

Pentest Report
Client:
Noghteha Team

Noghteha Test Targets:
 Android App
 Privacy Audit

7ASecurity Test Team:

●​ Abraham Aranguren, MSc.
●​ Daniel Ortiz, MSc.
●​ Dheeraj Joshi, BTech.
●​ Miroslav Štampar, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

ISO/IEC 27001:2022
ISMS Certified

by Consilium Labs (IAS)

https://7asecurity.com/
https://www.iafcertsearch.org/certified-entity/iZwn2sibC4biQnPH5xoV8Lc9

Pentest Report

INDEX

Introduction​ 3
Scope​ 4
Identified Vulnerabilities​ 5

NOG-01-004 WP1: Lack of Biometric Authentication (Medium)​ 5
NOG-01-005 WP1: Chat Message Access via Memory Leak (Medium)​ 5
NOG-01-006 WP1: DoS via Unbounded Concurrent Handshakes (Medium)​ 6
NOG-01-007 WP1: Unsafe Debug UI in Release Builds (Medium)​ 8
NOG-01-008 WP1: Channel KDF Precomputation Risk (Medium)​ 9
NOG-01-010 WP1: DoS via Resource Exhaustion in File Sharing (High)​ 11
NOG-01-011 WP1: DoS via Unchecked Fragment Allocation (Medium)​ 13
NOG-01-012 WP1: DoS via Message Queue Flooding (Medium)​ 14
NOG-01-015 WP1: Unauthenticated Heap Exhaustion in Wi-Fi Aware (Medium)​ 15
NOG-01-017 WP1: Passive Device Targeting via Hardcoded BLE Secrets (High)​ 16

Hardening Recommendations​ 19
NOG-01-001 WP1: Android: Missing Root Detection (Info)​ 19
NOG-01-002 WP1: Android Binary Hardening Recommendations (Info)​ 19
NOG-01-003 WP1: Unmaintained Android version support via minSDK level (Info)​20
NOG-01-009 WP1: WebView JS Bridge Hardening (Low)​ 21
NOG-01-013 WP1: Privacy Gap via Unconsented Third-Party Geocoding (Low)​ 22
NOG-01-014 WP1: Weaknesses in Intent Token Validation (Low)​ 24
NOG-01-016 WP1: Weaknesses in DeepLink URL Validation (Info)​ 25
NOG-01-018 WP1: Weaknesses in Android Keystore Configuration (Medium)​ 26

WP2: Noghteha Privacy Audit​ 28
NOG-01-Q01: Files & Information Gathered by Noghteha (Proven)​ 28
NOG-01-Q02: Where & How Noghteha Transmits Data (Unclear)​ 29
NOG-01-Q03: Insecure PII Storage Analysis of Noghteha (Unclear)​ 31
NOG-01-Q04: Analysis of Potential Noghteha User Tracking (Unclear)​ 31
NOG-01-Q05: Potential Noghteha Crypto Weakening (Unclear)​ 32
NOG-01-Q06: Insecure SD Card Usage by Noghteha (Unclear)​ 33
NOG-01-Q07: Potential for RCE in Noghteha (Unclear)​ 33
NOG-01-Q08: Potential Noghteha Backdoors (Unclear)​ 34
NOG-01-Q09: Noghteha Attempts to Gain Root Access (Unclear)​ 34
NOG-01-Q10: Potential Noghteha Usage of Obfuscation (Proven)​ 35

Conclusion​ 36

7ASecurity © 2026
 2

https://7asecurity.com

Pentest Report

Introduction
“Connect Without Internet
Secure, decentralized messaging for when the internet goes dark.
Stay connected with Bluetooth mesh networking.”

From https://noghteha.app/en/

This document outlines the results of a whitebox security and privacy audit conducted
against the Noghteha platform. The project was solicited by the Noghteha Team and
executed by 7ASecurity in January 2026. The audit team dedicated 12 working days to
complete this assignment. Please note that this is the first penetration test for this
project. Consequently, the identification of security weaknesses was expected to be
easier during this engagement, as more vulnerabilities are identified and resolved after
each testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure Noghteha users can be provided with the best possible security and privacy. The
methodology implemented was whitebox: 7ASecurity was provided with access to
release and debug builds, documentation, and source code. A team of 4 senior auditors
carried out all tasks required for this engagement, including preparation, delivery,
documentation of findings and communication.

A number of necessary arrangements were in place by January 2026, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Signal
group chat. The Noghteha team was helpful and responsive throughout the audit, which
ensured that 7ASecurity was provided with the necessary access and information at all
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding
the audit status and its interim findings during the engagement.

This audit split the scope items into the following work packages, which are referenced
in the ticket headlines as applicable:

●​ WP1: Whitebox Tests against Noghteha Android Application
●​ WP2: Noghteha Privacy Audit

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

10 8 18

Please note that the analysis of the remaining work package (WP2) is provided
separately, in the following section of this report:

7ASecurity © 2026
 3

https://noghteha.app/en/
https://7asecurity.com

Pentest Report

●​ WP2: Noghteha Privacy Audit

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Noghteha applications.

Scope

The following list outlines the items in scope for this project:

●​ WP1: Whitebox Tests against Noghteha Android Application
○​ https://github.com/filtershekanha/Noghteha_Android

■​ Noghteha Android Version: 1.0.34
●​ WP2: Privacy Audit of Noghteha Android Application

○​ As above

7ASecurity © 2026
 4

https://github.com/filtershekanha/Noghteha_Android
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note that these are offered sequentially as they were uncovered, they
are not sorted by significance or impact. Each finding has a unique ID (i.e. NOG-01-001)
for ease of reference, and offers an estimated severity in brackets alongside the title.

NOG-01-004 WP1: Lack of Biometric Authentication (Medium)

The Noghteha Android application does not implement password or biometric
authentication to protect the chat functionality, even after being closed or left idle for an
extended period. This lack of security significantly increases the risk of unauthorized
access in high-threat scenarios such as device seizure at protests or physical
confiscation by authorities. If a physical attacker gains access to an unlocked phone,
they can fully interact with sensitive functionality, such as reading all messages, viewing
contact lists, analyzing communication patterns, and accessing mesh network
configurations, without bypassing any additional authentication. This exposes users to
severe risks, including identification, surveillance, and potential harm, as all chat data
and metadata can be accessed without further authentication steps beyond the device
lock screen.

To improve security and safeguard user data, it is advised to implement biometric
authentication, such as fingerprint or facial recognition, when reopening the app after
inactivity. This added layer of security ensures that only the authorized user can access
sensitive chat messages. For technical guidance, consult the OWASP MASTG Android
Local Authentication1 documentation to integrate biometric security properly.

NOG-01-005 WP1: Chat Message Access via Memory Leak (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

It was found that chat message content was retained in the Noghteha Android app
process memory. If an attacker obtains privileged access sufficient to capture a process
memory dump (for example, via physical access with debugging enabled, root access,
or local privilege escalation), chat content can be recovered from memory, increasing the
impact of device compromise in high-threat environments.

To confirm this issue, the app process memory was dumped and reviewed for retained
chat content. A search for a known message string identified an occurrence in memory.

1 https://mas.owasp.org/MASTG/0x05f-Testing-Local-Authentication/

7ASecurity © 2026
 5

https://mas.owasp.org/MASTG/0x05f-Testing-Local-Authentication/
https://7asecurity.com

Pentest Report

Command:
strings ./314572800_dump.data | grep "w00tw00t"

Output:
this is a supersecret message: w00tw00t​
Message from noghteh1337: this is a supersecret message: w00tw00t​
[...]

It is recommended to minimize retention of chat content and key material in long-lived
in-memory structures and to clear buffers when the data is no longer required (for
example, on chat exit, logout, or after message processing). For key material, storage in
immutable objects (for example, java.lang.String) should be avoided where feasible, and
zeroization should be performed for byte arrays and other mutable buffers after use.
Immediate removal from memory cannot be guaranteed in a managed runtime due to
nondeterministic garbage collection; therefore, retention should be minimized and debug
or diagnostic caches should be bounded and cleared. For additional mitigation guidance,
please see the Testing Memory for Sensitive Data section of the Mobile Application
Security Testing Guide (MASTG)2.

NOG-01-006 WP1: DoS via Unbounded Concurrent Handshakes (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A resource exhaustion vulnerability exists in the handshake coordination subsystem
regarding the handling of pending handshake sessions. While the
MeshEncryptionCoordinator attempts to enforce a limit on concurrent handshakes
(MAX_CONCURRENT_HANDSHAKES = 10), this limit is enforced only on outgoing
initiation and is bypassed by incoming handshake requests. Furthermore, the mitigation
strategy for outgoing requests introduces a secondary denial-of-service vector via
coroutine exhaustion.

