
Test Target:
Psiphon Enhancements

Pentest Report

Client: Psiphon Inc.

7ASecurity Test Team:
● Abraham Aranguren, MSc
● Miroslav Štampar, PhD.
● Patrick Ventuzelo, MSc

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Identified Vulnerabilities 5

PSI-01-005 E2: Possible Client DoS via Traffic Tampering (Low) 5
Hardening Recommendations 9

PSI-01-001 E2: Possible DoS via slice bounds out-of-range Weaknesses (Low) 9
PSI-01-002 E4: Possible DoS via nil pointer dereference (Info) 13
PSI-01-003 E4: Possible DoS via interface conversion panic (Info) 16
PSI-01-004 OOS: Windows Client DoS via known Temporary File Creation (Low) 17

Conclusion 20

7ASecurity © 2021
2

https://7asecurity.com

Pentest Report

Introduction
“Psiphon is a circumvention tool from Psiphon Inc. that utilizes VPN, SSH and HTTP
Proxy technology to provide you with uncensored access to Internet content. Your
Psiphon client will automatically learn about new access points to maximize your
chances of bypassing censorship.”

From https://www.psiphon3.com/en/index.html

This report documents the results of a security audit and best-practices review
conducted by 7ASecurity, focusing on a number of Psiphon circumvention
enhancements, including the code and components surrounding such features.

Given the nature of Psiphon, the 7ASecurity team performed this assignment assuming
the role of government-sponsored adversaries with Man-in-the-middle (MitM)
capabilities, aiming to defeat the censorship eluding features of Psiphon. Due to the
public status of this report, the team will use less descriptive terms like enhancement1,
enhancement2, enhancement3 and enhancement4 as well as tactic1 and tactic2, etc. to
prevent potential adversaries from gaining insight about Psiphon internals.

Psiphon requested 7ASecurity to perform a secure code audit on the following four
recent circumvention-related enhancements:

● E1: enhancement1
● E2: enhancement2
● E3: enhancement3
● E4: enhancement4

The goal was to determine Psiphon’s adherence to secure coding best practices and to
provide safeguard recommendations where applicable.

During the test, a server configuration enabled with the aforementioned enhancements
was facilitated to the 7ASecurity team by Psiphon. This ensured the team could fully
focus on the security aspects during dynamic analysis of these new features at runtime
without wasting any time on setup.

7ASecurity employed a whitebox methodology, which means the complete source code
was available to the test team. Additionally, the Psiphon team provided commit links to
all relevant changes for these circumvention enhancement features, which were
reviewed thoroughly for adherence to security best practices. 7ASecurity used a
combination of manual and automated tools for the code audit, performed code-level
fuzzing on Psiphon source code as well as underlying third party libraries and

7ASecurity © 2021
3

https://www.psiphon3.com/en/index.html
https://7asecurity.com

Pentest Report

components, and network-level fuzzing using custom python scripts against both the
Psiphon server and client components. The team further analyzed the network traffic
between clients and servers. This guided the identification of potential attack vectors,
fingerprinting potential and the understanding of how the Psiphon server and its clients
switch from one tactic to another while they are under attack or when network
communications fail. Lastly, the 7ASecurity team examined multiple public academic
papers related to the new Psiphon circumvention enhancements to inform the fuzzing
and attack scenarios prior to testing.

The test was conducted by 7ASecurity in April 2021 and yielded five security-specific
discoveries. The security audit took a total of 18 working days and comprised three
senior 7ASecurity penetration testers. The Psiphon platform was found to be resilient to
a broad range of attack vectors and provided an overall solid impression. The system will
notably be more difficult to attack once the issues in this report are resolved.

In the following sections, the report will elaborate on each finding and then offer a
conclusion. Each finding has been discussed individually with its technical background
and mitigation options. 7ASecurity delivers a detailed conclusion in the closing section.
In light of the findings, the testing team comments on the security posture of the tested
Psiphon framework and circumvention enhancements manifested during this
assignment.

7ASecurity © 2021
4

https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. PSI-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

PSI-01-005 E2: Possible Client DoS via Traffic Tampering (Low)

While reviewing the circumvention enhancements related to enhancement2, the
7ASecurity team conducted thorough network traffic fuzzing attacks against both the
server and client components of Psiphon. In all cases, only the tested component was
inside a virtual environment while the traffic being sniffed and fuzzed passed through the
virtual network, making it easy to capture and manipulate. As a result, the team achieved
partial DoS success against the client component, manifested with forced reconnects,
failed proxy client download attempts, and unstable program behavior in rare attempts.
As these findings were difficult to replicate and Psiphon showed a great ability to recover
from these in most cases, the severity of this issue was set to Low. A malicious attacker
could attempt to leverage these weaknesses to initiate DoS attacks against Psiphon
clients hence disrupting Psiphon users, especially when they download large files.

