains.txt') as f:

valid_domains = f.read().strip().split()

valid_domain_dic = dict()

for domain in valid_domains:

valid_domain_dic[domain] = True

[...]

Command:
newuser@ip-172-31-39-21:/var/www/35.180.190.69$ ls -lah

Output:
total 12K

drwxr-xr-x 2 root root 4.0K Aug 21 18:45 .

drwxr-xr-x 5 root root 4.0K Aug 21 16:37 ..

-rw-r--r-- 1 root root 5 Aug 21 18:45 index.html

Command:
newuser@ip-172-31-39-21:/var/www/35.180.190.69$ cat index.html

Output: Content of the control server static page
http

As illustrated in the example above, since the nature of the data gathered is not
sensitive, there is no action required from the Ground Truth team to improve the privacy
posture in regards to this question.

7ASecurity © 2023
59

https://7asecurity.com

Pentest Report

GRT-01-Q04: Ground Truth does not protect Data at Rest or in Transit (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q4: Do the scripts and servers protect the data appropriately at rest and in transit?

First of all, it should be noted that the kind of data Ground Truth deals with is merely
statistics, not Personally Identifiable Information (PII) and hence, the data is not sensitive
by nature. That being said, during the code review phase, 7ASecurity noted that data is
not protected in transit or at rest. The majority of the results and configuration files are
kept locally, on the script root directory location.

Regarding data protection in transit, a general weakness exists via the predictability of
the IPs that Ground Truth will use, as described in GRT-01-020. However, a more
serious concern is the usage of clear-text network protocols leading to RCE
vulnerabilities (GRT-01-019).

Regarding data protection at rest, the following code snippet illustrates how Ground
Truth uses clear-text files:

Example File: Proxyrack Process Script
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/proxyrack_process.py#L232

Example Code: How results are saved
with open('../materials/domain_webpage/valid_domains.txt') as f:

valid_domains = f.read().strip().split()

valid_domain_dic = dict()

for domain in valid_domains:

valid_domain_dic[domain] = True

protocol = sys.argv[1]

if protocol == 'dns':

result_dic = process_dns()

if protocol == 'http':

result_dic = process_http()

if protocol == 'sni':

result_dic = process_sni()

with open(result_path + start_date + '/' + start_date + '_' + protocol + '_final.txt',

'w') as f:

for country in result_dic.keys():

json_string = json.dumps(result_dic[country])

f.write(json_string + '\n\n')

7ASecurity © 2023
60

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L232
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L232
https://7asecurity.com

Pentest Report

It is recommended to store output data in a secure location that can provide access
control, data encryption and anti-tampering options.

It is also recommended to extrapolate the mitigation guidance offered under GRT-01-019
to resolve this issue.

GRT-01-Q05: Ground Truth does not gather Excessive Data (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q5: Is there any data gathered on the scripts & servers beyond what is necessary for the
service?

During the code review and dynamic analysis of the Ground Truth framework, the audit
team noted that no excessive data is either generated or gathered. The Ground Truth
static payloads are exercised exclusively for experimental data and the public domain list
and configuration files are used primarily for statistical analysis and setup. Furthermore,
none of this information is sensitive.

The following example illustrates how the gathered data consists of the static payload
data being received from the censor through the client-control server communication.

Example File: Probing censor
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/proxy_request.py#L261

Example Code:
try:

sni_result['cert'] = ssl.DER_cert_to_PEM_cert(wrapped_socket.getpeercert(True))

x509 = OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_PEM,

sni_result['cert'])

sni_result['cert_serial'] = str(x509.get_serial_number())

if sni_result['cert_serial'] != '[..]' and sni_result['cert_serial'] != '[..]' and

sni_result['cert_serial'] != '0':

request = "GET / HTTP/1.1\r\nHost: %s\r\nUser-Agent: Mozilla/5.0\r\n\r\n" %

domain

request = request.encode()

wrapped_socket.send(request)

try:

raw_http_response = recvall(wrapped_socket)

is_http_timeout = False

except socket.timeout:

7ASecurity © 2023
61

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxy_request.py#L261
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxy_request.py#L261
https://7asecurity.com

Pentest Report

raw_http_response = b''

is_http_timeout = True

except:

raw_http_response = b''

is_http_timeout = False

http_result = process_raw_http_response_from_sni(raw_http_response,

is_http_timeout)

sni_result['http_result'] = http_result

No action is required by Ground Truth to improve the privacy posture in this regard.

