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Introduction   
“Connect Without Internet 
Secure, decentralized messaging for when the internet goes dark. 
Stay connected with Bluetooth mesh networking.” 

From https://noghteha.app/en/ 
 
This document outlines the results of a whitebox security and privacy audit conducted 
against the Noghteha platform. The project was solicited by the Noghteha Team and 
executed by 7ASecurity in January 2026. The audit team dedicated 12 working days to 
complete this assignment. Please note that this is the first penetration test for this 
project. Consequently, the identification of security weaknesses was expected to be 
easier during this engagement, as more vulnerabilities are identified and resolved after 
each testing cycle. 
 
During this iteration the goal was to review the solution as thoroughly as possible, to 
ensure Noghteha users can be provided with the best possible security and privacy. The 
methodology implemented was whitebox: 7ASecurity was provided with access to 
release and debug builds, documentation, and source code. A team of 4 senior auditors 
carried out all tasks required for this engagement, including preparation, delivery, 
documentation of findings and communication. 
 
A number of necessary arrangements were in place by January 2026, to facilitate a 
straightforward commencement for 7ASecurity. In order to enable effective collaboration, 
information to coordinate the test was relayed through email, as well as a shared Signal 
group chat. The Noghteha team was helpful and responsive throughout the audit, which 
ensured that 7ASecurity was provided with the necessary access and information at all 
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding 
the audit status and its interim findings during the engagement. 
 
This audit split the scope items into the following work packages, which are referenced 
in the ticket headlines as applicable: 

●​ WP1: Whitebox Tests against Noghteha Android Application 
●​ WP2: Noghteha Privacy Audit 

 
The findings of the security audit can be summarized as follows: 

Identified Vulnerabilities Hardening Recommendations Total Issues 

10 8 18 

 
Please note that the analysis of the remaining work package (WP2) is provided 
separately, in the following section of this report: 
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●​ WP2: Noghteha Privacy Audit 
 
Moving forward, the scope section elaborates on the items under review, while the 
findings section documents the identified vulnerabilities followed by hardening 
recommendations with lower exploitation potential. Each finding includes a technical 
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus 
mitigation or fix advice for follow-up actions by the development team. 
 
Finally, the report culminates with a conclusion providing detailed commentary, analysis, 
and guidance relating to the context, preparation, and general impressions gained 
throughout this test, as well as a summary of the perceived security posture of the 
Noghteha applications. 
 

Scope 
 
The following list outlines the items in scope for this project: 
 

●​ WP1: Whitebox Tests against Noghteha Android Application 
○​ https://github.com/filtershekanha/Noghteha_Android 

■​ Noghteha Android Version: 1.0.34 
●​ WP2: Privacy Audit of Noghteha Android Application 

○​ As above 
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Identified Vulnerabilities 
 
This area of the report enumerates findings that were deemed to exhibit greater risk 
potential. Please note that these are offered sequentially as they were uncovered, they 
are not sorted by significance or impact. Each finding has a unique ID (i.e. NOG-01-001) 
for ease of reference, and offers an estimated severity in brackets alongside the title. 
 

NOG-01-004 WP1: Lack of Biometric Authentication (Medium) 
 
The Noghteha Android application does not implement password or biometric 
authentication to protect the chat functionality, even after being closed or left idle for an 
extended period. This lack of security significantly increases the risk of unauthorized 
access in high-threat scenarios such as device seizure at protests or physical 
confiscation by authorities. If a physical attacker gains access to an unlocked phone, 
they can fully interact with sensitive functionality, such as reading all messages, viewing 
contact lists, analyzing communication patterns, and accessing mesh network 
configurations, without bypassing any additional authentication. This exposes users to 
severe risks, including identification, surveillance, and potential harm, as all chat data 
and metadata can be accessed without further authentication steps beyond the device 
lock screen. 
 
To improve security and safeguard user data, it is advised to implement biometric 
authentication, such as fingerprint or facial recognition, when reopening the app after 
inactivity. This added layer of security ensures that only the authorized user can access 
sensitive chat messages. For technical guidance, consult the OWASP MASTG Android 
Local Authentication1 documentation to integrate biometric security properly. 
 

NOG-01-005 WP1: Chat Message Access via Memory Leak (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
It was found that chat message content was retained in the Noghteha Android app 
process memory. If an attacker obtains privileged access sufficient to capture a process 
memory dump (for example, via physical access with debugging enabled, root access, 
or local privilege escalation), chat content can be recovered from memory, increasing the 
impact of device compromise in high-threat environments. 
 
To confirm this issue, the app process memory was dumped and reviewed for retained 
chat content. A search for a known message string identified an occurrence in memory. 
 

1 https://mas.owasp.org/MASTG/0x05f-Testing-Local-Authentication/  
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Command: 
strings ./314572800_dump.data | grep "w00tw00t" 

 

Output: 
this is a supersecret message: w00tw00t​
Message from noghteh1337: this is a supersecret message: w00tw00t​
[...] 
 
It is recommended to minimize retention of chat content and key material in long-lived 
in-memory structures and to clear buffers when the data is no longer required (for 
example, on chat exit, logout, or after message processing). For key material, storage in 
immutable objects (for example, java.lang.String) should be avoided where feasible, and 
zeroization should be performed for byte arrays and other mutable buffers after use. 
Immediate removal from memory cannot be guaranteed in a managed runtime due to 
nondeterministic garbage collection; therefore, retention should be minimized and debug 
or diagnostic caches should be bounded and cleared. For additional mitigation guidance, 
please see the Testing Memory for Sensitive Data section of the Mobile Application 
Security Testing Guide (MASTG)2. 
 

NOG-01-006 WP1: DoS via Unbounded Concurrent Handshakes (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A resource exhaustion vulnerability exists in the handshake coordination subsystem 
regarding the handling of pending handshake sessions. While the 
MeshEncryptionCoordinator attempts to enforce a limit on concurrent handshakes 
(MAX_CONCURRENT_HANDSHAKES = 10), this limit is enforced only on outgoing 
initiation and is bypassed by incoming handshake requests. Furthermore, the mitigation 
strategy for outgoing requests introduces a secondary denial-of-service vector via 
coroutine exhaustion. 
 
The application derives a Peer ID directly from the raw bytes of the senderID field in 
incoming packets. Since this identity is unauthenticated during the initial handshake 
phase, an attacker can perform a Sybil attack by broadcasting packets with randomly 
generated senderIDs. When processing these incoming handshake messages, the 
processHandshakeMessage function adds entries to the pendingHandshakes map 
without checking the global limit, allowing unbounded memory growth. Concurrently, 
when the limit is reached for outgoing requests, the initiateHandshake function launches 
a new coroutine to retry after a delay. Under a flood of requests, this results in an O(N) 
increase in suspended coroutines, exhausting system resources. 
 

 

2 https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/  
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Affected File: 
app/src/main/java/com/filtershekanha/noghteha/mesh/MeshEncryptionCoordinator.kt 
 
Affected Code: 
suspend fun processHandshakeMessage(routed: RoutedPacket): ByteArray? {​
    val peerID = routed.peerID ?: return null​
    [...]​
    // Track this handshake if we haven't seen it​
    if (!pendingHandshakes.containsKey(peerID)) {​
        pendingHandshakes[peerID] = HandshakeState(peerID, initiatedByUs = false)​
        _encryptionEvents.emit(EncryptionEvent.HandshakeStarted(peerID))​
    }​
    [...]​
}​
[...]​
fun initiateHandshake(peerID: String, remoteNoisePublicKey: ByteArray? = null) {​
    [...]​
    // Check concurrent handshake limit​
    if (pendingHandshakes.size >= MAX_CONCURRENT_HANDSHAKES) {​
        Log.w(TAG, "Max concurrent handshakes reached, queueing handshake for $peerID")​
        coordinatorScope.launch {​
            delay(1000) // Wait and retry​
            initiateHandshake(peerID, remoteNoisePublicKey)​
        }​
        return​
    }​
    [...]​
} 
 
It is recommended to enforce MAX_CONCURRENT_HANDSHAKES strictly for both 
incoming and outgoing handshake attempts. In processHandshakeMessage, the limit 
should be checked before creating a new HandshakeState; if the limit is reached, the 
incoming request should be dropped without creating a pendingHandshakes entry and a 
warning can be logged. The recursive coroutine pattern in initiateHandshake should be 
replaced with a bounded Channel or a single background job that drains a queue of 
pending requests to prevent unbounded coroutine creation. This ensures that 
pendingHandshakes never exceeds the configured limit under any traffic conditions, 
incoming handshake floods are dropped without allocating map entries, and outgoing 
handshake floods do not spawn excessive coroutines. 
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NOG-01-007 WP1: Unsafe Debug UI in Release Builds (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A design vulnerability exists in DebugSettingsManager.kt and DebugSettingsSheet.kt 
due to the inclusion of unsafe diagnostic features in release builds without adequate 
safeguards. The application ships with a fully functional debug interface 
(DebugSettingsSheet) and a backing singleton manager (DebugSettingsManager) that 
allows modifying critical system parameters at runtime. These settings are persisted to 
SharedPreferences via DebugPreferenceManager, meaning unsafe configurations 
survive application restarts. 
 