Issue 1: DoS via tactic1 redacted packets

In order to test the Psiphon circumvention enhancements for enhancement2, tactic1
redacted attacks were emulated as used by the Great Firewall of China , where three1

specially crafted redacted packets were sent, trying to bring down the established
connection between the client and third-party server component (i.e. sponsor). Web
browser downloads proxied through the Psiphon client could be consistently stopped in
this fashion:

Fig.: Result of the successful redacted attack

1 https://www.cl.cam.ac.uk/~rnc1/ignoring.pdf

7ASecurity © 2021
5

https://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
https://7asecurity.com

Pentest Report

Consequently, Psiphon clients, in an attempt to mitigate the detected communication
problems, either reconnected or switched to alternative tactics.

Fig.: Reconnecting of Psiphon client after a successful redacted attack

This area was tested using the following PoC python script:

redacted attack PoC:
Redacted, shared with Psiphon Team

Following the redacted attacks, a slightly modified version of the presented script was
run, where a fake randomly generated (i.e. fuzzed) body was injected into the first reply
packet. The main goal was to disrupt the Psiphon tactic1 client-server communication
with a minimum number of packets, while forcing more time consuming client reconnects
or some other unstable program behavior.

This attack would be particularly disruptive to users downloading large files or videos, as
the download will be interrupted and render the downloaded file unusable. However,
Psiphon clients will eventually workaround tactic1 attacks if they switch to tactic2 tactics.

Issue 2: DoS via tactic2 traffic

Several tactic2 attacks were attempted during this assignment. As the goal was to
disrupt tactic2 communications, multiple strategies were implemented, where each one
was attempted individually, as well as concurrently. These were called replay, fuzz,
random, empty, big and reflect by the test team and are briefly explained below:

7ASecurity © 2021
6

https://7asecurity.com

Pentest Report

Strategy Description

replay The last packet coming from one side was stored and replayed when a
subsequent packet coming from the other side was recognized (i.e. where
the client expected a server response).

fuzz The same mechanism was used in the replay strategy, with the exception
of the tactic2 body being modified at random locations with randomly
chosen bytes.

random Everything was the same as in the fuzz strategy, with the exception of the
tactic2 body being filled with randomly chosen content.

empty The tactic2 packet body was blank.

big The tactic2 packet body was filled with large randomly chosen content.

reflect Source and destination IP addresses were exchanged within the captured
tactic2 packet, and finally sent to the source.

The example below corresponds to one of the fuzz strategies attempted during testing:

Replay Fuzz PoC:
Redacted, shared with Psiphon Team

Although the team managed to create a number of forced reconnect events, it took more
than 20 minutes of parallel attacks. Furthermore, in one case, a continuous high CPU
usage event occurred while there was no active traffic being proxied. Nevertheless, such
attack vectors seemed impractical due to the extended time window required, in
combination with the non-deterministic nature of the rare DoS events identified.

7ASecurity © 2021
7

https://7asecurity.com

Pentest Report

Fig.: Unstable state of high CPU usage in one case of prolonged tactic2 fuzzing

Please note, that while the 7ASecurity team was moderately successful in achieving
DoS via tactic1 redacted attacks against the client component (described above), tactic2
communication proved to be significantly more resilient. At least, the solution appeared
to be robust against the utilized strategies.

It is recommended to consider possible improvements to enhance the reliability of
connections without revealing more information than needed to adversaries. Some ideas
to achieve this could be to switch to tactic2 alternative tactics as fast as possible in case
of subsequent problems with tactic1 tactics. Another potential strategy could be to use
two or more concurrent connections, for example, a tactic1 connection and a tactic2
connection. This could speed up the switch from one connection to another when a
given connection fails or help avoid certain disruptions completely if attacks target only
one of the two protocols (i.e. tactic1 or tactic2). For additional research and continuous
improvement of the resiliency of Psiphon, the 7ASecurity team shared all of the
implemented PoC fuzzing scripts with the Psiphon Team.