GRT-01-Q06: Ground Truth does not Track Users (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q6: Do the scripts implement any sort of user tracking function via location or other
means?

During the source code review, 7ASecurity did not identify any signs of user tracking
functionality, as by design, the framework does not implement such features. Instead,
the scripts perform data tracking and integrity checks. The following diagram illustrates
how Ground Truth just tracks censorship, not users:

Fig.: Framework design according to https://e2ecensor.github.io/design/

No action is required by Ground Truth to improve the privacy posture in this regard.

7ASecurity © 2023
62

https://e2ecensor.github.io/design/
https://7asecurity.com

Pentest Report

GRT-01-Q07: Ground Truth does not weaken Crypto (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q7: Do the scripts intentionally weaken cryptographic procedures to ensure third-party
decryption?

7ASecurity was unable to find any instances of intentional weakening of cryptography
during this assignment. Broadly speaking, as per the design of the framework, the
cryptographic procedures are standard for the outbound and inbound traffic sent through
the control server and the client. Furthermore, the scripts are using checks for analyzing
censorship certificate tampering, as illustrated in the following code snippet:

Example File: Proxyrack analysis
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d
22dade26/Disguiser/code/proxyrack_process.py#L6

Example Code:
correct_http_page = 'http\n'

correct_http_contact = 'linjin@udel.edu'

correct_cert_serial = ['85723161702102284164881707705813409552803205256',

'201614099203817838842043426670715639081255164964']

[...]

if test_result['cert_serial'] not in correct_cert_serial:

if domain not in result_dic[country]['domain']:

result_dic[country]['domain'][domain] = dict()

result_dic[country]['domain'][domain]['category'] =

domain_category_dic[domain]

result_dic[country]['count'] += 1

result_dic[country]['domain'][domain]['status_code'] =

test_result['status_code']

result_dic[country]['domain'][domain]['url'] =

test_result['url']

result_dic[country]['domain'][domain]['cert_serial'] =

[test_result['cert_serial']]

result_dic[country]['domain'][domain]['ip'] = [ip]

No action is required by Ground Truth to improve the privacy posture in this regard.

7ASecurity © 2023
63

https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L6
https://github.com/e2ecensor/newDisguiser/blob/1aa8e246f3dc69470bd17be073652e1d22dade26/Disguiser/code/proxyrack_process.py#L6
https://7asecurity.com

Pentest Report

GRT-01-Q08: Ground Truth saves Data in Insecure Locations (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q8: Is data dumped in insecure locations from where it could be retrieved later by an
attacker or malicious insiders?

First of all, it must be emphasized again that the nature of the data that Ground Truth
deals with is of a non-sensitive nature, hence, even though the data is saved insecurely,
there are no sensitive secrets to protect either.

In the event that Ground Truth starts collecting more sensitive data in the future, the
following points can be considered to further enhance the privacy posture:

The AWS cloud configuration data volumes across all used regions were found to be
stored without prior encryption at rest. Although no sensitive data was identified in the
stored volumes, potential flaws in the AWS implementation might allow unauthorized
attackers to access the volume (GRT-01-005).

It is advised to extrapolate the mitigation guidance offered under GRT-01-005 to resolve
this issue.

GRT-01-Q09: Ground Truth contains RCE Vulnerabilities (Proven)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q9: Do the scripts or servers contain vulnerabilities or shell commands that could lead to
RCE in any way?

During the code review and fuzzing of the Ground Truth scripts and web deployments,
the team noted multiple Remote Code Execution vulnerabilities which may be exploited
though attacker-supplied domain files (GRT-01-003), crafted configuration files
(GRT-01-004), as well as attacker-tampered clear-text traffic (GRT-01-019).