The exposed functionality enables trivial DoS and increased data exposure in release 
builds. The setMaxConnectionsOverall method, accessible through a UI slider, allows 
the mesh connection limit to be reduced to as low as 1 without enforcing a safe minimum 
(for example, 3-4 peers), making it easy to accidentally or maliciously isolate the node. 
In addition, setVerboseLoggingEnabled causes decrypted packet metadata and 
connection details to be retained in the in-memory debugMessageQueue, creating a 
persistent cache of sensitive information on the Java heap that would otherwise be 
transient, thereby increasing the impact of memory-corruption issues or post-seizure 
forensic analysis. 
 
Because these methods are public, unguarded, and compiled into the release build, they 
serve as “gadgets” that can be chained with other vulnerabilities (such as the WebView 
JavaScript bridge in NOG-01-009) to escalate a minor compromise into a persistent DoS 
or data leak. 
 
Affected Files: 
app/src/main/java/com/filtershekanha/noghteha/ui/debug/DebugSettingsManager.kt 
app/src/main/java/com/filtershekanha/noghteha/ui/debug/DebugSettingsSheet.kt 
 
Affected Code: 
fun setMaxConnectionsOverall(value: Int) {​
    val clamped = value.coerceIn(1, 32)​
    DebugPreferenceManager.setMaxConnectionsOverall(clamped)​
    _maxConnectionsOverall.value = clamped​
    addDebugMessage(DebugMessage.SystemMessage("Max overall connections set to 

$clamped"))​
}​
[...]​
fun addDebugMessage(message: DebugMessage) {​
    [...]​
    debugMessageQueue.offer(message)​
    [...]​
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} 

 
It is recommended to wrap debug logic and UI initialization in BuildConfig.DEBUG 
checks to ensure that these features are disabled or unreachable in production builds. 
Additionally, DebugPreferenceManager should ignore or clear any debug overrides in 
release builds to prevent persistence from testing environments. This can reduce field 
diagnosability; if diagnostics are required, a separate, explicitly controlled mechanism 
should be provided. 
 
If field diagnostics must remain available in release builds, it is recommended to gate 
access with explicit user authentication (e.g., device biometrics) or a dedicated unlock 
sequence before DebugSettingsManager is enabled. Safe limits should be enforced by 
changing coerceIn(1, 32) to coerceIn(MIN_SAFE_CONNECTIONS, 32), and “Verbose 
Logging” should be automatically disabled after a short timeout (e.g., 15 minutes), with 
the in-memory queue bounded and cleared when the application is backgrounded. 
 

NOG-01-008 WP1: Channel KDF Precomputation Risk (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A cryptographic weakness exists in ChannelManager.kt regarding the key derivation 
mechanism for mesh channels that can reduce resistance to offline password guessing if 
encrypted traffic is captured. The application utilizes a deterministic salt derived from a 
fixed prefix and the channel name combined with PBKDF2 to generate encryption keys. 
This architectural design enables "stateless" channel joining, allowing users to derive the 
correct key for a public channel solely from its name and password without prior network 
negotiation, but it fails to effectively mitigate precomputation attacks for common channel 
names. 
 
Because the salt is globally predictable for any given channel name (e.g., “General”), 
and PBKDF2 is not memory-hard and is amenable to GPU and ASIC acceleration, a 
sophisticated adversary can precompute password-guessing tables for common channel 
names. If encrypted traffic is intercepted, the adversary can use these precomputed 
tables to amortize guesses across many captures, significantly reducing the attack cost 
to recover passwords compared to a random per-channel salt implementation. The 
deterministic salt does not provide per-channel randomness, which increases reliance 
on a memory-hard derivation function to resist GPU acceleration, which the current 
PBKDF2 configuration does not satisfy. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/ui/ChannelManager.kt 
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Affected Code: 
private fun deriveChannelKey(password: CharArray, channelName: String): SecretKeySpec {​
    // PBKDF2 key derivation (same as iOS version)​
    val factory = javax.crypto.SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256")​
    // Use application-specific prefix + channel name as salt to prevent rainbow table 

attacks​
    val saltPrefix = "com.filtershekanha.noghteha.channel.v1:"​
    try {​
        val spec = javax.crypto.spec.PBEKeySpec(​
            password,​
            (saltPrefix + channelName).toByteArray(),​
            100000, // 100,000 iterations (same as iOS)​
            256 // 256-bit key​
        )​
        try {​
            val secretKey = factory.generateSecret(spec)​
            return SecretKeySpec(secretKey.encoded, "AES")​
        } finally {​
            spec.clearPassword()​
        }​
    } finally {​
        CryptoUtils.secureZero(password)​
    }​
} 

 
It is recommended to maintain stateless channel joining while mitigating precomputation 
risk by migrating from PBKDF2 to a memory-hard key derivation function such as 
Argon2id3. Argon2id should be configured with mobile-appropriate parameters (e.g., 
32-64 MB RAM, 1-3 iterations), targeting a derivation time of 150-300 ms on low-end 
devices. This can increase CPU and memory usage; the impact should be mitigated by 
tuning parameters and performing derivation off the UI thread. KDF versioning (e.g., 
v1=PBKDF2, v2=Argon2id) should be implemented to facilitate migration and support 
legacy channels if necessary. Alternatively, secure channels can be introduced that use 
a random salt generated upon creation and distributed alongside the channel name via 
invite links to ensure true per-channel uniqueness, at the cost of requiring an out-of-band 
invite for joining. 
 

 

3 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html  
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NOG-01-010 WP1: DoS via Resource Exhaustion in File Sharing (High) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A DoS vulnerability exists in the file sharing stack due to inefficient memory 
management and quadratic-time decoding logic. This can allow an attacker-controlled 
peer to exhaust CPU and heap resources during file transfers, potentially causing 
application crashes or an unresponsive service. While the application attempts to limit 
file sizes to 100 MB, the implementation of the NoghtehaFilePacket decoder and the 
FileSharingManager logic allows for significant resource exhaustion even within those 
limits. Specifically, the NoghtehaFilePacket.decode function implements a 
“concatenate-on-read” strategy for file content. For every CONTENT TLV received, the 
application uses the + operator to merge the new fragment with the existing buffer. 
 