The application derives a Peer ID directly from the raw bytes of the senderID field in
incoming packets. Since this identity is unauthenticated during the initial handshake
phase, an attacker can perform a Sybil attack by broadcasting packets with randomly
generated senderIDs. When processing these incoming handshake messages, the
processHandshakeMessage function adds entries to the pendingHandshakes map
without checking the global limit, allowing unbounded memory growth. Concurrently,
when the limit is reached for outgoing requests, the initiateHandshake function launches
a new coroutine to retry after a delay. Under a flood of requests, this results in an O(N)
increase in suspended coroutines, exhausting system resources.

2 https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/

7ASecurity © 2026
 6

https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-TEST-0011/
https://7asecurity.com

Pentest Report

Affected File:
app/src/main/java/com/filtershekanha/noghteha/mesh/MeshEncryptionCoordinator.kt

Affected Code:
suspend fun processHandshakeMessage(routed: RoutedPacket): ByteArray? {​
 val peerID = routed.peerID ?: return null​
 [...]​
 // Track this handshake if we haven't seen it​
 if (!pendingHandshakes.containsKey(peerID)) {​
 pendingHandshakes[peerID] = HandshakeState(peerID, initiatedByUs = false)​
 _encryptionEvents.emit(EncryptionEvent.HandshakeStarted(peerID))​
 }​
 [...]​
}​
[...]​
fun initiateHandshake(peerID: String, remoteNoisePublicKey: ByteArray? = null) {​
 [...]​
 // Check concurrent handshake limit​
 if (pendingHandshakes.size >= MAX_CONCURRENT_HANDSHAKES) {​
 Log.w(TAG, "Max concurrent handshakes reached, queueing handshake for $peerID")​
 coordinatorScope.launch {​
 delay(1000) // Wait and retry​
 initiateHandshake(peerID, remoteNoisePublicKey)​
 }​
 return​
 }​
 [...]​
}

It is recommended to enforce MAX_CONCURRENT_HANDSHAKES strictly for both
incoming and outgoing handshake attempts. In processHandshakeMessage, the limit
should be checked before creating a new HandshakeState; if the limit is reached, the
incoming request should be dropped without creating a pendingHandshakes entry and a
warning can be logged. The recursive coroutine pattern in initiateHandshake should be
replaced with a bounded Channel or a single background job that drains a queue of
pending requests to prevent unbounded coroutine creation. This ensures that
pendingHandshakes never exceeds the configured limit under any traffic conditions,
incoming handshake floods are dropped without allocating map entries, and outgoing
handshake floods do not spawn excessive coroutines.

7ASecurity © 2026
 7

https://7asecurity.com

Pentest Report

NOG-01-007 WP1: Unsafe Debug UI in Release Builds (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A design vulnerability exists in DebugSettingsManager.kt and DebugSettingsSheet.kt
due to the inclusion of unsafe diagnostic features in release builds without adequate
safeguards. The application ships with a fully functional debug interface
(DebugSettingsSheet) and a backing singleton manager (DebugSettingsManager) that
allows modifying critical system parameters at runtime. These settings are persisted to
SharedPreferences via DebugPreferenceManager, meaning unsafe configurations
survive application restarts.

The exposed functionality enables trivial DoS and increased data exposure in release
builds. The setMaxConnectionsOverall method, accessible through a UI slider, allows
the mesh connection limit to be reduced to as low as 1 without enforcing a safe minimum
(for example, 3-4 peers), making it easy to accidentally or maliciously isolate the node.
In addition, setVerboseLoggingEnabled causes decrypted packet metadata and
connection details to be retained in the in-memory debugMessageQueue, creating a
persistent cache of sensitive information on the Java heap that would otherwise be
transient, thereby increasing the impact of memory-corruption issues or post-seizure
forensic analysis.

Because these methods are public, unguarded, and compiled into the release build, they
serve as “gadgets” that can be chained with other vulnerabilities (such as the WebView
JavaScript bridge in NOG-01-009) to escalate a minor compromise into a persistent DoS
or data leak.

Affected Files:
app/src/main/java/com/filtershekanha/noghteha/ui/debug/DebugSettingsManager.kt
app/src/main/java/com/filtershekanha/noghteha/ui/debug/DebugSettingsSheet.kt

Affected Code:
fun setMaxConnectionsOverall(value: Int) {​
 val clamped = value.coerceIn(1, 32)​
 DebugPreferenceManager.setMaxConnectionsOverall(clamped)​
 _maxConnectionsOverall.value = clamped​
 addDebugMessage(DebugMessage.SystemMessage("Max overall connections set to

$clamped"))​
}​
[...]​
fun addDebugMessage(message: DebugMessage) {​
 [...]​
 debugMessageQueue.offer(message)​
 [...]​

7ASecurity © 2026
 8

https://7asecurity.com

Pentest Report

}

It is recommended to wrap debug logic and UI initialization in BuildConfig.DEBUG
checks to ensure that these features are disabled or unreachable in production builds.
Additionally, DebugPreferenceManager should ignore or clear any debug overrides in
release builds to prevent persistence from testing environments. This can reduce field
diagnosability; if diagnostics are required, a separate, explicitly controlled mechanism
should be provided.

If field diagnostics must remain available in release builds, it is recommended to gate
access with explicit user authentication (e.g., device biometrics) or a dedicated unlock
sequence before DebugSettingsManager is enabled. Safe limits should be enforced by
changing coerceIn(1, 32) to coerceIn(MIN_SAFE_CONNECTIONS, 32), and “Verbose
Logging” should be automatically disabled after a short timeout (e.g., 15 minutes), with
the in-memory queue bounded and cleared when the application is backgrounded.

NOG-01-008 WP1: Channel KDF Precomputation Risk (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A cryptographic weakness exists in ChannelManager.kt regarding the key derivation
mechanism for mesh channels that can reduce resistance to offline password guessing if
encrypted traffic is captured. The application utilizes a deterministic salt derived from a
fixed prefix and the channel name combined with PBKDF2 to generate encryption keys.
This architectural design enables "stateless" channel joining, allowing users to derive the
correct key for a public channel solely from its name and password without prior network
negotiation, but it fails to effectively mitigate precomputation attacks for common channel
names.

Because the salt is globally predictable for any given channel name (e.g., “General”),
and PBKDF2 is not memory-hard and is amenable to GPU and ASIC acceleration, a
sophisticated adversary can precompute password-guessing tables for common channel
names. If encrypted traffic is intercepted, the adversary can use these precomputed
tables to amortize guesses across many captures, significantly reducing the attack cost
to recover passwords compared to a random per-channel salt implementation. The
deterministic salt does not provide per-channel randomness, which increases reliance
on a memory-hard derivation function to resist GPU acceleration, which the current
PBKDF2 configuration does not satisfy.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/ui/ChannelManager.kt

7ASecurity © 2026
 9

https://7asecurity.com

Pentest Report

Affected Code:
private fun deriveChannelKey(password: CharArray, channelName: String): SecretKeySpec {​
 // PBKDF2 key derivation (same as iOS version)​
 val factory = javax.crypto.SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256")​
 // Use application-specific prefix + channel name as salt to prevent rainbow table

attacks​
 val saltPrefix = "com.filtershekanha.noghteha.channel.v1:"​
 try {​
 val spec = javax.crypto.spec.PBEKeySpec(​
 password,​
 (saltPrefix + channelName).toByteArray(),​
 100000, // 100,000 iterations (same as iOS)​
 256 // 256-bit key​
)​
 try {​
 val secretKey = factory.generateSecret(spec)​
 return SecretKeySpec(secretKey.encoded, "AES")​
 } finally {​
 spec.clearPassword()​
 }​
 } finally {​
 CryptoUtils.secureZero(password)​
 }​
}

It is recommended to maintain stateless channel joining while mitigating precomputation
risk by migrating from PBKDF2 to a memory-hard key derivation function such as
Argon2id3. Argon2id should be configured with mobile-appropriate parameters (e.g.,
32-64 MB RAM, 1-3 iterations), targeting a derivation time of 150-300 ms on low-end
devices. This can increase CPU and memory usage; the impact should be mitigated by
tuning parameters and performing derivation off the UI thread. KDF versioning (e.g.,
v1=PBKDF2, v2=Argon2id) should be implemented to facilitate migration and support
legacy channels if necessary. Alternatively, secure channels can be introduced that use
a random salt generated upon creation and distributed alongside the channel name via
invite links to ensure true per-channel uniqueness, at the cost of requiring an out-of-band
invite for joining.