While 7ASecurity believes these vulnerabilities have not been introduced intentionally,
they should be resolved to improve the overall security posture of the platform, and
avoid putting researchers using this tool at risk from government-sponsored adversaries.

7ASecurity © 2023
64

https://7asecurity.com

Pentest Report

GRT-01-Q10: Ground Truth does not appear to contain Backdoors (Assumed)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q10: Do the scripts or servers have any kind of backdoor?

7ASecurity did not identify any evidence of intentional process or command execution
calls commonly used by backdoors or malware in the Ground Truth framework scripts
during this audit. However, the seemingly unintended RCE vulnerabilities spotted
throughout this audit (GRT-01-003, GRT-01-004, GRT-01-019) should be resolved to
improve the security posture and fully resolve this issue.

GRT-01-Q11: Ground Truth does not try to gain Root Privileges (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q11: Do the scripts attempt to gain root access through public vulnerabilities or in other
ways?

At the time of writing, no evidence could be identified to suggest that any of the
framework components are trying to leverage or exploit platform-specific vulnerabilities
to gain elevated privileges. Therefore, no action is required by Ground Truth to improve
the privacy posture in this regard.

GRT-01-Q12: Ground Truth uses no Obfuscation (Unclear)

This ticket summarizes the 7ASecurity attempts to answer the following question:

Q12: Do the scripts use obfuscation techniques to hide code and if yes for which files
and directories?

7ASecurity found no obfuscation evidence across the codebase. Furthermore, the
Ground Truth framework is operating at a high transparency level already, as the code is
publicly available online, without any closed-source components. Hence, no action is
required by Ground Truth to improve the privacy posture in this regard.

7ASecurity © 2023
65

https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the Ground
Truth solution defended itself well against a broad range of attack vectors. The platform
will become increasingly difficult to attack as additional cycles of security testing and
subsequent hardening continue.

The Ground Truth framework provided a number of positive impressions during this
assignment that must be mentioned here:

● 7ASecurity was unable to identify any vulnerability on the official Ground Truth
website. The reason for this is that Ground Truth leverages hardened third party
components which offer little attack surface for this part of the project.
Specifically, the web server is powered by the al-folio85 theme with Jekyll and is
created automatically from source code using Github Actions86, which explains
why no web server or web attack vector vulnerabilities could be identified during
this assignment.

● The proxy server and VPN connections are constantly checked for service
downtime and connectivity status.

● SSH is guarded using SSH keys rather than a simple password. Furthermore, in
some cases the port is not even exposed to the Internet.

● Regarding the privacy audit, it was confirmed that Ground Truth does not collect
sensitive information or track users, as it only deals with censorship statistics.

The security of the Ground Truth solution will improve substantially with a focus on the
following areas:

● Reduction of the Attack Surface: A number of critical Remote Code Execution
(RCE) issues identified during this assignment occurred because the platform
concatenates tainted input into operating system commands that are executed
later (GRT-01-003, GRT-01-004, GRT-01-019). All these issues should be
resolved utilizing alternative implementations that do not rely on operating
system commands, such as using the requests library87 instead of cURL
commands, as well as the available python functions for safe execution of
operating system commands88. Furthermore, strong consideration should be
given to implement a container-based version of the framework that includes
sandboxing to drastically limit the potential for similar attacks in the future.

● TLS Hardening: A number of scripts employ insecure clear-text protocols for

88 https://docs.python.org/3/library/subprocess.html
87 https://pypi.org/project/requests/
86 https://github.com/features/actions
85 https://github.com/alshedivat/al-folio

7ASecurity © 2023
66

https://docs.python.org/3/library/subprocess.html
https://pypi.org/project/requests/
https://github.com/features/actions
https://github.com/alshedivat/al-folio
https://7asecurity.com

Pentest Report

network communications, which facilitates the exploitation of critical RCE
vulnerabilities substantially (GRT-01-019). An effort should be made to stick to
hardened TLS communications to protect users from Man-In-The-Middle (MitM)
attacks. In situations where clear-text protocols are required for testing data,
exposure to attacks should be limited by implementing sandboxing on a pivoting
service designed to route inbound and outbound traffic.