This operation allocates a new ByteArray and copies the entire existing content each 
time, leading to O(n²) algorithmic complexity in terms of data copying. An attacker can 
exploit this by sending a file fragmented into thousands of small TLVs, pinning the CPU 
and exhausting the heap through repeated large allocations. Furthermore, the 
FileSharingManager.readFileWithChecksumStreaming function utilizes a 
ByteArrayOutputStream that allocates a full-sized buffer in RAM and then performs a 
redundant copy via .toByteArray(), doubling the peak memory footprint during file 
transmission. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/model/NoghtehaFilePacket.kt 
 
Affected Code: 
fun decode(data: ByteArray): NoghtehaFilePacket? {​
    [...]​
    when (t) {​
        [...]​
        TLVType.CONTENT -> {​
            val existing = contentBytes​
            if (existing == null) {​
                contentBytes = value​
            } else {​
                contentBytes = existing + value​
            }​
        }​
        [...]​
    }​
} 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/model/FileSharingManager.kt 
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Affected Code: 
private fun readFileWithChecksumStreaming(file: File): Pair<ByteArray, ByteArray> {​
    [...]​
    val content = BufferedInputStream(FileInputStream(file), CHUNK_SIZE).use { 

bufferedStream ->​
        DigestInputStream(bufferedStream, digest).use { digestStream ->​
            ByteArrayOutputStream(fileSize.toInt().coerceAtMost(Int.MAX_VALUE)).use { 

outputStream ->​
                val buffer = ByteArray(CHUNK_SIZE)​
                var bytesRead: Int​
​
                while (digestStream.read(buffer).also { bytesRead = it } != -1) {​
                    outputStream.write(buffer, 0, bytesRead)​
                }​
​
                outputStream.toByteArray()​
            }​
        }​
    }​
    [...]​
} 
 
It is recommended to refactor NoghtehaFilePacket.decode to parse TLV headers without 
immediate copying and to accumulate CONTENT fragments in a list so that a single 
allocation and copy operation is performed only after all fragments are received. It is also 
recommended to update the file-handling architecture to avoid ByteArrayOutputStream 
usage and redundant in-memory copies by storing a file reference (URI/path) rather than 
raw bytes, allowing data to be streamed directly from disk to the network socket using a 
fixed-size bounded buffer. This reduces peak heap usage but requires validation of 
referenced paths and lifecycle handling for temporary files. 
 
Consolidate all MAX_FILE_SIZE constants into a single source of truth in 
AppConstants.kt and enforce this limit strictly at the start of both encoding and decoding 
paths. In the decoder, maintain a totalContentLen counter during TLV iteration to reject 
the packet immediately if the accumulated length exceeds the protocol maximum, 
ensuring that heap usage remains bounded and does not trigger an OutOfMemoryError 
(OOM) even when processing large files. 
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NOG-01-011 WP1: DoS via Unchecked Fragment Allocation (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A DoS vulnerability exists in the FragmentPayload class within the decode function. The 
application allocates memory for incoming fragment payloads based on the size of the 
received payloadData byte array without enforcing the strict protocol-level maximum 
defined in AppConstants. Specifically, the code uses sliceArray to create a new copy of 
the data on the heap. 
 
Although the protocol intends for fragments to be small (MAX_FRAGMENT_SIZE = 469 
bytes), the decoder does not enforce this limit. If the upstream transport layer (e.g., TCP 
or a bridged connection) allows larger frames, an attacker can send malformed packets 
utilizing the maximum possible transport size (e.g., 1 MB). This function blindly 
duplicates the data into a new array. If such frames are received repeatedly, memory 
pressure is increased for each received frame, accelerating garbage collection (GC) 
thrashing and potentially degrading service stability on low-memory devices. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/model/FragmentPayload.kt 
 
Affected Code: 
fun decode(payloadData: ByteArray): FragmentPayload? {​
    if (payloadData.size < HEADER_SIZE) {​
        return null​
    }​
​
    try {​
        [...]​
        // Extract fragment data (remaining bytes)​
        val data = if (payloadData.size > HEADER_SIZE) {​
            payloadData.sliceArray(HEADER_SIZE..<payloadData.size)​
        } else {​
            ByteArray(0)​
        }​
​
        return FragmentPayload(fragmentID, index, total, originalType, data)​
​
    } catch (e: Exception) {​
        return null​
    }​
} 
 
It is recommended to enforce the existing protocol constants within the decoder by 
validating payloadData.size against a strict maximum before any processing. A 
maximum accepted size should be defined as MAX_PACKET_SIZE = HEADER_SIZE + 
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AppConstants.Fragmentation.MAX_FRAGMENT_SIZE (approximately 482 bytes), and 
the function should return null immediately if payloadData.size exceeds this limit to 
prevent the sliceArray allocation. Additionally, header fields (index, total) should be 
validated to ensure they fall within sane limits and do not trigger logic errors. The 
implementation must ensure that decode() immediately rejects packets larger than 
MAX_PACKET_SIZE without performing additional allocations. 
 

NOG-01-012 WP1: DoS via Message Queue Flooding (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A DoS vulnerability exists in the NostrRelayManager class in the handling of the 
outgoing message queue that can cause legitimate high-priority messages to be 
dropped under load. The system enforces a fixed capacity limit on the message queue 
(MAX_MESSAGE_QUEUE_SIZE = 1000) but uses a first-in, first-out (FIFO) eviction 
policy when full. Specifically, when the queue reaches capacity, the system 
indiscriminately drops the oldest message (removeFirst()) to make room for the new 
one, without considering message priority or sender fairness. 
 
If untrusted input can trigger outbound event generation, an attacker can exploit this by 
flooding the relay manager with low-value or "spam" events. This flood rapidly fills the 
queue, causing the removal of legitimate, high-priority messages (such as handshakes 
or direct messages) that are waiting to be processed. This allows a single 
attacker-controlled peer to crowd out legitimate traffic, degrading network reliability and 
potentially preventing new peers from joining or authenticating. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/nostr/NostrRelayManager.kt 
 
Affected Code: 
fun sendEvent(event: NostrEvent, relayUrls: List<String>? = null) {​
    val targetRelays = relayUrls ?: relaysList.map { it.url }​
​
    // Add to queue for reliability with size limit to prevent OOM​
    synchronized(messageQueueLock) {​
        if (messageQueue.size >= MAX_MESSAGE_QUEUE_SIZE) {​
            // PERFORMANCE: Use removeFirst() for O(1) removal from ArrayDeque​
            // Previously removeAt(0) on ArrayList was O(n)​
            val dropped = messageQueue.removeFirst()​
            Log.w(TAG, "Message queue full (size=$MAX_MESSAGE_QUEUE_SIZE), dropping 

oldest event kind=${dropped.first.kind}")​
        }​
        // PERFORMANCE: addLast() on ArrayDeque is O(1) amortized​
        messageQueue.addLast(Pair(event, targetRelays))​
​
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        // RELIABILITY: Check and update backpressure state​
        updateBackpressureState(messageQueue.size)​
    }​
    [...]​
} 
It is recommended to implement a “Fair Queuing” or “Quality of Service” (QoS) 
mechanism by using separate queues for high-priority traffic (handshakes, DMs) and 
low-priority traffic (gossip), ensuring that critical messages are never dropped in favor of 
lower-priority traffic. This can reduce throughput for low-priority traffic under load; this 
impact should be mitigated by applying bounded per-class queue sizes and 
backpressure. Alternatively, a token bucket limit per peer should be enforced to ensure 
that no single peer can monopolize shared buffer capacity. The system should ensure 
that AUTH events and direct messages are prioritized over read receipts and other 
ephemeral traffic. 
 

NOG-01-015 WP1: Unauthenticated Heap Exhaustion in Wi-Fi Aware (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A DoS vulnerability exists in the WifiAwarePeerConnection class where packet reading 
logic allocates memory based on attacker-controlled input prior to authentication. The 
readPacket function reads a 4-byte integer length header and validates it against 
MAX_PACKET_SIZE, which is configured to 1 MB (1024 * 1024). Because this 
execution path is reached upon socket acceptance in WifiAwareTransport (before any 
peer cryptographic verification), an unauthenticated attacker within Wi-Fi Aware range 
can open multiple concurrent connections and flood messages declaring a 1 MB length. 
This can force the application to repeatedly allocate 1 MB blocks on the Java heap, 
driving aggressive garbage collection (GC) thrashing and potentially causing OOM 
crashes or an unresponsive background service. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/wifi/WifiAwarePeerConnection.kt 
 
Affected Code: 
private const val MAX_PACKET_SIZE = 1024 * 1024 // 1 MB max​
[...]​
private fun readPacket(): NoghtehaPacket? {​
    val input = inputStream ?: return null​
​
    // Read 4-byte length header​
    val length = input.readInt()​
​
    // Validate length​
    if (length < 0 || length > MAX_PACKET_SIZE) {​
        Log.w(TAG, "Invalid packet length from $peerID: $length")​
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        return null​
    }​
    [...]​
    // Read packet data​
    val data = ByteArray(length)​
    input.readFully(data)​
    [...]​
} 

 
It is recommended to separate unauthenticated framing from authenticated payload 
processing by applying the following controls:  

●​ Avoid allocating a full-sized buffer immediately based on the length header by 
using a small fixed-size buffer (e.g., 8 KB) or a BufferedInputStream to identify 
message type. 