3 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

7ASecurity © 2026
 10

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

NOG-01-010 WP1: DoS via Resource Exhaustion in File Sharing (High)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A DoS vulnerability exists in the file sharing stack due to inefficient memory
management and quadratic-time decoding logic. This can allow an attacker-controlled
peer to exhaust CPU and heap resources during file transfers, potentially causing
application crashes or an unresponsive service. While the application attempts to limit
file sizes to 100 MB, the implementation of the NoghtehaFilePacket decoder and the
FileSharingManager logic allows for significant resource exhaustion even within those
limits. Specifically, the NoghtehaFilePacket.decode function implements a
“concatenate-on-read” strategy for file content. For every CONTENT TLV received, the
application uses the + operator to merge the new fragment with the existing buffer.

This operation allocates a new ByteArray and copies the entire existing content each
time, leading to O(n²) algorithmic complexity in terms of data copying. An attacker can
exploit this by sending a file fragmented into thousands of small TLVs, pinning the CPU
and exhausting the heap through repeated large allocations. Furthermore, the
FileSharingManager.readFileWithChecksumStreaming function utilizes a
ByteArrayOutputStream that allocates a full-sized buffer in RAM and then performs a
redundant copy via .toByteArray(), doubling the peak memory footprint during file
transmission.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/model/NoghtehaFilePacket.kt

Affected Code:
fun decode(data: ByteArray): NoghtehaFilePacket? {​
 [...]​
 when (t) {​
 [...]​
 TLVType.CONTENT -> {​
 val existing = contentBytes​
 if (existing == null) {​
 contentBytes = value​
 } else {​
 contentBytes = existing + value​
 }​
 }​
 [...]​
 }​
}

Affected File:
app/src/main/java/com/filtershekanha/noghteha/model/FileSharingManager.kt

7ASecurity © 2026
 11

https://7asecurity.com

Pentest Report

Affected Code:
private fun readFileWithChecksumStreaming(file: File): Pair<ByteArray, ByteArray> {​
 [...]​
 val content = BufferedInputStream(FileInputStream(file), CHUNK_SIZE).use {

bufferedStream ->​
 DigestInputStream(bufferedStream, digest).use { digestStream ->​
 ByteArrayOutputStream(fileSize.toInt().coerceAtMost(Int.MAX_VALUE)).use {

outputStream ->​
 val buffer = ByteArray(CHUNK_SIZE)​
 var bytesRead: Int​
​
 while (digestStream.read(buffer).also { bytesRead = it } != -1) {​
 outputStream.write(buffer, 0, bytesRead)​
 }​
​
 outputStream.toByteArray()​
 }​
 }​
 }​
 [...]​
}

It is recommended to refactor NoghtehaFilePacket.decode to parse TLV headers without
immediate copying and to accumulate CONTENT fragments in a list so that a single
allocation and copy operation is performed only after all fragments are received. It is also
recommended to update the file-handling architecture to avoid ByteArrayOutputStream
usage and redundant in-memory copies by storing a file reference (URI/path) rather than
raw bytes, allowing data to be streamed directly from disk to the network socket using a
fixed-size bounded buffer. This reduces peak heap usage but requires validation of
referenced paths and lifecycle handling for temporary files.

Consolidate all MAX_FILE_SIZE constants into a single source of truth in
AppConstants.kt and enforce this limit strictly at the start of both encoding and decoding
paths. In the decoder, maintain a totalContentLen counter during TLV iteration to reject
the packet immediately if the accumulated length exceeds the protocol maximum,
ensuring that heap usage remains bounded and does not trigger an OutOfMemoryError
(OOM) even when processing large files.

7ASecurity © 2026
 12

https://7asecurity.com

Pentest Report

NOG-01-011 WP1: DoS via Unchecked Fragment Allocation (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A DoS vulnerability exists in the FragmentPayload class within the decode function. The
application allocates memory for incoming fragment payloads based on the size of the
received payloadData byte array without enforcing the strict protocol-level maximum
defined in AppConstants. Specifically, the code uses sliceArray to create a new copy of
the data on the heap.

Although the protocol intends for fragments to be small (MAX_FRAGMENT_SIZE = 469
bytes), the decoder does not enforce this limit. If the upstream transport layer (e.g., TCP
or a bridged connection) allows larger frames, an attacker can send malformed packets
utilizing the maximum possible transport size (e.g., 1 MB). This function blindly
duplicates the data into a new array. If such frames are received repeatedly, memory
pressure is increased for each received frame, accelerating garbage collection (GC)
thrashing and potentially degrading service stability on low-memory devices.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/model/FragmentPayload.kt

Affected Code:
fun decode(payloadData: ByteArray): FragmentPayload? {​
 if (payloadData.size < HEADER_SIZE) {​
 return null​
 }​
​
 try {​
 [...]​
 // Extract fragment data (remaining bytes)​
 val data = if (payloadData.size > HEADER_SIZE) {​
 payloadData.sliceArray(HEADER_SIZE..<payloadData.size)​
 } else {​
 ByteArray(0)​
 }​
​
 return FragmentPayload(fragmentID, index, total, originalType, data)​
​
 } catch (e: Exception) {​
 return null​
 }​
}

It is recommended to enforce the existing protocol constants within the decoder by
validating payloadData.size against a strict maximum before any processing. A
maximum accepted size should be defined as MAX_PACKET_SIZE = HEADER_SIZE +

7ASecurity © 2026
 13

https://7asecurity.com

Pentest Report

AppConstants.Fragmentation.MAX_FRAGMENT_SIZE (approximately 482 bytes), and
the function should return null immediately if payloadData.size exceeds this limit to
prevent the sliceArray allocation. Additionally, header fields (index, total) should be
validated to ensure they fall within sane limits and do not trigger logic errors. The
implementation must ensure that decode() immediately rejects packets larger than
MAX_PACKET_SIZE without performing additional allocations.

NOG-01-012 WP1: DoS via Message Queue Flooding (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A DoS vulnerability exists in the NostrRelayManager class in the handling of the
outgoing message queue that can cause legitimate high-priority messages to be
dropped under load. The system enforces a fixed capacity limit on the message queue
(MAX_MESSAGE_QUEUE_SIZE = 1000) but uses a first-in, first-out (FIFO) eviction
policy when full. Specifically, when the queue reaches capacity, the system
indiscriminately drops the oldest message (removeFirst()) to make room for the new
one, without considering message priority or sender fairness.

If untrusted input can trigger outbound event generation, an attacker can exploit this by
flooding the relay manager with low-value or "spam" events. This flood rapidly fills the
queue, causing the removal of legitimate, high-priority messages (such as handshakes
or direct messages) that are waiting to be processed. This allows a single
attacker-controlled peer to crowd out legitimate traffic, degrading network reliability and
potentially preventing new peers from joining or authenticating.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/nostr/NostrRelayManager.kt

Affected Code:
fun sendEvent(event: NostrEvent, relayUrls: List<String>? = null) {​
 val targetRelays = relayUrls ?: relaysList.map { it.url }​
​
 // Add to queue for reliability with size limit to prevent OOM​
 synchronized(messageQueueLock) {​
 if (messageQueue.size >= MAX_MESSAGE_QUEUE_SIZE) {​
 // PERFORMANCE: Use removeFirst() for O(1) removal from ArrayDeque​
 // Previously removeAt(0) on ArrayList was O(n)​
 val dropped = messageQueue.removeFirst()​
 Log.w(TAG, "Message queue full (size=$MAX_MESSAGE_QUEUE_SIZE), dropping

oldest event kind=${dropped.first.kind}")​
 }​
 // PERFORMANCE: addLast() on ArrayDeque is O(1) amortized​
 messageQueue.addLast(Pair(event, targetRelays))​
​

7ASecurity © 2026
 14

https://7asecurity.com

Pentest Report

 // RELIABILITY: Check and update backpressure state​
 updateBackpressureState(messageQueue.size)​
 }​
 [...]​
}
It is recommended to implement a “Fair Queuing” or “Quality of Service” (QoS)
mechanism by using separate queues for high-priority traffic (handshakes, DMs) and
low-priority traffic (gossip), ensuring that critical messages are never dropped in favor of
lower-priority traffic. This can reduce throughput for low-priority traffic under load; this
impact should be mitigated by applying bounded per-class queue sizes and
backpressure. Alternatively, a token bucket limit per peer should be enforced to ensure
that no single peer can monopolize shared buffer capacity. The system should ensure
that AUTH events and direct messages are prioritized over read receipts and other
ephemeral traffic.