Retest Notes: The Psiphon Team accepts the risk for this item for the time being, but
will leverage this information and the provided test scripts for improving the resilience of
all Psiphon clients in the future.

7ASecurity © 2021
8

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

PSI-01-001 E2: Possible DoS via slice bounds out-of-range Weaknesses (Low)

While code auditing and fuzzing the Psiphon Tunnel source code, it was found that a
number of functions currently fail to perform a data length check prior to slicing. This led
to the following crash error: “panic: runtime error: slice bounds out of range”. This issue
is considered to be of low severity for two reasons: First, Psiphon makes use of the
panicwrap package . Although this is only used to log panic exceptions, in practice it2

may also be used to restart the server in case of a crash, hence mitigating most DoS
scenarios. Furthermore, it seems that this attack would only be exploitable by an
attacker able to specify a malicious upstream NTLM proxy inside a configuration file.
However, it was later discovered that the ParseChallengeMessage vulnerability
described below has a slightly higher impact, as a malicious attacker could trigger this
attack by fooling Psiphon client users to run a tampered configuration (i.e. through social
engineering, trojaned versions of Psiphon or vulnerabilities in Psiphon clients or their
platforms: Android, iOS, Windows, etc.). A malicious attacker able to manipulate
authentication messages might leverage these weaknesses to slow down and eventually
DoS a Psiphon server or a Psiphon client.

Please note, that these issues were identified via manual code review and were then
confirmed using direct fuzzing of the affected functions, these are described below:

Issue 1: Slice bounds out-of-range on ParseChallengeMessage

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0
982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56

Affected Code:

2 https://github.com/mitchellh/panicwrap

7ASecurity © 2021
9

https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56
https://github.com/mitchellh/panicwrap
https://7asecurity.com

Pentest Report

func ParseChallengeMessage(body []byte) (*ChallengeMessage, error) {

challenge := new(ChallengeMessage)

challenge.Signature = body[0:8]

if !bytes.Equal(challenge.Signature, []byte("NTLMSSP\x00")) {

return challenge, errors.New("Invalid NTLM message signature")

}

[...]

Please note that this function is used outside the go-ntlm package via
*NTLMHttpAuthenticator. This NTLMHttpAuthenticator structure, defined inside
auth_ntlm.go is then used inside http_authenticator.go by NewHttpAuthenticator. This
function is used multiple times and appears to be a core element of the upstreamproxy
package, as illustrated by the evidence below:

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf
24d2361db890a92/psiphon/upstreamproxy/proxy_http.go#L196

Affected Code:
pc.authenticator, authErr = NewHttpAuthenticator(resp, username, password)

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf
24d2361db890a92/psiphon/upstreamproxy/transport_proxy_auth.go#L132

Affected Code:
authenticator, err := NewHttpAuthenticator(

Issue 2: Slice bounds out-of-range on ParseAuthenticateMessage

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0
982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_authenticate.go#L56

Affected Code:
func ParseAuthenticateMessage(body []byte, ntlmVersion int) (*AuthenticateMessage,

error) {

am := new(AuthenticateMessage)

am.Signature = body[0:8]

7ASecurity © 2021
10

https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf24d2361db890a92/psiphon/upstreamproxy/proxy_http.go#L196
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf24d2361db890a92/psiphon/upstreamproxy/proxy_http.go#L196
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf24d2361db890a92/psiphon/upstreamproxy/transport_proxy_auth.go#L132
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/8103eb8f978b15757852a5fcf24d2361db890a92/psiphon/upstreamproxy/transport_proxy_auth.go#L132
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_authenticate.go#L56
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/f1863f4f24bbdeb37d04767a0982adad7bedb956/psiphon/upstreamproxy/go-ntlm/ntlm/message_authenticate.go#L56
https://7asecurity.com

Pentest Report

if !bytes.Equal(am.Signature, []byte("NTLMSSP\x00")) {

return nil, errors.New("Invalid NTLM message signature")

}

[...]

Please note similar issues exist within the same file:

Affected Code:
59: am.Signature = body[0:8]

64: am.MessageType = binary.LittleEndian.Uint32(body[8:12])

127: am.NegotiateFlags = binary.LittleEndian.Uint32(body[offset : offset+4])

132: am.Version, err = ReadVersionStruct(body[offset : offset+8])

148: am.Mic = body[offset : offset+16]

153: am.Payload = body[offset:]

The 7ASecurity team confirmed that the vulnerable function appears to be used only
inside the go-ntlm package.