●​ Defer full payload allocation (up to 1 MB) until sender identity is cryptographically 
verified, or until message type is confirmed as a handshake packet with a strict 
size limit (e.g., <1 KB). 

●​ Implement connection-level rate limiting to drop peers that send excessive data 
prior to successful authentication. 
 

NOG-01-017 WP1: Passive Device Targeting via Hardcoded BLE Secrets (High) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A privacy issue exists in the ServiceUuidRotation mechanism where the application 
attempts to prevent passive user tracking by rotating the Bluetooth Low Energy (BLE) 
Service UUID. Although “Device Jitter” and “Version Entropy” are used to desynchronize 
devices and separate app versions, the entire cryptographic derivation chain relies on a 
set of globally static constants, anchored by BASE_ROTATION_SECRET, that are 
hardcoded in the application binary and shared across installations. 
 
Because the effective rotation key is derived entirely from static constants embedded in 
the application binary, an adversary can extract them once and precompute the valid 
UUID sequence for a given time window. Even if the "Device Jitter" mechanism shifts the 
specific bucket index used by a device, the resulting UUID is merely shifted to an 
adjacent value in this globally predictable sequence. Consequently, a passive adversary 
can positively identify an active device, regardless of its specific jitter offset, by 
monitoring the small set of valid UUIDs covering the current and adjacent time intervals. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/mesh/ServiceUuidRotation.kt 
 
Affected Code: 
object ServiceUuidRotation {​
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    [...]​
    // Prefix for HMAC input to domain-separate from other uses​
    private const val HMAC_PREFIX = "noghteha-ble-uuid-v2-"​
    [...]​
    private val BASE_ROTATION_SECRET = byteArrayOf(​
        0x4E.toByte(), 0x6F.toByte(), 0x67.toByte(), 0x68.toByte(), // "Nogh"​
        0x74.toByte(), 0x65.toByte(), 0x68.toByte(), 0x61.toByte(), // "teha"​
        0x2D.toByte(), 0x42.toByte(), 0x4C.toByte(), 0x45.toByte(), // "-BLE"​
        0x2D.toByte(), 0x52.toByte(), 0x6F.toByte(), 0x74.toByte(), // "-Rot"​
        0x61.toByte(), 0x74.toByte(), 0x69.toByte(), 0x6F.toByte(), // "atio"​
        0x6E.toByte(), 0x2D.toByte(), 0x53.toByte(), 0x65.toByte(), // "n-Se"​
        0x63.toByte(), 0x72.toByte(), 0x65.toByte(), 0x74.toByte(), // "cret"​
        0x2D.toByte(), 0x56.toByte(), 0x32.toByte(), 0x00.toByte()  // "-V2\0"​
    )​
​
    private const val PROTOCOL_VERSION = "2.0.0"​
 

    private val VERSION_ENTROPY: ByteArray by lazy {​
        try {​
            [...]​
            val versionInfo = buildString {​
                append("noghteha-version-entropy-")​
                [...]​
                append(PROTOCOL_VERSION)​
            }​
            MessageDigest.getInstance("SHA-256").digest(versionInfo.toByteArray( 

Charsets.UTF_8))​
        }​
        [...]​
    } 

​
    private val EFFECTIVE_ROTATION_SECRET: ByteArray by lazy {​
        try {​
            val mac = Mac.getInstance(HMAC_ALGORITHM)​
            val keySpec = SecretKeySpec(BASE_ROTATION_SECRET, HMAC_ALGORITHM)​
            mac.init(keySpec)​
            [...]​
            // Add version-specific entropy​
            mac.update(VERSION_ENTROPY)​
            [...]​
        }​
        [...]​
    }​
    [...]​
    private fun deriveUuidForBucket(bucketIndex: Long): UUID {​
        return try {​
            val mac = Mac.getInstance(HMAC_ALGORITHM)​
            val keySpec = SecretKeySpec(EFFECTIVE_ROTATION_SECRET, HMAC_ALGORITHM)​
            mac.init(keySpec)​
​
            // Input: prefix + bucket index as string​
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            val input = "$HMAC_PREFIX$bucketIndex".toByteArray(Charsets.UTF_8)​
            val hash = mac.doFinal(input)​
            [...]​
        }​
        [...]​
    }​
} 

 
It is recommended to prioritize user control and reduced exposure by providing a 
“Stealth Mode” that disables global advertising in high-risk environments and limits 
discovery to trusted contacts using pairwise keys. This reduces the ability of a global 
passive adversary to monitor broadcasts for identification purposes, but it also reduces 
ad hoc discovery; this trade-off should be addressed by making the mode 
user-controlled and clearly communicating the impact on discoverability. 
 
Where a trusted update channel is available, it is recommended to provision the rotation 
secret outside the application binary and support secret rotation and revocation to limit 
long-term predictability if a secret is extracted. This introduces operational complexity 
and a risk of discovery disruption during key changes; the impact should be reduced by 
versioning secrets and using an overlap window to allow old and new values to coexist 
during rollout. 
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Hardening Recommendations 
 
This area of the report provides insight into less significant weaknesses that might assist 
adversaries in certain situations. Issues listed in this section often require another 
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk 
potential on their own, and/or fail to follow information security best practices. 
Nevertheless, it is recommended to resolve as many of these items as possible to 
improve the overall security posture and protect users in edge-case scenarios. 
 

NOG-01-001 WP1: Android: Missing Root Detection (Info) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
The Android app lacks root detection, failing to alert users about security risks4. This can 
be confirmed by installing the app on a rooted device and verifying the absence of 
warnings. 
 
It is recommended to implement root detection to address this issue. Since the user has 
root access while the app does not, detection mechanisms are inherently bypassable 
with sufficient skill. The RootBeer library5 can be used to warn users about the risks of 
running the app on a rooted device, which, despite being bypassable, serves as an 
effective alert. 
 

NOG-01-002 WP1: Android Binary Hardening Recommendations (Info) 
 
It was found that a number of binaries embedded into the Android application are 
currently not leveraging the available compiler flags to mitigate potential memory 
corruption vulnerabilities. This unnecessarily puts the application more at risk for such 
issues. 
 
Issue 1: Binaries missing usage of -D_FORTIFY_SOURCE=2 
 
Missing this flag means common libc functions are missing buffer overflow checks, so 
the application is more prone to memory corruption vulnerabilities. Please note that most 
binaries are affected, the following is a reduced list of examples for the sake of brevity. 
 
Example binaries (from decompiled production app): 
x86/libandroidx.graphics.path.so 
​​x86_64/libandroidx.graphics.path.so 

5 https://github.com/scottyab/rootbeer  
4 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515  
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armeabi-v7a/libandroidx.graphics.path.so 
arm64-v8a/libandroidx.graphics.path.so 
[...] 
 
It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument 
so that common insecure libc functions like memcpy, etc. are automatically protected 
with buffer overflow checks. 
 
Issue 2: Binaries missing usage of Stack Canary 
 
Some binaries do not have a stack canary value added to the stack. Stack canaries are 
used to detect and prevent exploits from overwriting return addresses. 
 
Example binaries (from decompiled app): 
x86/libarti_mobile_ex.so 
x86_64/libarti_mobile_ex.so 
armeabi-v7a/libarti_mobile_ex.so 
arm64-v8a/libarti_mobile_ex.so 
[...] 
 
It is recommended to enable stack canary protections across native builds using 
-fstack-protector-strong (or -fstack-protector-all where the additional overhead is 
acceptable) to improve resilience against stack-based exploitation. 
 

NOG-01-003 WP1: Unmaintained Android version support via minSDK level (Info) 
 
A security hardening opportunity was identified in the Android platform support policy. 
The Android manifest sets minSdkVersion to 24 (Android 7.0), which allows the 
application to run on Android releases that are out of security support and may no longer 
receive OS security patches. Public support schedules indicate that Android 7.0 is end of 
security support. They also indicate that Android 10 (API 29) and Android 12 (API 31) 
have reached the end of security support on some support schedules. 
 
Supporting end-of-life Android releases increases exposure to known vulnerabilities that 
may remain unpatched on those devices, including kernel privilege escalation 
vulnerabilities such as CVE-2019-221516 and task-hijacking issues such as StrandHogg 
2.0 (CVE-2020-00967). 
 