NOG-01-015 WP1: Unauthenticated Heap Exhaustion in Wi-Fi Aware (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A DoS vulnerability exists in the WifiAwarePeerConnection class where packet reading
logic allocates memory based on attacker-controlled input prior to authentication. The
readPacket function reads a 4-byte integer length header and validates it against
MAX_PACKET_SIZE, which is configured to 1 MB (1024 * 1024). Because this
execution path is reached upon socket acceptance in WifiAwareTransport (before any
peer cryptographic verification), an unauthenticated attacker within Wi-Fi Aware range
can open multiple concurrent connections and flood messages declaring a 1 MB length.
This can force the application to repeatedly allocate 1 MB blocks on the Java heap,
driving aggressive garbage collection (GC) thrashing and potentially causing OOM
crashes or an unresponsive background service.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/wifi/WifiAwarePeerConnection.kt

Affected Code:
private const val MAX_PACKET_SIZE = 1024 * 1024 // 1 MB max​
[...]​
private fun readPacket(): NoghtehaPacket? {​
 val input = inputStream ?: return null​
​
 // Read 4-byte length header​
 val length = input.readInt()​
​
 // Validate length​
 if (length < 0 || length > MAX_PACKET_SIZE) {​
 Log.w(TAG, "Invalid packet length from $peerID: $length")​

7ASecurity © 2026
 15

https://7asecurity.com

Pentest Report

 return null​
 }​
 [...]​
 // Read packet data​
 val data = ByteArray(length)​
 input.readFully(data)​
 [...]​
}

It is recommended to separate unauthenticated framing from authenticated payload
processing by applying the following controls:

●​ Avoid allocating a full-sized buffer immediately based on the length header by
using a small fixed-size buffer (e.g., 8 KB) or a BufferedInputStream to identify
message type.

●​ Defer full payload allocation (up to 1 MB) until sender identity is cryptographically
verified, or until message type is confirmed as a handshake packet with a strict
size limit (e.g., <1 KB).

●​ Implement connection-level rate limiting to drop peers that send excessive data
prior to successful authentication.

NOG-01-017 WP1: Passive Device Targeting via Hardcoded BLE Secrets (High)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A privacy issue exists in the ServiceUuidRotation mechanism where the application
attempts to prevent passive user tracking by rotating the Bluetooth Low Energy (BLE)
Service UUID. Although “Device Jitter” and “Version Entropy” are used to desynchronize
devices and separate app versions, the entire cryptographic derivation chain relies on a
set of globally static constants, anchored by BASE_ROTATION_SECRET, that are
hardcoded in the application binary and shared across installations.

Because the effective rotation key is derived entirely from static constants embedded in
the application binary, an adversary can extract them once and precompute the valid
UUID sequence for a given time window. Even if the "Device Jitter" mechanism shifts the
specific bucket index used by a device, the resulting UUID is merely shifted to an
adjacent value in this globally predictable sequence. Consequently, a passive adversary
can positively identify an active device, regardless of its specific jitter offset, by
monitoring the small set of valid UUIDs covering the current and adjacent time intervals.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/mesh/ServiceUuidRotation.kt

Affected Code:
object ServiceUuidRotation {​

7ASecurity © 2026
 16

https://7asecurity.com

Pentest Report

 [...]​
 // Prefix for HMAC input to domain-separate from other uses​
 private const val HMAC_PREFIX = "noghteha-ble-uuid-v2-"​
 [...]​
 private val BASE_ROTATION_SECRET = byteArrayOf(​
 0x4E.toByte(), 0x6F.toByte(), 0x67.toByte(), 0x68.toByte(), // "Nogh"​
 0x74.toByte(), 0x65.toByte(), 0x68.toByte(), 0x61.toByte(), // "teha"​
 0x2D.toByte(), 0x42.toByte(), 0x4C.toByte(), 0x45.toByte(), // "-BLE"​
 0x2D.toByte(), 0x52.toByte(), 0x6F.toByte(), 0x74.toByte(), // "-Rot"​
 0x61.toByte(), 0x74.toByte(), 0x69.toByte(), 0x6F.toByte(), // "atio"​
 0x6E.toByte(), 0x2D.toByte(), 0x53.toByte(), 0x65.toByte(), // "n-Se"​
 0x63.toByte(), 0x72.toByte(), 0x65.toByte(), 0x74.toByte(), // "cret"​
 0x2D.toByte(), 0x56.toByte(), 0x32.toByte(), 0x00.toByte() // "-V2\0"​
)​
​
 private const val PROTOCOL_VERSION = "2.0.0"​

 private val VERSION_ENTROPY: ByteArray by lazy {​
 try {​
 [...]​
 val versionInfo = buildString {​
 append("noghteha-version-entropy-")​
 [...]​
 append(PROTOCOL_VERSION)​
 }​
 MessageDigest.getInstance("SHA-256").digest(versionInfo.toByteArray(

Charsets.UTF_8))​
 }​
 [...]​
 }

​
 private val EFFECTIVE_ROTATION_SECRET: ByteArray by lazy {​
 try {​
 val mac = Mac.getInstance(HMAC_ALGORITHM)​
 val keySpec = SecretKeySpec(BASE_ROTATION_SECRET, HMAC_ALGORITHM)​
 mac.init(keySpec)​
 [...]​
 // Add version-specific entropy​
 mac.update(VERSION_ENTROPY)​
 [...]​
 }​
 [...]​
 }​
 [...]​
 private fun deriveUuidForBucket(bucketIndex: Long): UUID {​
 return try {​
 val mac = Mac.getInstance(HMAC_ALGORITHM)​
 val keySpec = SecretKeySpec(EFFECTIVE_ROTATION_SECRET, HMAC_ALGORITHM)​
 mac.init(keySpec)​
​
 // Input: prefix + bucket index as string​

7ASecurity © 2026
 17

https://7asecurity.com

Pentest Report

 val input = "$HMAC_PREFIX$bucketIndex".toByteArray(Charsets.UTF_8)​
 val hash = mac.doFinal(input)​
 [...]​
 }​
 [...]​
 }​
}

It is recommended to prioritize user control and reduced exposure by providing a
“Stealth Mode” that disables global advertising in high-risk environments and limits
discovery to trusted contacts using pairwise keys. This reduces the ability of a global
passive adversary to monitor broadcasts for identification purposes, but it also reduces
ad hoc discovery; this trade-off should be addressed by making the mode
user-controlled and clearly communicating the impact on discoverability.

Where a trusted update channel is available, it is recommended to provision the rotation
secret outside the application binary and support secret rotation and revocation to limit
long-term predictability if a secret is extracted. This introduces operational complexity
and a risk of discovery disruption during key changes; the impact should be reduced by
versioning secrets and using an overlap window to allow old and new values to coexist
during rollout.

7ASecurity © 2026
 18

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

NOG-01-001 WP1: Android: Missing Root Detection (Info)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

The Android app lacks root detection, failing to alert users about security risks4. This can
be confirmed by installing the app on a rooted device and verifying the absence of
warnings.

It is recommended to implement root detection to address this issue. Since the user has
root access while the app does not, detection mechanisms are inherently bypassable
with sufficient skill. The RootBeer library5 can be used to warn users about the risks of
running the app on a rooted device, which, despite being bypassable, serves as an
effective alert.

NOG-01-002 WP1: Android Binary Hardening Recommendations (Info)

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application more at risk for such
issues.

Issue 1: Binaries missing usage of -D_FORTIFY_SOURCE=2

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected, the following is a reduced list of examples for the sake of brevity.

Example binaries (from decompiled production app):
x86/libandroidx.graphics.path.so
​​x86_64/libandroidx.graphics.path.so

5 https://github.com/scottyab/rootbeer
4 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515

7ASecurity © 2026
 19

http://libandroidx.graphics.path.so
http://libandroidx.graphics.path.so
https://github.com/scottyab/rootbeer
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
https://7asecurity.com

Pentest Report

armeabi-v7a/libandroidx.graphics.path.so
arm64-v8a/libandroidx.graphics.path.so
[...]

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure libc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Issue 2: Binaries missing usage of Stack Canary

Some binaries do not have a stack canary value added to the stack. Stack canaries are
used to detect and prevent exploits from overwriting return addresses.

Example binaries (from decompiled app):
x86/libarti_mobile_ex.so
x86_64/libarti_mobile_ex.so
armeabi-v7a/libarti_mobile_ex.so
arm64-v8a/libarti_mobile_ex.so
[...]

It is recommended to enable stack canary protections across native builds using
-fstack-protector-strong (or -fstack-protector-all where the additional overhead is
acceptable) to improve resilience against stack-based exploitation.

NOG-01-003 WP1: Unmaintained Android version support via minSDK level (Info)

A security hardening opportunity was identified in the Android platform support policy.
The Android manifest sets minSdkVersion to 24 (Android 7.0), which allows the
application to run on Android releases that are out of security support and may no longer
receive OS security patches. Public support schedules indicate that Android 7.0 is end of
security support. They also indicate that Android 10 (API 29) and Android 12 (API 31)
have reached the end of security support on some support schedules.

Supporting end-of-life Android releases increases exposure to known vulnerabilities that
may remain unpatched on those devices, including kernel privilege escalation
vulnerabilities such as CVE-2019-221516 and task-hijacking issues such as StrandHogg
2.0 (CVE-2020-00967).