Issue 3: Multiple slice bounds out-of-range on psiphon/upstreamproxy

Similar issues were found in the upstreamproxy package.

Affected Directory:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/7d4307b1a387df94c8410ecdf
20223b3db8eab7f/psiphon/upstreamproxy

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf
20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/av_pairs.go#L134

Affected Code:
func ReadAvPair(data []byte, offset int) *AvPair {

pair := new(AvPair)

pair.AvId = AvPairType(binary.LittleEndian.Uint16(data[offset : offset+2]))

pair.AvLen = binary.LittleEndian.Uint16(data[offset+2 : offset+4])

pair.Value = data[offset+4 : offset+4+int(pair.AvLen)]

return pair

}

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf

7ASecurity © 2021
11

https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy
https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/av_pairs.go#L134
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/av_pairs.go#L134
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/keys.go#L9
https://7asecurity.com

Pentest Report

20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/keys.go#L9

Affected Code:
9: part1, err = des(lmnowf[0:7], lmChallengeResponse[0:8])

15: part2, err = des(key, lmChallengeResponse[0:8])

22: keyExchangeKey = concat(lmnowf[0:8], zeroBytes(8))

50: sealKey = randomSessionKey[0:7]

52: sealKey = randomSessionKey[0:5]

61: sealKey = concat(randomSessionKey[0:7], []byte{0xA0})

63: sealKey = concat(randomSessionKey[0:5], []byte{0xE5, 0x38, 0xB0})

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf
20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/challenge_responses.go#L25

Affected Code:
25: r.Response = bytes[0:24]

88: r.Response = bytes[0:16]

102: c.TimeStamp = bytes[24:32]

103: c.ChallengeFromClient = bytes[32:40]

106: c.AvPairs = ReadAvPairs(bytes[44:])

119: r.Response = bytes[0:24]

141: r.Response = bytes[0:16]

142: r.ChallengeFromClient = bytes[16:24]

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8ac
fbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/version.go#L19

Affected Code:
24: versionStruct.ProductBuild = binary.LittleEndian.Uint16(structSource[2:4])

25: versionStruct.Reserved = structSource[4:7]

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8ac
fbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56

Affected Code:
59: challenge.Signature = body[0:8]

64: challenge.MessageType = binary.LittleEndian.Uint32(body[8:12])

76: challenge.NegotiateFlags = binary.LittleEndian.Uint32(body[20:24])

78: challenge.ServerChallenge = body[24:32]

80: challenge.Reserved = body[32:40]

7ASecurity © 2021
12

https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/keys.go#L9
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/challenge_responses.go#L25
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/7d4307b1a387df94c8410ecdf20223b3db8eab7f/psiphon/upstreamproxy/go-ntlm/ntlm/challenge_responses.go#L25
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/version.go#L19
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/version.go#L19
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/message_challenge.go#L56
https://7asecurity.com

Pentest Report

92: challenge.Version, err = ReadVersionStruct(body[offset : offset+8])

99: challenge.Payload = body[offset:]

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8ac
fbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/payload.go#L80

Affected Code:
84: p.Len = binary.LittleEndian.Uint16(bytes[startByte : startByte+2])

85: p.MaxLen = binary.LittleEndian.Uint16(bytes[startByte+2 : startByte+4])

86: p.Offset = binary.LittleEndian.Uint32(bytes[startByte+4 : startByte+8])

90: p.Payload = bytes[p.Offset:endOffset]

In order to resolve these issues, it is recommended to perform appropriate data length
checks prior to slicing.

Retest Notes: The Psiphon team promptly addressed the issue and the fix was3

reviewed by 7ASecurity. The issue has been resolved.

PSI-01-002 E4: Possible DoS via nil pointer dereference (Info)

While fuzzing the psiphon/common/osl package, it was found that the function
LoadConfig fails to validate config.scheme fields, which led to the following crash error:
“panic: runtime error: invalid memory address or nil pointer dereference”. This issue can
be reproduced by providing a syntactically correct JSON psiphond-osl.config file that
does not contain the expected Scheme.Epoch field. This issue is considered to be of
Info severity for similar reasons as PSI-01-001. An attacker needs to supply or social
engineer a psiphon server admin to run a crafted configuration file.