Affected file:  
AndroidManifest.xml  

7 https://nvd.nist.gov/vuln/detail/cve-2020-0096 
6 https://nvd.nist.gov/vuln/detail/cve-2019-2215  
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Affected code:  
<manifest xmlns:android="http://schemas.android.com/apk/res/android"​
   android:versionCode="35"​
   android:versionName="1.0.34"​
   android:compileSdkVersion="35"​
   android:compileSdkVersionCodename="15"​
   package="com.filtershekanha.noghteha"​
   platformBuildVersionCode="35"​
   platformBuildVersionName="15">​
   <uses-sdk​
       android:minSdkVersion="24"​
       android:targetSdkVersion="35"/> 
 
It is recommended to raise minSdkVersion to a currently supported baseline (for 
example, Android 13 / API 33 or later), aligned with the product device support 
requirements, to reduce reliance on end-of-life Android versions. 

 
NOG-01-009 WP1: WebView JS Bridge Hardening (Low) 

 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A security hardening opportunity was identified in GeohashPickerActivity. JavaScript is 
enabled in a WebView, and a native interface is exposed via addJavascriptInterface. 
Even if the intended content is a local asset, the presence of a JavaScript bridge 
increases impact if unintended JavaScript execution becomes possible in this WebView 
(for example, unexpected navigation, future WebView issues, or asset tampering), 
because bridge methods can be invoked by script within the WebView context. The 
exposure surface can be reduced by strictly constraining the WebView to the single 
expected file:///android_asset/... page and disabling file/universal access modes that 
broaden what the WebView can reach. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/ui/GeohashPickerActivity.kt 
 
Affected Code: 
@SuppressLint("SetJavaScriptEnabled")​
override fun onCreate(savedInstanceState: Bundle?) {​
    [...]​
    settings.javaScriptEnabled = true​
    [...]​
    addJavascriptInterface(object {​
        @JavascriptInterface​
        fun onGeohashChanged(geohash: String) {​
            val sanitized = geohash.trim().lowercase()​
            if (!GEOHASH_PATTERN.matches(sanitized)) {​
                 return​
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            }​
            [...]​
        }​
    }, "Android")​
    ​
    loadUrl("file:///android_asset/geohash_picker.html")​
    [...]​
} 

 
It is recommended to keep the WebView scoped to the single expected asset page by 
blocking all navigations except file:///android_asset/geohash_picker.html and denying 
non-asset schemes (for example, http:, https:, and intent:). To reduce the blast radius of 
any unintended JavaScript execution, allowFileAccessFromFileURLs and 
allowUniversalAccessFromFileURLs should be disabled (and other WebView settings 
should be kept at the minimum required for functionality). The WebView should be 
verified to be unable to navigate to external destinations. 

 
NOG-01-013 WP1: Privacy Gap via Unconsented Third-Party Geocoding (Low) 

 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A privacy hardening opportunity was identified in the application location handling logic 
within LocationChannelManager and GeohashBookmarksStore. Reverse geocoding is 
performed automatically via android.location.Geocoder when the user location is 
updated and when a new geohash bookmark is added. On many Android devices, 
Geocoder can be serviced by a network-backed provider (often Google Play services on 
Google-enabled devices), which may transmit precise coordinates off-device to the 
configured geocoding provider. For a censorship-resistant messenger intended for 
high-risk environments, automatic reverse geocoding during routine operation can create 
avoidable metadata by generating repeated, timestamped location lookups without 
explicit user intent or consent. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/geohash/LocationChannelManager.kt 
 
Affected Code: 
private fun reverseGeocodeIfNeeded(location: Location) {​
    if (!Geocoder.isPresent()) {​
        Log.w(TAG, "Geocoder not present on this device")​
        return​
    }​
    [...]​
    scope.launch {​
        try {​
            // PRIVACY NOTE: This sends coordinates to Google servers for reverse 
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geocoding​
            Log.d(TAG, "Starting reverse geocoding (sends coords to Google)")​
​
            @Suppress("DEPRECATION")​
            val addresses = geocoder.getFromLocation(location.latitude, 

location.longitude, 1)​
​
            if (!addresses.isNullOrEmpty()) {​
                [...]​
            }​
            [...]​
        } catch (e: Exception) {​
            Log.e(TAG, "Reverse geocoding failed: ${e.message}")​
        }​
        [...]​
    }​
} 

 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/geohash/GeohashBookmarksStore.kt 
 
Affected Code: 
fun resolveNameIfNeeded(geohash: String) {​
    [...]​
    if (!Geocoder.isPresent()) return​
​
    resolving.add(gh)​
    scope.launch {​
        try {​
            val geocoder = Geocoder(context, Locale.getDefault())​
            val name: String? = if (gh.length <= 2) {​
                [...]​
                for (loc in points) {​
                    try {​
                        @Suppress("DEPRECATION")​
                        val list = geocoder.getFromLocation(loc.latitude, 

loc.longitude, 1)​
                        [...]​
                    }​
                    [...]​
                }​
                [...]​
            } else {​
                val center = Geohash.decodeToCenter(gh)​
                @Suppress("DEPRECATION")​
                val list = geocoder.getFromLocation(center.first, center.second, 1)​
                [...]​
            }​
            [...]​
        } catch (e: Exception) {​
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            SecureLog.w(TAG, "Name resolution failed for geohash: ${e.message}")​
        } finally {​
            resolving.remove(gh)​
        }​
    }​
} 
 
It is recommended to gate reverse geocoding behind an explicit opt-in setting and 
default to no geocoding requests on initial install. When enabled, a clear notice should 
be shown stating that coordinates may be sent to the device geocoding provider (for 
example, Google on GMS devices). When disabled (or when Geocoder is unavailable), 
the application should fall back to displaying raw Geohash coordinates or use an offline 
reverse-geocoding library (e.g., one based on OpenStreetMap data) if feature parity is 
required. Both live location updates and bookmark name resolution should function 
without network geocoding when the setting is disabled. 

 
NOG-01-014 WP1: Weaknesses in Intent Token Validation (Low) 

 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A security hardening opportunity was identified in the notification intent validation 
mechanism. The validateIntent function compares the provided token to the expected 
HMAC using standard string comparison, which may introduce timing side-channel 
differences during token verification. The function also does not implement replay 
protection, so a captured legitimate token could be reused within the 15-minute validity 
window. While timestamps and HMAC signatures are validated, this can increase the 
risk of duplicate notification triggers or repeated actions if a valid token is obtained. 
 
Affected File: 
src/main/java/com/filtershekanha/noghteha/ui/NotificationManager.kt 

 
Affected Code: 
fun validateIntent(intent: Intent?, expectedIntentData: String = ""): Boolean {​
   if (intent == null) return false​
​
   // Check for token​
   val token = intent.getStringExtra(EXTRA_NOTIFICATION_TOKEN) ?: return false​
​
   // Check for timestamp​
   val timestamp = intent.getLongExtra(EXTRA_TOKEN_TIMESTAMP, 0L)​
   if (timestamp == 0L) return false​
​
   // SECURITY FIX L3: Validate timestamp is within validity window​
   val currentTime = System.currentTimeMillis()​
   val tokenAge = currentTime - timestamp​
   if (tokenAge < 0 || tokenAge > TOKEN_VALIDITY_WINDOW_MS) {​
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       Log.w(TAG, "Notification token expired (age: ${tokenAge}ms)")​
       return false​
   }​
​
   // SECURITY FIX L3: Validate HMAC​
   val expectedToken = generateSecurityToken(timestamp, expectedIntentData)​
   if (token != expectedToken) { // 7asec comment: non constant-time comparison​
       Log.w(TAG, "Notification token HMAC mismatch")​
       return false​
   }​
​
   return true // 7asec comment: No replay protection​
} 

 
It is recommended to implement constant-time comparison for HMAC validation and add 
replay protection through token tracking. The string comparison should be replaced with 
a constant-time byte comparison (for example, MessageDigest.isEqual()8 on decoded 
HMAC bytes). To reduce replay risk, a synchronized in-memory set can be used to track 
a composite key (timestamp, intent data, token); if the composite key has already been 
seen, the intent should be rejected, and successful validations should be recorded after 
HMAC verification. Periodic cleanup should be implemented to remove entries older 
than the validity window or cap the set size (for example, 1000 tokens). If replay 
protection must remain optional, at minimum the constant-time comparison should be 
implemented to reduce timing side-channel risk. 
 