Affected file:
AndroidManifest.xml

7 https://nvd.nist.gov/vuln/detail/cve-2020-0096
6 https://nvd.nist.gov/vuln/detail/cve-2019-2215

7ASecurity © 2026
 20

http://libandroidx.graphics.path.so
http://libandroidx.graphics.path.so
https://nvd.nist.gov/vuln/detail/cve-2020-0096
https://nvd.nist.gov/vuln/detail/cve-2019-2215
https://7asecurity.com

Pentest Report

Affected code:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"​
 android:versionCode="35"​
 android:versionName="1.0.34"​
 android:compileSdkVersion="35"​
 android:compileSdkVersionCodename="15"​
 package="com.filtershekanha.noghteha"​
 platformBuildVersionCode="35"​
 platformBuildVersionName="15">​
 <uses-sdk​
 android:minSdkVersion="24"​
 android:targetSdkVersion="35"/>

It is recommended to raise minSdkVersion to a currently supported baseline (for
example, Android 13 / API 33 or later), aligned with the product device support
requirements, to reduce reliance on end-of-life Android versions.

NOG-01-009 WP1: WebView JS Bridge Hardening (Low)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A security hardening opportunity was identified in GeohashPickerActivity. JavaScript is
enabled in a WebView, and a native interface is exposed via addJavascriptInterface.
Even if the intended content is a local asset, the presence of a JavaScript bridge
increases impact if unintended JavaScript execution becomes possible in this WebView
(for example, unexpected navigation, future WebView issues, or asset tampering),
because bridge methods can be invoked by script within the WebView context. The
exposure surface can be reduced by strictly constraining the WebView to the single
expected file:///android_asset/... page and disabling file/universal access modes that
broaden what the WebView can reach.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/ui/GeohashPickerActivity.kt

Affected Code:
@SuppressLint("SetJavaScriptEnabled")​
override fun onCreate(savedInstanceState: Bundle?) {​
 [...]​
 settings.javaScriptEnabled = true​
 [...]​
 addJavascriptInterface(object {​
 @JavascriptInterface​
 fun onGeohashChanged(geohash: String) {​
 val sanitized = geohash.trim().lowercase()​
 if (!GEOHASH_PATTERN.matches(sanitized)) {​
 return​

7ASecurity © 2026
 21

https://7asecurity.com

Pentest Report

 }​
 [...]​
 }​
 }, "Android")​
 ​
 loadUrl("file:///android_asset/geohash_picker.html")​
 [...]​
}

It is recommended to keep the WebView scoped to the single expected asset page by
blocking all navigations except file:///android_asset/geohash_picker.html and denying
non-asset schemes (for example, http:, https:, and intent:). To reduce the blast radius of
any unintended JavaScript execution, allowFileAccessFromFileURLs and
allowUniversalAccessFromFileURLs should be disabled (and other WebView settings
should be kept at the minimum required for functionality). The WebView should be
verified to be unable to navigate to external destinations.

NOG-01-013 WP1: Privacy Gap via Unconsented Third-Party Geocoding (Low)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A privacy hardening opportunity was identified in the application location handling logic
within LocationChannelManager and GeohashBookmarksStore. Reverse geocoding is
performed automatically via android.location.Geocoder when the user location is
updated and when a new geohash bookmark is added. On many Android devices,
Geocoder can be serviced by a network-backed provider (often Google Play services on
Google-enabled devices), which may transmit precise coordinates off-device to the
configured geocoding provider. For a censorship-resistant messenger intended for
high-risk environments, automatic reverse geocoding during routine operation can create
avoidable metadata by generating repeated, timestamped location lookups without
explicit user intent or consent.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/geohash/LocationChannelManager.kt

Affected Code:
private fun reverseGeocodeIfNeeded(location: Location) {​
 if (!Geocoder.isPresent()) {​
 Log.w(TAG, "Geocoder not present on this device")​
 return​
 }​
 [...]​
 scope.launch {​
 try {​
 // PRIVACY NOTE: This sends coordinates to Google servers for reverse

7ASecurity © 2026
 22

https://7asecurity.com

Pentest Report

geocoding​
 Log.d(TAG, "Starting reverse geocoding (sends coords to Google)")​
​
 @Suppress("DEPRECATION")​
 val addresses = geocoder.getFromLocation(location.latitude,

location.longitude, 1)​
​
 if (!addresses.isNullOrEmpty()) {​
 [...]​
 }​
 [...]​
 } catch (e: Exception) {​
 Log.e(TAG, "Reverse geocoding failed: ${e.message}")​
 }​
 [...]​
 }​
}

Affected File:
app/src/main/java/com/filtershekanha/noghteha/geohash/GeohashBookmarksStore.kt

Affected Code:
fun resolveNameIfNeeded(geohash: String) {​
 [...]​
 if (!Geocoder.isPresent()) return​
​
 resolving.add(gh)​
 scope.launch {​
 try {​
 val geocoder = Geocoder(context, Locale.getDefault())​
 val name: String? = if (gh.length <= 2) {​
 [...]​
 for (loc in points) {​
 try {​
 @Suppress("DEPRECATION")​
 val list = geocoder.getFromLocation(loc.latitude,

loc.longitude, 1)​
 [...]​
 }​
 [...]​
 }​
 [...]​
 } else {​
 val center = Geohash.decodeToCenter(gh)​
 @Suppress("DEPRECATION")​
 val list = geocoder.getFromLocation(center.first, center.second, 1)​
 [...]​
 }​
 [...]​
 } catch (e: Exception) {​

7ASecurity © 2026
 23

https://7asecurity.com

Pentest Report

 SecureLog.w(TAG, "Name resolution failed for geohash: ${e.message}")​
 } finally {​
 resolving.remove(gh)​
 }​
 }​
}

It is recommended to gate reverse geocoding behind an explicit opt-in setting and
default to no geocoding requests on initial install. When enabled, a clear notice should
be shown stating that coordinates may be sent to the device geocoding provider (for
example, Google on GMS devices). When disabled (or when Geocoder is unavailable),
the application should fall back to displaying raw Geohash coordinates or use an offline
reverse-geocoding library (e.g., one based on OpenStreetMap data) if feature parity is
required. Both live location updates and bookmark name resolution should function
without network geocoding when the setting is disabled.

NOG-01-014 WP1: Weaknesses in Intent Token Validation (Low)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A security hardening opportunity was identified in the notification intent validation
mechanism. The validateIntent function compares the provided token to the expected
HMAC using standard string comparison, which may introduce timing side-channel
differences during token verification. The function also does not implement replay
protection, so a captured legitimate token could be reused within the 15-minute validity
window. While timestamps and HMAC signatures are validated, this can increase the
risk of duplicate notification triggers or repeated actions if a valid token is obtained.

Affected File:
src/main/java/com/filtershekanha/noghteha/ui/NotificationManager.kt

Affected Code:
fun validateIntent(intent: Intent?, expectedIntentData: String = ""): Boolean {​
 if (intent == null) return false​
​
 // Check for token​
 val token = intent.getStringExtra(EXTRA_NOTIFICATION_TOKEN) ?: return false​
​
 // Check for timestamp​
 val timestamp = intent.getLongExtra(EXTRA_TOKEN_TIMESTAMP, 0L)​
 if (timestamp == 0L) return false​
​
 // SECURITY FIX L3: Validate timestamp is within validity window​
 val currentTime = System.currentTimeMillis()​
 val tokenAge = currentTime - timestamp​
 if (tokenAge < 0 || tokenAge > TOKEN_VALIDITY_WINDOW_MS) {​

7ASecurity © 2026
 24

https://7asecurity.com

Pentest Report

 Log.w(TAG, "Notification token expired (age: ${tokenAge}ms)")​
 return false​
 }​
​
 // SECURITY FIX L3: Validate HMAC​
 val expectedToken = generateSecurityToken(timestamp, expectedIntentData)​
 if (token != expectedToken) { // 7asec comment: non constant-time comparison​
 Log.w(TAG, "Notification token HMAC mismatch")​
 return false​
 }​
​
 return true // 7asec comment: No replay protection​
}

It is recommended to implement constant-time comparison for HMAC validation and add
replay protection through token tracking. The string comparison should be replaced with
a constant-time byte comparison (for example, MessageDigest.isEqual()8 on decoded
HMAC bytes). To reduce replay risk, a synchronized in-memory set can be used to track
a composite key (timestamp, intent data, token); if the composite key has already been
seen, the intent should be rejected, and successful validations should be recorded after
HMAC verification. Periodic cleanup should be implemented to remove entries older
than the validity window or cap the set size (for example, 1000 tokens). If replay
protection must remain optional, at minimum the constant-time comparison should be
implemented to reduce timing side-channel risk.