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/96544cdff9f54fecc93a539ba1
e89535eb1d0111/psiphon/common/osl/osl.go#L284-L298

Affected Code:
func LoadConfig(configJSON []byte) (*Config, error) {

var config Config

err := json.Unmarshal(configJSON, &config)

if err != nil {

3 https://github.com/Psiphon-Labs/psiphon-tunnel-core/pull/599/commits/6d3ac...

7ASecurity © 2021
13

https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/payload.go#L80
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/621f90ee7ddf845eee150e8acfbe246bc5a8c627/psiphon/upstreamproxy/go-ntlm/ntlm/payload.go#L80
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/96544cdff9f54fecc93a539ba1e89535eb1d0111/psiphon/common/osl/osl.go#L284-L298
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/96544cdff9f54fecc93a539ba1e89535eb1d0111/psiphon/common/osl/osl.go#L284-L298
https://github.com/Psiphon-Labs/psiphon-tunnel-core/pull/599/commits/6d3ac9846416044f6660170059ea6660d6135ae6
https://7asecurity.com

Pentest Report

return nil, errors.Trace(err)

}

var previousEpoch time.Time

for _, scheme := range config.Schemes {

epoch, err := time.Parse(time.RFC3339, scheme.Epoch)

if err != nil {

return nil, errors.Tracef("invalid epoch format: %s", err)

}

The crash can be confirmed with a crafted configuration file as follows:

Command:
cat psiphond-osl.config

Output:
{"Schemes":[null]}

Command:
./psiphond run

Output:
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x8 pc=0x86be6f]

goroutine 1 [running]:
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.LoadConfig(0xc00
0041200, 0x14, 0x600, 0x0, 0x434266, 0x0)

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/osl.go:2
97 +0x36f
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.NewConfig.func1(
0xc000041200, 0x14, 0x600, 0x34aec0fe, 0xed800c460, 0x15d07e0, 0x0, 0x0)

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/osl.go:2
66 +0x4c
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common.(*ReloadableFile).Re
load(0xc00007e900, 0xc0001b7700, 0x0, 0x0)

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/reloader.go:
179 +0x34a
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.NewConfig(0xc000
039f20, 0x13, 0xc000186700, 0x0, 0x0)

7ASecurity © 2021
14

https://7asecurity.com

Pentest Report

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/osl.go:2
75 +0x146
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server.NewSupportServices(0
xc0001dae00, 0x0, 0x0, 0xc0001dae00)

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server/services.go:
452 +0x94
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server.RunServices(0xc00012
6a00, 0x1118, 0x1318, 0x0, 0x0)

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server/services.go:
74 +0x155
main.main()

/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/Server/main.go:259
+0x14c1
{"build_rev":"577a7b05","event_name":"server_panic","host_id":"example-host-id"
,"panic":"panic: runtime error: invalid memory address or nil pointer
dereference\n[signal SIGSEGV: segmentation violation code=0x1 addr=0x8
pc=0x86be6f]\n\ngoroutine 1
[running]:\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.Load
Config(0xc000041200, 0x14, 0x600, 0x0, 0x434266,
0x0)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/
osl.go:297
+0x36f\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.NewConfi
g.func1(0xc000041200, 0x14, 0x600, 0x34aec0fe, 0xed800c460, 0x15d07e0, 0x0,
0x0)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/
osl.go:266
+0x4c\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common.(*ReloadableF
ile).Reload(0xc00007e900, 0xc0001b7700, 0x0,
0x0)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/relo
ader.go:179
+0x34a\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl.NewConfi
g(0xc000039f20, 0x13, 0xc000186700, 0x0,
0x0)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/osl/
osl.go:275
+0x146\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server.NewSupportSe
rvices(0xc0001dae00, 0x0, 0x0,
0xc0001dae00)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/se
rver/services.go:452
+0x94\ngithub.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server.RunServices(0
xc000126a00, 0x1118, 0x1318, 0x0,
0x0)\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/server/serv
ices.go:74
+0x155\nmain.main()\n\t/go/src/github.com/Psiphon-Labs/psiphon-tunnel-core/Serv
er/main.go:259 +0x14c1\n","timestamp":"2021-04-08T11:40:50+02:00"}

7ASecurity © 2021
15

https://7asecurity.com

Pentest Report

In order to resolve this issue, it is recommended to validate that scheme fields are not
null before usage.

Retest Notes: The Psiphon team promptly addressed the issue and the fix was4

reviewed by 7ASecurity. The issue has been resolved.