NOG-01-016 WP1: Weaknesses in DeepLink URL Validation (Info) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A security hardening opportunity was identified in the deep link sanitization mechanism. 
The current function relies on character blacklisting to remove a small set of characters 
from deep link URLs (for example, <, >, ", and '), but this approach is not sufficient for 
URL validation and can be bypassed through URL encoding, Unicode alternatives, or 
protocol-based payloads. Several characters and URL features that frequently matter for 
deep link handling are not addressed (for example, %, #, and ;). More importantly, URL 
components such as scheme, host, and path are not validated, so if this function is later 
used as a security control, unsafe schemes (for example, javascript:, file:, data:, or 
intent:), open redirects, path traversal sequences (..), or unintended intent resolution 
could be allowed depending on downstream usage. This may increase the risk of 
phishing, local resource exposure, or unintended navigation when an attacker-controlled 
URL is processed. 
 

8 https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html  
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This finding is cataloged as informative because the function is not currently in use but 
may be utilized in the future. 
 
Affected File: 
src/main/java/com/filtershekanha/noghteha/navigation/NavRoutes.kt 
 
Affected Code: 
// Characters that could be used for injection attacks​
private val DANGEROUS_CHARS = setOf('<', '>', '"', '\'', '\\', '\n', '\r', 

'\t', '\u0000')​
[...]​
fun sanitizeString(input: String?, maxLength: Int = 256): String? {​
   if (input.isNullOrBlank()) return null​
​
   return input​
       .trim()​
       .filter { it !in DANGEROUS_CHARS }​
       .take(maxLength)​
       .ifBlank { null }​
} 
 
It is recommended to replace character blacklisting with allowlist-based URL validation 
using Android URI parsing. Explicit allowlists should be defined for permitted schemes 
(for example, https and approved app schemes) and permitted hostnames for HTTPS 
URLs. The URL should be parsed using Uri.parse() with malformed inputs rejected, the 
scheme should be validated using case-insensitive comparison, and HTTPS hostnames 
should be checked against an allowed domain list. Inputs containing path traversal 
sequences (..) should be rejected, and a length limit (for example, 2048 characters) 
should be enforced to reduce DoS risk. Rejected URLs can be logged for monitoring (in 
a privacy-safe manner). This approach ensures only explicitly permitted URL patterns 
are accepted and reduces bypass techniques. 
 

NOG-01-018 WP1: Weaknesses in Android Keystore Configuration (Medium) 
 
Retest Notes: Fixed by Noghteha and verified by 7ASecurity. 
 
A security hardening opportunity was identified in the Android Keystore implementation 
used for encryption key management. The current configuration does not request 
StrongBox-backed storage and does not bind key use to user authentication, which 
weakens protection in device-seizure and coerced-unlock scenarios. StrongBox-backed 
key storage is not requested, so keys can be generated outside StrongBox even on 
devices that support it. User authentication is not bound to cryptographic operations, so 
key use is not gated by biometric or device-credential verification, and no authentication 
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validity window is enforced. If setUnlockedDeviceRequired(true) is used, it only restricts 
key use while the device is locked and does not enforce per-operation user 
authentication. As a result, the risk of data exposure is increased when an attacker 
obtains access to an unlocked device or coerces device unlock. 
 
Affected File: 
app/src/main/java/com/filtershekanha/noghteha/db/NoghtehaDatabase.kt 
 
Affected Code: 
private fun createMasterKey() {​
   val keyGenerator = KeyGenerator.getInstance(​
       KeyProperties.KEY_ALGORITHM_AES,​
       ANDROID_KEYSTORE​
   )​
​
   val builder = KeyGenParameterSpec.Builder(​
       KEYSTORE_ALIAS,​
       KeyProperties.PURPOSE_ENCRYPT or KeyProperties.PURPOSE_DECRYPT​
   )​
       .setBlockModes(KeyProperties.BLOCK_MODE_GCM)​
       .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)​
       .setKeySize(256)​
       .setRandomizedEncryptionRequired(true) 

// 7asec comments 

// Missing: User authentication requirement 

// Missing: Biometric enrollment invalidation 

// Missing: StrongBox hardware backing 

// Missing: Authentication timeout 
 
It is recommended to configure Android Keystore to prefer hardware-backed storage, 
require per-operation authentication, and invalidate keys on biometric enrollment 
changes. Where available, StrongBox can be requested via 
setIsStrongBoxBacked(true), with a fallback key configuration when StrongBox is 
unavailable. On Android 11+ (API 30+), setUserAuthenticationParameters(30, 
AUTH_BIOMETRIC_STRONG | AUTH_DEVICE_CREDENTIAL) can be used to enforce 
a 30-second authentication validity window, and 
setInvalidatedByBiometricEnrollment(true) can be used to invalidate keys on biometric 
enrollment changes. UserNotAuthenticatedException can be handled by prompting 
biometric or device-credential authentication via BiometricPrompt with a CryptoObject. 
setUnlockedDeviceRequired(true) can be used as a supplemental control to prevent key 
use while the device is locked, but it should not be treated as a substitute for 
per-operation authentication. 
 

 

7ASecurity © 2026 
            27 

https://7asecurity.com


Pentest Report 

WP2: Noghteha Privacy Audit 
 
This section presents the analysis results addressing ten privacy-related questions. For 
this portion of the engagement, 7ASecurity utilizes the following classification to specify 
the certainty level of findings. As the research is based on documentation, source code, 
and sample configuration analysis, classification is necessary to indicate the confidence 
level of each discovery: 

●​ Proven: Source code and runtime activity clearly confirm the finding as fact 
●​ Evident: Source code strongly suggests a privacy concern, but this could not be 

proven at runtime 
●​ Assumed: Indications of a potential privacy concern were found but a broader 

context remains unknown. 
●​ Unclear: Initial suspicion was not confirmed. No privacy concern can be 

assumed. 
 
Each ticket summarizes the 7ASecurity attempts to answer relevant questions cited at 
the beginning of each section. 
 

NOG-01-Q01: Files & Information Gathered by Noghteha (Proven) 
 
Q1: What files/information are gathered by the Noghteha app? 
MITRE ATT&CK framework9 mapping:  

●​ T1005 Data from Local System10 
●​ T1517 Access Notifications11 

 
Based on privacy documentation and source code review, the following information is 
gathered by the Noghteha application: 
 
Data collected and stored locally: 

1.​ Cryptographic identity keys: Encryption key pairs are generated and stored 
on-device and are not transmitted to servers. 

2.​ Messages: End-to-end encrypted message content is stored locally and is 
deleted after reading by default. 

3.​ Shared media files: Images, voice notes, and documents shared in 
conversations are stored in application-private encrypted directories. 

4.​ Location data (opt-in only): When location-based channels are enabled, the 
following are used: 

○​ Geohash approximations (privacy-preserving grid cells) 

11 https://attack.mitre.org/techniques/T1517/  
10 https://attack.mitre.org/techniques/T1005/  
9 https://attack.mitre.org  
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○​ Reverse-geocoded location names (city, region, country) 
 
Minimal data collection is consistent with the privacy-focused design (no phone 
numbers, email addresses, contact lists, or message metadata). However, a critical 
privacy disclosure gap exists: precise GPS coordinates are transmitted to Google for 
reverse geocoding (NOG-01-013), despite privacy policy claims to the contrary. It is 
recommended to update documentation and implement explicit user consent 
mechanisms for third-party location data sharing. 
 

NOG-01-Q02: Where & How Noghteha Transmits Data (Unclear) 
 
Q2: Where and how are the files/information gathered transmitted? 
MITRE ATT&CK framework12 mapping:  

●​ T1041 Exfiltration Over C2 Channel13 
●​ T1048 Exfiltration Over Alternative Protocol14 
●​ T1071 Application Layer Protocol15 

 
Based on documentation and source code review, the Noghteha mobile application 
appears to transmit data through multiple decentralized channels designed for privacy 
preservation. Messages are routed peer-to-peer via Bluetooth Low Energy (BLE) and 
Wi-Fi Direct mesh networking, with end-to-end encryption using the Noise protocol. 
When Internet connectivity is available, Tor (via the Arti library) may be used for 
anonymous routing, and the Nostr decentralized relay network may be used for 
extended message delivery. Message content remains encrypted during transmission. 
 