NOG-01-016 WP1: Weaknesses in DeepLink URL Validation (Info)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A security hardening opportunity was identified in the deep link sanitization mechanism.
The current function relies on character blacklisting to remove a small set of characters
from deep link URLs (for example, <, >, ", and '), but this approach is not sufficient for
URL validation and can be bypassed through URL encoding, Unicode alternatives, or
protocol-based payloads. Several characters and URL features that frequently matter for
deep link handling are not addressed (for example, %, #, and ;). More importantly, URL
components such as scheme, host, and path are not validated, so if this function is later
used as a security control, unsafe schemes (for example, javascript:, file:, data:, or
intent:), open redirects, path traversal sequences (..), or unintended intent resolution
could be allowed depending on downstream usage. This may increase the risk of
phishing, local resource exposure, or unintended navigation when an attacker-controlled
URL is processed.

8 https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html

7ASecurity © 2026
 25

https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html
https://7asecurity.com

Pentest Report

This finding is cataloged as informative because the function is not currently in use but
may be utilized in the future.

Affected File:
src/main/java/com/filtershekanha/noghteha/navigation/NavRoutes.kt

Affected Code:
// Characters that could be used for injection attacks​
private val DANGEROUS_CHARS = setOf('<', '>', '"', '\'', '\\', '\n', '\r',

'\t', '\u0000')​
[...]​
fun sanitizeString(input: String?, maxLength: Int = 256): String? {​
 if (input.isNullOrBlank()) return null​
​
 return input​
 .trim()​
 .filter { it !in DANGEROUS_CHARS }​
 .take(maxLength)​
 .ifBlank { null }​
}

It is recommended to replace character blacklisting with allowlist-based URL validation
using Android URI parsing. Explicit allowlists should be defined for permitted schemes
(for example, https and approved app schemes) and permitted hostnames for HTTPS
URLs. The URL should be parsed using Uri.parse() with malformed inputs rejected, the
scheme should be validated using case-insensitive comparison, and HTTPS hostnames
should be checked against an allowed domain list. Inputs containing path traversal
sequences (..) should be rejected, and a length limit (for example, 2048 characters)
should be enforced to reduce DoS risk. Rejected URLs can be logged for monitoring (in
a privacy-safe manner). This approach ensures only explicitly permitted URL patterns
are accepted and reduces bypass techniques.

NOG-01-018 WP1: Weaknesses in Android Keystore Configuration (Medium)

Retest Notes: Fixed by Noghteha and verified by 7ASecurity.

A security hardening opportunity was identified in the Android Keystore implementation
used for encryption key management. The current configuration does not request
StrongBox-backed storage and does not bind key use to user authentication, which
weakens protection in device-seizure and coerced-unlock scenarios. StrongBox-backed
key storage is not requested, so keys can be generated outside StrongBox even on
devices that support it. User authentication is not bound to cryptographic operations, so
key use is not gated by biometric or device-credential verification, and no authentication

7ASecurity © 2026
 26

https://7asecurity.com

Pentest Report

validity window is enforced. If setUnlockedDeviceRequired(true) is used, it only restricts
key use while the device is locked and does not enforce per-operation user
authentication. As a result, the risk of data exposure is increased when an attacker
obtains access to an unlocked device or coerces device unlock.

Affected File:
app/src/main/java/com/filtershekanha/noghteha/db/NoghtehaDatabase.kt

Affected Code:
private fun createMasterKey() {​
 val keyGenerator = KeyGenerator.getInstance(​
 KeyProperties.KEY_ALGORITHM_AES,​
 ANDROID_KEYSTORE​
)​
​
 val builder = KeyGenParameterSpec.Builder(​
 KEYSTORE_ALIAS,​
 KeyProperties.PURPOSE_ENCRYPT or KeyProperties.PURPOSE_DECRYPT​
)​
 .setBlockModes(KeyProperties.BLOCK_MODE_GCM)​
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)​
 .setKeySize(256)​
 .setRandomizedEncryptionRequired(true)

// 7asec comments

// Missing: User authentication requirement

// Missing: Biometric enrollment invalidation

// Missing: StrongBox hardware backing

// Missing: Authentication timeout

It is recommended to configure Android Keystore to prefer hardware-backed storage,
require per-operation authentication, and invalidate keys on biometric enrollment
changes. Where available, StrongBox can be requested via
setIsStrongBoxBacked(true), with a fallback key configuration when StrongBox is
unavailable. On Android 11+ (API 30+), setUserAuthenticationParameters(30,
AUTH_BIOMETRIC_STRONG | AUTH_DEVICE_CREDENTIAL) can be used to enforce
a 30-second authentication validity window, and
setInvalidatedByBiometricEnrollment(true) can be used to invalidate keys on biometric
enrollment changes. UserNotAuthenticatedException can be handled by prompting
biometric or device-credential authentication via BiometricPrompt with a CryptoObject.
setUnlockedDeviceRequired(true) can be used as a supplemental control to prevent key
use while the device is locked, but it should not be treated as a substitute for
per-operation authentication.

7ASecurity © 2026
 27

https://7asecurity.com

Pentest Report

WP2: Noghteha Privacy Audit

This section presents the analysis results addressing ten privacy-related questions. For
this portion of the engagement, 7ASecurity utilizes the following classification to specify
the certainty level of findings. As the research is based on documentation, source code,
and sample configuration analysis, classification is necessary to indicate the confidence
level of each discovery:

●​ Proven: Source code and runtime activity clearly confirm the finding as fact
●​ Evident: Source code strongly suggests a privacy concern, but this could not be

proven at runtime
●​ Assumed: Indications of a potential privacy concern were found but a broader

context remains unknown.
●​ Unclear: Initial suspicion was not confirmed. No privacy concern can be

assumed.

Each ticket summarizes the 7ASecurity attempts to answer relevant questions cited at
the beginning of each section.

NOG-01-Q01: Files & Information Gathered by Noghteha (Proven)

Q1: What files/information are gathered by the Noghteha app?
MITRE ATT&CK framework9 mapping:

●​ T1005 Data from Local System10
●​ T1517 Access Notifications11

Based on privacy documentation and source code review, the following information is
gathered by the Noghteha application:

Data collected and stored locally:

1.​ Cryptographic identity keys: Encryption key pairs are generated and stored
on-device and are not transmitted to servers.

2.​ Messages: End-to-end encrypted message content is stored locally and is
deleted after reading by default.

3.​ Shared media files: Images, voice notes, and documents shared in
conversations are stored in application-private encrypted directories.

4.​ Location data (opt-in only): When location-based channels are enabled, the
following are used:

○​ Geohash approximations (privacy-preserving grid cells)

11 https://attack.mitre.org/techniques/T1517/
10 https://attack.mitre.org/techniques/T1005/
9 https://attack.mitre.org

7ASecurity © 2026
 28

https://attack.mitre.org/techniques/T1517/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

○​ Reverse-geocoded location names (city, region, country)

Minimal data collection is consistent with the privacy-focused design (no phone
numbers, email addresses, contact lists, or message metadata). However, a critical
privacy disclosure gap exists: precise GPS coordinates are transmitted to Google for
reverse geocoding (NOG-01-013), despite privacy policy claims to the contrary. It is
recommended to update documentation and implement explicit user consent
mechanisms for third-party location data sharing.

NOG-01-Q02: Where & How Noghteha Transmits Data (Unclear)

Q2: Where and how are the files/information gathered transmitted?
MITRE ATT&CK framework12 mapping:

●​ T1041 Exfiltration Over C2 Channel13
●​ T1048 Exfiltration Over Alternative Protocol14
●​ T1071 Application Layer Protocol15

Based on documentation and source code review, the Noghteha mobile application
appears to transmit data through multiple decentralized channels designed for privacy
preservation. Messages are routed peer-to-peer via Bluetooth Low Energy (BLE) and
Wi-Fi Direct mesh networking, with end-to-end encryption using the Noise protocol.
When Internet connectivity is available, Tor (via the Arti library) may be used for
anonymous routing, and the Nostr decentralized relay network may be used for
extended message delivery. Message content remains encrypted during transmission.

When the user opts into location-based channels, location data is converted to geohash
approximations (privacy-preserving grid cells) before being transmitted to peers via the
mesh network. A critical discrepancy is indicated by the reverse-geocoding
implementation: precise GPS coordinates (latitude and longitude) appear to be
transmitted to Google geocoding servers via HTTPS to obtain human-readable location
names. This appears to occur without explicit user disclosure or consent and contradicts
the privacy policy statement that “your exact position will never be saved or sent”16.

User encryption keys are generated and stored locally in the Android Keystore and are
not transmitted to servers. No centralized servers are maintained for message storage;
messages are transmitted directly between devices or through decentralized Tor/Nostr
networks.