PSI-01-003 E4: Possible DoS via interface conversion panic (Info)

During the fuzzing process of the psiphon/common package, it was found that the
GetNotice function fails to perform a conversion of the payload as a generic map, which
led to the following crash error: “panic: interface conversion: interface {} is float64, not
map[string]interface {}”. Please note that the GetNotice function is only used for testing
within the psiphon-tunnel-core source code, making this issue only affect projects using
psiphon-tunnel-core as a third party library or copying the vulnerable code into another
project.

Affected File:
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/08f530bd796fe1b483480b884
9de2d1c24476f27/psiphon/notice.go#L976

Affected Code:
func GetNotice(notice []byte) (

noticeType string, payload map[string]interface{}, err error) {

var object noticeObject

err = json.Unmarshal(notice, &object)

if err != nil {

return "", nil, err

}

var objectPayload interface{}

err = json.Unmarshal(object.Data, &objectPayload)

if err != nil {

return "", nil, err

}

return object.NoticeType, objectPayload.(map[string]interface{}), nil

}

This issue was verified using the following Proof-of-Concept (PoC) code:

PoC code:

4 https://github.com/Psiphon-Labs/psiphon-tunnel-core/commit/280b...

7ASecurity © 2021
16

https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/08f530bd796fe1b483480b8849de2d1c24476f27/psiphon/notice.go#L976
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/08f530bd796fe1b483480b8849de2d1c24476f27/psiphon/notice.go#L976
https://github.com/Psiphon-Labs/psiphon-tunnel-core/commit/280bf05f78ff82329b5a6f00e66430aa0d7e36ed
https://7asecurity.com

Pentest Report

func panic_interface_conversion_GetNotice() {

data := []byte("{\"data\":5}")

_, _, _ = psiphon.GetNotice(data)

}

Output:
panic: interface conversion: interface {} is float64, not map[string]interface
{}

goroutine 17 [running, locked to thread]:
github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon.GetNotice(0x3f8ad90, 0xb,
0xb, 0x0, 0xc000116000, 0x0, 0xc000000600, 0xc000000688)

github.com/Psiphon-Labs/psiphon-tunnel-core@v0.0.0-00010101000000-000000000000/
psiphon/notice.go:989 +0x1f1

In order to resolve this issue, objectPayload should be verified after json.Unmarshal.

Retest Notes: The Psiphon team promptly addressed the issue and the fix was5

reviewed by 7ASecurity. The issue has been resolved.

PSI-01-004 OOS: Windows Client DoS via known Temporary File Creation (Low)

While looking for weaknesses in the implementation of enhancement2, it was discovered
that the Psiphon GUI client for Windows (psiphon3.exe) uses a known temporary file
location (%TEMP%\psiphon-tunnel-core.exe) for downloading the tunneling client,
instead of a random one. Although the %TEMP% directory will not be writable to
non-admin users on the same computer, certain attack vectors remain to exploit this
weakness. For example, a malicious application on the same computer, a malicious
script run via a phishing attack, or getting the user to follow some fake tutorial steps from
an attacker-controlled website are some plausible ways to create a file in this location. A
malicious attacker with the ability to write or fool a user to write files on %TEMP% could
leverage this weakness to create a temporary file with an identical filename and the
read-only flag set. As a result, the GUI client will continuously check for the availability of
the tunneling client, while causing high CPU usage. This type of the vulnerability is well

5 https://github.com/Psiphon-Labs/psiphon-tunnel-core/commit/77fe...

7ASecurity © 2021
17

https://github.com/Psiphon-Labs/psiphon-tunnel-core/commit/77fe30a8cb671a7fe36475ff1c77be29d2d95fb2
https://7asecurity.com

Pentest Report

known and generally referred to as insecure temporary file creation .6789

This issue illustrates a simple way to prevent Windows GUI clients from operating, while
the root cause might be difficult to be detected by the end user. The Windows GUI user
would be prevented from running the auxiliary tunneling client application, subsequently
forcing their traffic to be transferred in an unprotected manner.

This issue can be trivially reproduced using the following commands:

Commands:
echo > %TEMP%\psiphon-tunnel-core.exe

attrib +r %TEMP%\psiphon-tunnel-core.exe

psiphon3.exe

Result:
High CPU consumption and complete inability to use the Windows GUI client.