When the user opts into location-based channels, location data is converted to geohash 
approximations (privacy-preserving grid cells) before being transmitted to peers via the 
mesh network. A critical discrepancy is indicated by the reverse-geocoding 
implementation: precise GPS coordinates (latitude and longitude) appear to be 
transmitted to Google geocoding servers via HTTPS to obtain human-readable location 
names. This appears to occur without explicit user disclosure or consent and contradicts 
the privacy policy statement that “your exact position will never be saved or sent”16. 
 
User encryption keys are generated and stored locally in the Android Keystore and are 
not transmitted to servers. No centralized servers are maintained for message storage; 
messages are transmitted directly between devices or through decentralized Tor/Nostr 
networks. 
 

16 https://noghteha.app/en/privacy 
15 https://attack.mitre.org/techniques/T1071/  
14 https://attack.mitre.org/techniques/T1048/ 
13 https://attack.mitre.org/techniques/T1041/ 
12 https://attack.mitre.org  
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Media files (images, voice notes, documents) shared through the application are stored 
in application-private encrypted directories and are transmitted peer-to-peer with 
end-to-end encryption when shared in conversations. 
 
Network metadata that may be observable during transmission includes: 

●​ Mesh network: Bluetooth MAC addresses, Wi-Fi SSID/BSSID, timing patterns, 
peer proximity information 

●​ Tor network: Entry guard may observe user IP (not destination); exit node may 
observe destination (not source) 

●​ Nostr relays: Public keys (pseudonymous identifiers), connection timestamps, 
subscription patterns, IP addresses (unless routed via Tor) 

●​ Google geocoding: Precise GPS coordinates, device IP address, request 
timestamps, device fingerprinting data (User-Agent, platform details) 

 
The ProGuard configuration indicates that logging is stripped from release builds to 
reduce information exposure through logcat. An emergency “Panic Mode” feature is 
included that irreversibly deletes encryption keys, messages, and settings when 
activated. 
 
In summary, data transmission occurs through the following channels: 

●​ Message content: Peer-to-peer mesh (BLE/WiFi), Tor network, Nostr relays—all 
with Noise protocol end-to-end encryption 

●​ Geohash approximations: Transmitted to peers via mesh/Tor/Nostr for 
location-based channel discovery (opt-in) 

●​ Precise GPS coordinates: Appear to be transmitted to Google geocoding 
servers via HTTPS (undisclosed, requires user consent) 

●​ Media files: Peer-to-peer transmission with end-to-end encryption when shared 
●​ Encryption keys: Never transmitted—stored locally in Android Keystore only 

 
Overall, the transmission architecture follows privacy-preserving principles with strong 
encryption and decentralized routing, except for the undisclosed Google geocoding 
integration which requires immediate remediation to align with privacy policy claims and 
regulatory compliance requirements. 
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NOG-01-Q03: Insecure PII Storage Analysis of Noghteha (Unclear) 
 
Q3: Is sensitive PII such as audio, pictures or data insecurely stored or easily retrievable 
from the Noghteha app? 
MITRE ATT&CK framework17 mapping:  

●​ T1552 Unsecured Credentials18 
●​ T1005 Data from Local System19 
●​ T1074 Data Staged20 

 
No evidence was identified to suggest that sensitive Personally Identifiable Information 
(PII) is stored insecurely or is readily retrievable from the Noghteha application. A 
security-focused architecture and encryption-at-rest controls are implemented (including 
SQLCipher, Android Keystore, and application-private storage). Data is not easily 
retrievable without the required device unlock credentials. Defense-in-depth could be 
improved by requiring per-operation authentication for Keystore usage to better address 
scenarios involving coerced device unlocks. The current security posture is stronger 
than typical Android messaging applications and is aligned with the stated threat model 
(activists operating in surveillance environments). 
 

NOG-01-Q04: Analysis of Potential Noghteha User Tracking (Unclear) 
 
Q4: Does the Noghteha app implement any sort of user tracking function via location or 
other means? 
MITRE ATT&CK framework21 mapping:  

●​ T1082 System Information Discovery22 
●​ T1016 System Network Configuration Discovery23 

 
The Noghteha Android application requests location permissions for geohash-based 
chat channel discovery. Opt-in location functionality is implemented to allow 
location-based public chat rooms to be joined using geohash technology. 
 
Affected File: 
AndroidManifest.xml 
 
Affected Code: 
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />​

23 https://attack.mitre.org/techniques/T1016/  
22 https://attack.mitre.org/techniques/T1082/  
21 https://attack.mitre.org  
20 https://attack.mitre.org/techniques/T1074/  
19 https://attack.mitre.org/techniques/T1005/  
18 https://attack.mitre.org/techniques/T1552/  
17 https://attack.mitre.org  
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<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 
 
Based on source code and documentation review, the following characteristics were 
identified: 

●​ Core functionality: Location-based chat channel discovery is implemented 
through geohash grid cells. 

●​ Privacy protocol: Coordinates are converted into geohash identifiers rather than 
being transmitted as raw latitude/longitude values. 

●​ User configuration: The feature is opt-in and can be disabled in application 
settings. 

●​ Data transmission policy (documented): Transmission of raw location 
coordinates to external servers is stated to be prohibited. 

Although location functionality is present, no evidence was identified to suggest that it is 
used for user tracking rather than application functionality. 

NOG-01-Q05: Potential Noghteha Crypto Weakening (Unclear) 
 
Q5: Does the Noghteha app intentionally weaken cryptographic procedures to ensure 
third-party decryption? 
MITRE ATT&CK framework24 mapping:  

●​ T1600 Weaken Encryption25 
 
Several minor cryptographic weaknesses were identified during the assessment, as 
documented in NOG-01-008 and NOG-01-013. These weaknesses did not appear to 
have been intentionally introduced to enable third-party decryption.​
 

 

25 https://attack.mitre.org/techniques/T1600/  
24 https://attack.mitre.org  

7ASecurity © 2026 
            32 

https://attack.mitre.org/techniques/T1600/
https://attack.mitre.org
https://7asecurity.com


Pentest Report 

NOG-01-Q06: Insecure SD Card Usage by Noghteha (Unclear) 
 
Q6: Is data dumped in the SD Card from where it could be retrieved later without even 
entering the PIN to unlock the device? 
MITRE ATT&CK framework26 mapping:  

●​ T1005 Data from Local System27 
●​ T1074 Data Staged28 
●​ T1407 Access Sensitive Data in Device Storage29 

 
No evidence was identified to suggest that application data is written to the SD card. 
Sensitive content (messages, voice notes, image files, encryption keys) is stored in 
application-private internal storage, which requires device unlocking and is protected by 
Android full-disk encryption. The READ_EXTERNAL_STORAGE30 permission is used 
solely to allow users to select media files to share and is not used to write application 
data externally. 
 
No additional action is required regarding external storage security. 
 

NOG-01-Q07: Potential for RCE in Noghteha (Unclear) 
 
Q7: Does the Noghteha app contain vulnerabilities or shell commands that could lead to 
RCE in any way? 
MITRE ATT&CK framework31 mapping:  

●​ T1203 Exploitation for Client Execution32 
●​ T1059 Command and Scripting Interpreter33 
●​ T1068 Exploitation for Privilege Escalation34 

 
No vulnerabilities that could lead to direct or indirect remote code execution (RCE) were 
identified during this engagement. 
 

 

34 https://attack.mitre.org/techniques/T1068/  
33 https://attack.mitre.org/techniques/T1059/  
32 https://attack.mitre.org/techniques/T1203/  
31 https://attack.mitre.org  
30 https://developer.android.com/[...]/Manifest.permission#READ_EXTERNAL_STORAGE  
29 https://attack.mitre.org/techniques/T1407/  
28 https://attack.mitre.org/techniques/T1074/  
27 https://attack.mitre.org/techniques/T1005/  
26 https://attack.mitre.org  
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NOG-01-Q08: Potential Noghteha Backdoors (Unclear) 
 
Q8: Does the Noghteha app have any kind of backdoor? 
MITRE ATT&CK framework35 mapping:  

●​ T1055 Process Injection36 
●​ T1505 Server Software Component37 
●​ T1556 Modify Authentication Process38 

 
No indications of process or command execution calls typically associated with 
backdoors or malware were identified. Based on this assessment, no action is required 
to improve the privacy posture in this regard. 
 