16 https://noghteha.app/en/privacy
15 https://attack.mitre.org/techniques/T1071/
14 https://attack.mitre.org/techniques/T1048/
13 https://attack.mitre.org/techniques/T1041/
12 https://attack.mitre.org

7ASecurity © 2026
 29

https://noghteha.app/en/privacy
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1048/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

Media files (images, voice notes, documents) shared through the application are stored
in application-private encrypted directories and are transmitted peer-to-peer with
end-to-end encryption when shared in conversations.

Network metadata that may be observable during transmission includes:

●​ Mesh network: Bluetooth MAC addresses, Wi-Fi SSID/BSSID, timing patterns,
peer proximity information

●​ Tor network: Entry guard may observe user IP (not destination); exit node may
observe destination (not source)

●​ Nostr relays: Public keys (pseudonymous identifiers), connection timestamps,
subscription patterns, IP addresses (unless routed via Tor)

●​ Google geocoding: Precise GPS coordinates, device IP address, request
timestamps, device fingerprinting data (User-Agent, platform details)

The ProGuard configuration indicates that logging is stripped from release builds to
reduce information exposure through logcat. An emergency “Panic Mode” feature is
included that irreversibly deletes encryption keys, messages, and settings when
activated.

In summary, data transmission occurs through the following channels:

●​ Message content: Peer-to-peer mesh (BLE/WiFi), Tor network, Nostr relays—all
with Noise protocol end-to-end encryption

●​ Geohash approximations: Transmitted to peers via mesh/Tor/Nostr for
location-based channel discovery (opt-in)

●​ Precise GPS coordinates: Appear to be transmitted to Google geocoding
servers via HTTPS (undisclosed, requires user consent)

●​ Media files: Peer-to-peer transmission with end-to-end encryption when shared
●​ Encryption keys: Never transmitted—stored locally in Android Keystore only

Overall, the transmission architecture follows privacy-preserving principles with strong
encryption and decentralized routing, except for the undisclosed Google geocoding
integration which requires immediate remediation to align with privacy policy claims and
regulatory compliance requirements.

7ASecurity © 2026
 30

https://7asecurity.com

Pentest Report

NOG-01-Q03: Insecure PII Storage Analysis of Noghteha (Unclear)

Q3: Is sensitive PII such as audio, pictures or data insecurely stored or easily retrievable
from the Noghteha app?
MITRE ATT&CK framework17 mapping:

●​ T1552 Unsecured Credentials18
●​ T1005 Data from Local System19
●​ T1074 Data Staged20

No evidence was identified to suggest that sensitive Personally Identifiable Information
(PII) is stored insecurely or is readily retrievable from the Noghteha application. A
security-focused architecture and encryption-at-rest controls are implemented (including
SQLCipher, Android Keystore, and application-private storage). Data is not easily
retrievable without the required device unlock credentials. Defense-in-depth could be
improved by requiring per-operation authentication for Keystore usage to better address
scenarios involving coerced device unlocks. The current security posture is stronger
than typical Android messaging applications and is aligned with the stated threat model
(activists operating in surveillance environments).

NOG-01-Q04: Analysis of Potential Noghteha User Tracking (Unclear)

Q4: Does the Noghteha app implement any sort of user tracking function via location or
other means?
MITRE ATT&CK framework21 mapping:

●​ T1082 System Information Discovery22
●​ T1016 System Network Configuration Discovery23

The Noghteha Android application requests location permissions for geohash-based
chat channel discovery. Opt-in location functionality is implemented to allow
location-based public chat rooms to be joined using geohash technology.

Affected File:
AndroidManifest.xml

Affected Code:
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />​

23 https://attack.mitre.org/techniques/T1016/
22 https://attack.mitre.org/techniques/T1082/
21 https://attack.mitre.org
20 https://attack.mitre.org/techniques/T1074/
19 https://attack.mitre.org/techniques/T1005/
18 https://attack.mitre.org/techniques/T1552/
17 https://attack.mitre.org

7ASecurity © 2026
 31

https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org
https://attack.mitre.org/techniques/T1074/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1552/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Based on source code and documentation review, the following characteristics were
identified:

●​ Core functionality: Location-based chat channel discovery is implemented
through geohash grid cells.

●​ Privacy protocol: Coordinates are converted into geohash identifiers rather than
being transmitted as raw latitude/longitude values.

●​ User configuration: The feature is opt-in and can be disabled in application
settings.

●​ Data transmission policy (documented): Transmission of raw location
coordinates to external servers is stated to be prohibited.

Although location functionality is present, no evidence was identified to suggest that it is
used for user tracking rather than application functionality.

NOG-01-Q05: Potential Noghteha Crypto Weakening (Unclear)

Q5: Does the Noghteha app intentionally weaken cryptographic procedures to ensure
third-party decryption?
MITRE ATT&CK framework24 mapping:

●​ T1600 Weaken Encryption25

Several minor cryptographic weaknesses were identified during the assessment, as
documented in NOG-01-008 and NOG-01-013. These weaknesses did not appear to
have been intentionally introduced to enable third-party decryption.​

25 https://attack.mitre.org/techniques/T1600/
24 https://attack.mitre.org

7ASecurity © 2026
 32

https://attack.mitre.org/techniques/T1600/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

NOG-01-Q06: Insecure SD Card Usage by Noghteha (Unclear)

Q6: Is data dumped in the SD Card from where it could be retrieved later without even
entering the PIN to unlock the device?
MITRE ATT&CK framework26 mapping:

●​ T1005 Data from Local System27
●​ T1074 Data Staged28
●​ T1407 Access Sensitive Data in Device Storage29

No evidence was identified to suggest that application data is written to the SD card.
Sensitive content (messages, voice notes, image files, encryption keys) is stored in
application-private internal storage, which requires device unlocking and is protected by
Android full-disk encryption. The READ_EXTERNAL_STORAGE30 permission is used
solely to allow users to select media files to share and is not used to write application
data externally.

No additional action is required regarding external storage security.

NOG-01-Q07: Potential for RCE in Noghteha (Unclear)

Q7: Does the Noghteha app contain vulnerabilities or shell commands that could lead to
RCE in any way?
MITRE ATT&CK framework31 mapping:

●​ T1203 Exploitation for Client Execution32
●​ T1059 Command and Scripting Interpreter33
●​ T1068 Exploitation for Privilege Escalation34

No vulnerabilities that could lead to direct or indirect remote code execution (RCE) were
identified during this engagement.

34 https://attack.mitre.org/techniques/T1068/
33 https://attack.mitre.org/techniques/T1059/
32 https://attack.mitre.org/techniques/T1203/
31 https://attack.mitre.org
30 https://developer.android.com/[...]/Manifest.permission#READ_EXTERNAL_STORAGE
29 https://attack.mitre.org/techniques/T1407/
28 https://attack.mitre.org/techniques/T1074/
27 https://attack.mitre.org/techniques/T1005/
26 https://attack.mitre.org

7ASecurity © 2026
 33

https://attack.mitre.org/techniques/T1068/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org
https://developer.android.com/reference/android/Manifest.permission#READ_EXTERNAL_STORAGE
https://attack.mitre.org/techniques/T1407/
https://attack.mitre.org/techniques/T1074/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

NOG-01-Q08: Potential Noghteha Backdoors (Unclear)

Q8: Does the Noghteha app have any kind of backdoor?
MITRE ATT&CK framework35 mapping:

●​ T1055 Process Injection36
●​ T1505 Server Software Component37
●​ T1556 Modify Authentication Process38

No indications of process or command execution calls typically associated with
backdoors or malware were identified. Based on this assessment, no action is required
to improve the privacy posture in this regard.

NOG-01-Q09: Noghteha Attempts to Gain Root Access (Unclear)

Q9: Does the Noghteha app attempt to gain root access through public Android
vulnerabilities or in other ways?
MITRE ATT&CK framework39 mapping:

●​ T1068 Exploitation for Privilege Escalation40
●​ T1548 Abuse Elevation Control Mechanism41
●​ T1404 Exploit OS Vulnerability42

No evidence was identified to suggest that Noghteha client components (Android library
and C++ client) attempt to exploit platform-specific vulnerabilities to obtain elevated
privileges. Based on this assessment, no action is required to improve the privacy
posture in this regard.

42 https://attack.mitre.org/techniques/T1404/
41 https://attack.mitre.org/techniques/T1548/
40 https://attack.mitre.org/techniques/T1068/
39 https://attack.mitre.org
38 https://attack.mitre.org/techniques/T1556/
37 https://attack.mitre.org/techniques/T1505/
36 https://attack.mitre.org/techniques/T1055/
35 https://attack.mitre.org

7ASecurity © 2026
 34

https://attack.mitre.org/techniques/T1404/
https://attack.mitre.org/techniques/T1548/
https://attack.mitre.org/techniques/T1068/
https://attack.mitre.org
https://attack.mitre.org/techniques/T1556/
https://attack.mitre.org/techniques/T1505/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

NOG-01-Q10: Potential Noghteha Usage of Obfuscation (Proven)

Q10: Does the Noghteha app use obfuscation techniques to hide code and if yes for
which files and directories?
MITRE ATT&CK framework43 mapping:

●​ T1027 Obfuscated Files or Information44
●​ T1406 Obfuscated Files or Information45

Evidence of obfuscation was identified in the Noghteha codebase. ProGuard/R846
obfuscation is used for release builds as a security hardening measure, given the threat
model involving device seizure scenarios.