● Input Validation: It is important to perform input validation to ensure that only
correctly formed data enters the application workflow. Strong input validation and
sanitization ought to be in place when using user-supplied data or dynamic
configuration details in operating system commands, as well as any other
sensitive sinks.

● Supply Chain Hardening: The Ground Truth framework should take advantage
of a number of Github features to easily improve its Supply Chain security
posture against the SLSA standard (WP5).

● Software Patching: The platform should implement appropriate software
patching procedures which regularly apply security patches in a timely manner
(GRT-01-010, GRT-01-015). In a day and age when most lines of code come
from underlying software dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible
automation for this could include tools like Snyk.io89 or Renovate Bot90.

● Secret Management should be improved to ensure application secrets are not
disclosed via hardcoded credentials or the commit history (GRT-01-018). Instead,
these ought to be stored outside of the source code to reduce the potential for
leaks and privilege escalation throughout the infrastructure. Special care should
be taken to ensure credentials are also removed from the github history. The
development team should then perform global searches and educate developers
to avoid similar issues in the future. More broadly, adequate IT security and
DevSecOps procedures are needed at the infrastructure level. Insecure storage
of secrets was found at different steps of CI/CD pipeline, which strongly suggests
the whole process should be reviewed holistically and improved.

● Exception Handling ought to be enhanced to avoid censorship spoofing
(GRT-01-001) and DoS (GRT-01-002) via crashes, as well as potential logic
errors (GRT-01-017).

● Automation Improvements: A number of issues identified during this iteration
could have been found by improving the automation of CI/CD pipelines in the
cloud environments (GRT-01-006). It is strongly recommended to leverage
automation (GRT-01-009), such as infrastructure as code (i.e. Terraform), to
develop a self-documented and repeatable multi-cloud infrastructure, as well as

90 https://github.com/renovatebot/renovate
89 https://snyk.io/

7ASecurity © 2023
67

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

uncover and resolve security issues in a timely manner. The approach should
include the configuration of tools that regularly scan the relevant repositories.
Additionally, it is important to ensure deployment processes are reviewed and
improved so that at least two members of staff are required to make any
modification in the production environment.

● Least Privilege: Several of the spotted weaknesses during this exercise had to
do with the potential for privilege escalation due to excessive privileges
(GRT-01-007, GRT-01-013). It is crucial to implement the least privilege security
principle, thoroughly reviewing all permissions to ensure privileges are always
strictly the minimum possible for the solution to operate.

● Implementation of Security Standards: An effort should be made to employ
well-known security standards to harden the cloud environment. A good starting
point in this regard would be to implement the CIS Critical Security Controls91 and
then test security controls against the CIS Benchmarks92.

● Test Environment: Other potential future improvements could include the
implementation of a proof-of-concept Ground Truth infrastructure that acts as a
censor and simulates attacks on the bi-lateral communication with the framework
to test for edge cases.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
platform significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another code audit, is highly recommended to ensure adequate security
coverage of the platform.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Ground Truth
resources as well as perhaps an Azure cloud configuration audit, as access to that could
not be granted on time during this iteration.

92 https://www.cisecurity.org/insights/blog/foundational-cloud-security-with-cis-benchmarks
91 https://www.cisecurity.org/insights/white-papers/cis-controls-cloud-companion-guide

7ASecurity © 2023
68

https://www.cisecurity.org/insights/blog/foundational-cloud-security-with-cis-benchmarks
https://www.cisecurity.org/insights/white-papers/cis-controls-cloud-companion-guide
https://7asecurity.com

Pentest Report

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Shuai Hao, Xiaoqin
Liang and the rest of the Ground Truth team, for their exemplary assistance and support
throughout this audit. Last but not least, appreciation must be extended to the Open
Technology Fund (OTF) for sponsoring this project.

7ASecurity © 2023
69

https://7asecurity.com