NOG-01-Q09: Noghteha Attempts to Gain Root Access (Unclear) 
 
Q9: Does the Noghteha app attempt to gain root access through public Android 
vulnerabilities or in other ways? 
MITRE ATT&CK framework39 mapping:  

●​ T1068 Exploitation for Privilege Escalation40 
●​ T1548 Abuse Elevation Control Mechanism41 
●​ T1404 Exploit OS Vulnerability42 

 
No evidence was identified to suggest that Noghteha client components (Android library 
and C++ client) attempt to exploit platform-specific vulnerabilities to obtain elevated 
privileges. Based on this assessment, no action is required to improve the privacy 
posture in this regard. 
 

 

42 https://attack.mitre.org/techniques/T1404/  
41 https://attack.mitre.org/techniques/T1548/  
40 https://attack.mitre.org/techniques/T1068/  
39 https://attack.mitre.org  
38 https://attack.mitre.org/techniques/T1556/  
37 https://attack.mitre.org/techniques/T1505/  
36 https://attack.mitre.org/techniques/T1055/  
35 https://attack.mitre.org  
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NOG-01-Q10: Potential Noghteha Usage of Obfuscation (Proven) 
 
Q10: Does the Noghteha app use obfuscation techniques to hide code and if yes for 
which files and directories? 
MITRE ATT&CK framework43 mapping:  

●​ T1027 Obfuscated Files or Information44 
●​ T1406 Obfuscated Files or Information45 

 
Evidence of obfuscation was identified in the Noghteha codebase. ProGuard/R846 
obfuscation is used for release builds as a security hardening measure, given the threat 
model involving device seizure scenarios. 
 
Obfuscation applies to the Android application by default, with exceptions defined 
through -keep rules. The following components remain unobfuscated to preserve 
functionality: 

●​ Protocol and cryptography classes (com.filtershekanha.noghteha.protocol.**, 
com.filtershekanha.noghteha.crypto.**) 

●​ BouncyCastle cryptography library 
●​ Identity management classes (com.filtershekanha.noghteha.identity.**) 
●​ Nostr protocol implementation (com.filtershekanha.noghteha.nostr.**) 
●​ Mesh networking packages (com.filtershekanha.noghteha.mesh.**, 

com.filtershekanha.noghteha.wifi.**, com.filtershekanha.noghteha.transport.**) 
●​ Database entities and DAOs (com.filtershekanha.noghteha.db.**) 
●​ Dependency injection annotations (Hilt/Dagger) 
●​ Native library bindings (Arti/Tor, SQLCipher) 

 
All other application code is obfuscated, including method names, field names, and 
internal implementation details. Logging statements are stripped from release builds to 
reduce information exposure through logcat. 

 

46 https://github.com/Guardsquare/proguard  
45 https://attack.mitre.org/techniques/T1406/  
44 https://attack.mitre.org/techniques/T1027/  
43 https://attack.mitre.org  
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Conclusion 
 
Despite the number of findings identified during this assessment, the Noghteha solution 
defended itself well against a broad range of attack vectors and demonstrated a clear 
security and privacy-focused architectural intent. The platform is expected to become 
increasingly difficult to attack as additional cycles of security testing and subsequent 
hardening continue. 
 
The Noghteha application provided a number of positive impressions during this 
assignment that must be mentioned here: 

●​ The Noise Protocol Framework (XX pattern) was selected for encrypted 
transport, providing a strong foundation for forward secrecy and mutual 
authentication. 

●​ Kotlin is used extensively, which reduces exposure to classic native memory 
corruption issues common in C/C++ mesh stacks. 

●​ The architecture reflects a privacy-first intent, including localized mesh 
networking and BLE UUID rotation, even though specific details require 
hardening (NOG-01-017). 

●​ The source code is well documented, which materially improves reviewability and 
reduces implementation ambiguity. 

●​ Sensitive key material is explicitly zeroed in multiple places (for example, 
CryptoUtils.secureZero and java.util.Arrays.fill()), indicating strong engineering 
hygiene. 

●​ Numerous defensive checks and hardening strategies are already present 
throughout the codebase, reducing the likelihood of trivial implementation flaws. 

●​ Release build hardening controls (for example, obfuscation and log reduction) 
are present, which increases attacker cost during reverse engineering and 
seizure scenarios. 

 
The security of the Noghteha solution will improve with a focus on the following areas: 

●​ DoS Resistance: Eliminate algorithmic and allocation-driven DoS vectors by 
removing iterative byte-array concatenation and enforcing strict size limits before 
allocation or decoding (NOG-01-010, NOG-01-011, NOG-01-015). 

●​ Resource Bounding: Apply fail-fast validation before allocating memory, adding 
map entries, or launching coroutines; enforce caps for concurrent handshakes 
and outbound buffering, and prevent a single peer from monopolizing queues 
under flood conditions (NOG-01-006, NOG-01-012, NOG-01-015). 

●​ Harden Release Builds: Strip or make unreachable debug/administrative 
functionality in production builds, and ensure any required field diagnostics are 
explicitly gated and cannot persist unsafe configurations (NOG-01-007). 
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●​ Eliminate Globally Hardcoded Secrets: Remove static BLE rotation secrets 
embedded in the binary to reduce long-term predictability and passive device 
targeting risk (NOG-01-017). 

●​ Keystore Hardening: Prefer hardware-backed key storage where available and 
bind key use to user authentication with an appropriate validity window to 
strengthen seizure and coerced-unlock resilience (NOG-01-018). 

●​ Modernize Cryptographic Primitives: Replace PBKDF2 with predictable salts 
with a memory-hard KDF (for example, Argon2id) and versioning to reduce 
GPU-accelerated precomputation and offline guessing feasibility for common 
channel names (NOG-01-008). 

●​ Intent Validation: Strengthen intent token handling with constant-time 
comparison and replay resistance to reduce spoofing and reuse risk 
(NOG-01-014). 

●​ DeepLink Validation: Replace character filtering with allowlist-based parsing 
and strict scheme/host validation to reduce injection and phishing risk in 
downstream usage (NOG-01-016). 

●​ Platform Baseline: Raise the minimum supported Android baseline to reduce 
reliance on end-of-life OS versions and legacy security limitations (NOG-01-003). 

●​ Binary Hardening: Enable standard native hardening controls (stack canaries, 
FORTIFY, RELRO/PIE as applicable) across shipped libraries to improve 
exploitation resistance (NOG-01-002). 

●​ Re-auth Controls: Require biometric or device-credential re-authentication for 
sensitive operations after inactivity to reduce exposure on seized or shared 
devices (NOG-01-004). 

●​ Memory Residue: Reduce plaintext chat persistence in memory where feasible 
and ensure sensitive caches are bounded and cleared on view 
dismissal/backgrounding (NOG-01-005). 

●​ Geocoding Consent: Gate network-backed reverse geocoding behind explicit 
opt-in to avoid leaking precise coordinates to third-party providers during routine 
operation (NOG-01-013). 

 
It is advised to address all issues identified in this report, including informational and low 
severity tickets where possible. This will not just strengthen the security posture of the 
application significantly, but also reduce the number of tickets in future audits. 
 
Once all issues in this report are addressed and verified, a more thorough review, ideally 
including another source code audit, is highly recommended to ensure adequate security 
coverage of the platform. 
 
Please note that future audits should ideally allow for a greater budget so that test teams 
are able to deep dive into more complex attack scenarios. Some examples of this could 
be third party integrations, complex features that require to exercise all the application 
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logic for full visibility, authentication flows, challenge-response mechanisms 
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from 
the inner workings of dependencies in the context of the application. Additionally, the 
scope could perhaps be extended to include other internet-facing Noghteha resources.  
 
It is suggested to test the application regularly, at least once a year or when substantial 
changes are going to be deployed, to make sure new features do not introduce 
undesired security vulnerabilities. This proven strategy will reduce the number of security 
issues consistently and make the application highly resilient against online attacks over 
time. 
 
7ASecurity would like to take this opportunity to sincerely thank Nariman Gharib and the 
rest of the Noghteha team, for their exemplary assistance and support throughout this 
audit. 
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