Obfuscation applies to the Android application by default, with exceptions defined
through -keep rules. The following components remain unobfuscated to preserve
functionality:

●​ Protocol and cryptography classes (com.filtershekanha.noghteha.protocol.**,
com.filtershekanha.noghteha.crypto.**)

●​ BouncyCastle cryptography library
●​ Identity management classes (com.filtershekanha.noghteha.identity.**)
●​ Nostr protocol implementation (com.filtershekanha.noghteha.nostr.**)
●​ Mesh networking packages (com.filtershekanha.noghteha.mesh.**,

com.filtershekanha.noghteha.wifi.**, com.filtershekanha.noghteha.transport.**)
●​ Database entities and DAOs (com.filtershekanha.noghteha.db.**)
●​ Dependency injection annotations (Hilt/Dagger)
●​ Native library bindings (Arti/Tor, SQLCipher)

All other application code is obfuscated, including method names, field names, and
internal implementation details. Logging statements are stripped from release builds to
reduce information exposure through logcat.

46 https://github.com/Guardsquare/proguard
45 https://attack.mitre.org/techniques/T1406/
44 https://attack.mitre.org/techniques/T1027/
43 https://attack.mitre.org

7ASecurity © 2026
 35

https://github.com/Guardsquare/proguard
https://attack.mitre.org/techniques/T1406/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org
https://7asecurity.com

Pentest Report

Conclusion

Despite the number of findings identified during this assessment, the Noghteha solution
defended itself well against a broad range of attack vectors and demonstrated a clear
security and privacy-focused architectural intent. The platform is expected to become
increasingly difficult to attack as additional cycles of security testing and subsequent
hardening continue.

The Noghteha application provided a number of positive impressions during this
assignment that must be mentioned here:

●​ The Noise Protocol Framework (XX pattern) was selected for encrypted
transport, providing a strong foundation for forward secrecy and mutual
authentication.

●​ Kotlin is used extensively, which reduces exposure to classic native memory
corruption issues common in C/C++ mesh stacks.

●​ The architecture reflects a privacy-first intent, including localized mesh
networking and BLE UUID rotation, even though specific details require
hardening (NOG-01-017).

●​ The source code is well documented, which materially improves reviewability and
reduces implementation ambiguity.

●​ Sensitive key material is explicitly zeroed in multiple places (for example,
CryptoUtils.secureZero and java.util.Arrays.fill()), indicating strong engineering
hygiene.

●​ Numerous defensive checks and hardening strategies are already present
throughout the codebase, reducing the likelihood of trivial implementation flaws.

●​ Release build hardening controls (for example, obfuscation and log reduction)
are present, which increases attacker cost during reverse engineering and
seizure scenarios.

The security of the Noghteha solution will improve with a focus on the following areas:

●​ DoS Resistance: Eliminate algorithmic and allocation-driven DoS vectors by
removing iterative byte-array concatenation and enforcing strict size limits before
allocation or decoding (NOG-01-010, NOG-01-011, NOG-01-015).

●​ Resource Bounding: Apply fail-fast validation before allocating memory, adding
map entries, or launching coroutines; enforce caps for concurrent handshakes
and outbound buffering, and prevent a single peer from monopolizing queues
under flood conditions (NOG-01-006, NOG-01-012, NOG-01-015).

●​ Harden Release Builds: Strip or make unreachable debug/administrative
functionality in production builds, and ensure any required field diagnostics are
explicitly gated and cannot persist unsafe configurations (NOG-01-007).

7ASecurity © 2026
 36

https://7asecurity.com

Pentest Report

●​ Eliminate Globally Hardcoded Secrets: Remove static BLE rotation secrets
embedded in the binary to reduce long-term predictability and passive device
targeting risk (NOG-01-017).

●​ Keystore Hardening: Prefer hardware-backed key storage where available and
bind key use to user authentication with an appropriate validity window to
strengthen seizure and coerced-unlock resilience (NOG-01-018).

●​ Modernize Cryptographic Primitives: Replace PBKDF2 with predictable salts
with a memory-hard KDF (for example, Argon2id) and versioning to reduce
GPU-accelerated precomputation and offline guessing feasibility for common
channel names (NOG-01-008).

●​ Intent Validation: Strengthen intent token handling with constant-time
comparison and replay resistance to reduce spoofing and reuse risk
(NOG-01-014).

●​ DeepLink Validation: Replace character filtering with allowlist-based parsing
and strict scheme/host validation to reduce injection and phishing risk in
downstream usage (NOG-01-016).

●​ Platform Baseline: Raise the minimum supported Android baseline to reduce
reliance on end-of-life OS versions and legacy security limitations (NOG-01-003).

●​ Binary Hardening: Enable standard native hardening controls (stack canaries,
FORTIFY, RELRO/PIE as applicable) across shipped libraries to improve
exploitation resistance (NOG-01-002).

●​ Re-auth Controls: Require biometric or device-credential re-authentication for
sensitive operations after inactivity to reduce exposure on seized or shared
devices (NOG-01-004).

●​ Memory Residue: Reduce plaintext chat persistence in memory where feasible
and ensure sensitive caches are bounded and cleared on view
dismissal/backgrounding (NOG-01-005).

●​ Geocoding Consent: Gate network-backed reverse geocoding behind explicit
opt-in to avoid leaking precise coordinates to third-party providers during routine
operation (NOG-01-013).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application

7ASecurity © 2026
 37

https://7asecurity.com

Pentest Report

logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Noghteha resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Nariman Gharib and the
rest of the Noghteha team, for their exemplary assistance and support throughout this
audit.

7ASecurity © 2026
 38

https://7asecurity.com

	
	Introduction
	Scope
	
	Identified Vulnerabilities
	NOG-01-004 WP1: Lack of Biometric Authentication (Medium)
	NOG-01-005 WP1: Chat Message Access via Memory Leak (Medium)
	NOG-01-006 WP1: DoS via Unbounded Concurrent Handshakes (Medium)
	
	NOG-01-007 WP1: Unsafe Debug UI in Release Builds (Medium)
	NOG-01-008 WP1: Channel KDF Precomputation Risk (Medium)
	
	NOG-01-010 WP1: DoS via Resource Exhaustion in File Sharing (High)
	
	NOG-01-011 WP1: DoS via Unchecked Fragment Allocation (Medium)
	NOG-01-012 WP1: DoS via Message Queue Flooding (Medium)
	NOG-01-015 WP1: Unauthenticated Heap Exhaustion in Wi-Fi Aware (Medium)
	NOG-01-017 WP1: Passive Device Targeting via Hardcoded BLE Secrets (High)

	
	Hardening Recommendations
	NOG-01-001 WP1: Android: Missing Root Detection (Info)
	NOG-01-002 WP1: Android Binary Hardening Recommendations (Info)
	NOG-01-003 WP1: Unmaintained Android version support via minSDK level (Info)
	NOG-01-009 WP1: WebView JS Bridge Hardening (Low)
	NOG-01-013 WP1: Privacy Gap via Unconsented Third-Party Geocoding (Low)
	NOG-01-014 WP1: Weaknesses in Intent Token Validation (Low)
	NOG-01-016 WP1: Weaknesses in DeepLink URL Validation (Info)
	NOG-01-018 WP1: Weaknesses in Android Keystore Configuration (Medium)

	
	WP2: Noghteha Privacy Audit
	NOG-01-Q01: Files & Information Gathered by Noghteha (Proven)
	NOG-01-Q02: Where & How Noghteha Transmits Data (Unclear)
	
	NOG-01-Q03: Insecure PII Storage Analysis of Noghteha (Unclear)
	NOG-01-Q04: Analysis of Potential Noghteha User Tracking (Unclear)
	NOG-01-Q05: Potential Noghteha Crypto Weakening (Unclear)
	
	NOG-01-Q06: Insecure SD Card Usage by Noghteha (Unclear)
	NOG-01-Q07: Potential for RCE in Noghteha (Unclear)
	
	NOG-01-Q08: Potential Noghteha Backdoors (Unclear)
	NOG-01-Q09: Noghteha Attempts to Gain Root Access (Unclear)
	
	NOG-01-Q10: Potential Noghteha Usage of Obfuscation (Proven)

	
	Conclusion