Root Cause Analysis

This issue occurs due to the following code, which writes the executable in a predictable
temporary file location:

Affected File:
https://github.com/Psiphon-Inc/psiphon-windows/blob/1888ec6851392bffbd804452d3f51
72c5e208c27/src/utilities.cpp#L102-L130

Affected Code:
TCHAR filePath[MAX_PATH];

if (NULL == PathCombine(filePath, tempPath.c_str(), exeFilename))

{

my_print(NOT_SENSITIVE, false, _T("ExtractExecutable - PathCombine failed (%d)"),

GetLastError());

return false;

}

HANDLE tempFile = INVALID_HANDLE_VALUE;

bool attemptedTerminate = false;

9 https://securiteam.com/windowsntfocus/5NP0H0AC0Q/
8 https://rules.sonarsource.com/python/type/Vulnerability/RSPEC-5445
7 https://cwe.mitre.org/data/definitions/378.html
6 https://owasp.org/www-community/vulnerabilities/Insecure_Temporary_File

7ASecurity © 2021
18

https://github.com/Psiphon-Inc/psiphon-windows/blob/1888ec6851392bffbd804452d3f5172c5e208c27/src/utilities.cpp#L102-L130
https://github.com/Psiphon-Inc/psiphon-windows/blob/1888ec6851392bffbd804452d3f5172c5e208c27/src/utilities.cpp#L102-L130
https://securiteam.com/windowsntfocus/5NP0H0AC0Q/
https://rules.sonarsource.com/python/type/Vulnerability/RSPEC-5445
https://cwe.mitre.org/data/definitions/378.html
https://owasp.org/www-community/vulnerabilities/Insecure_Temporary_File
https://7asecurity.com

Pentest Report

while (true)

{

tempFile = CreateFile(filePath, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL, NULL);

if (tempFile == INVALID_HANDLE_VALUE)

{

int lastError = GetLastError();

if (!attemptedTerminate && ERROR_SHARING_VIOLATION == lastError)

{

if (succeedIfExists)

{

// The file must exist, and we can't write to it, most likely

because it is

// locked by a currently executing process. We can go ahead and

consider the

// file extracted.

// TODO: We should check that the file size and contents are the

same. If the file

// is different, it would be better to proceed with attempting to

extract the

// executable and even terminating any locking process -- for

example, the locking

// process may be a dangling child process left over from before a

client upgrade.

path = filePath;

return true;

To resolve this issue, the use of a randomly chosen location for temporary storage of10

the tunneling client is recommended. This will ensure that the Windows GUI client is
resilient against similar attacks even in situations where attackers have write
permissions on the same folder.

Retest Notes: The Psiphon team promptly addressed the issue and the fix was11

reviewed by 7ASecurity. The issue has been resolved.

11 https://github.com/Psiphon-Inc/psiphon-windows/commit/8d1a8b7f3c....
10 https://stackoverflow.com/a/28005931

7ASecurity © 2021
19

https://github.com/Psiphon-Inc/psiphon-windows/commit/8d1a8b7f3c48ae36b2757e81b5e08aa54ea1e952
https://stackoverflow.com/a/28005931
https://7asecurity.com

Pentest Report

Conclusion

The Psiphon platform made a robust impression against a broad range of attack vectors.
This reflects well on the team behind the solution. 7ASecurity detected only 1 security
vulnerability of low severity. Hence, no significant security flaws could be identified
during this assignment. The remaining 4 findings were classified as miscellaneous
weaknesses and thus, not considered as vulnerabilities. This represents a surprisingly
low number of security-relevant discoveries considering the large attack surface
available in the scope. Part of this appears to be down to the platform chosen for this
solution - Go . This programming language has a solid security track record with12

out-of-the-box protection against multiple attack vectors. Additionally, the Psiphon
codebase has been audited multiple times by several security firms over the years,
which makes identifying security issues increasingly difficult.

It is important to note that despite a thorough review of code changes for all
enhancements, surrounding code, components in scope and even underlying libraries,
7ASecurity was unable to identify any weakness relevant to enhancement1 and
enhancement3. While reviewing the source code and functionality surrounding
enhancement2 and enhancement4, some issues were spotted, but most of these had a
low impact as it would be complicated for an attacker to implement them. The
miscellaneous issues identified during this assignment were characterized as such due
to the prerequisites required for a successful exploit (PSI-01-001, PSI-01-002,
PSI-01-003, PSI-01-004). For example, PSI-01-002 and PSI-01-003 require the Psiphon
server to parse invalid configuration files to trigger a panic in at least some of the
described scenarios. PSI-01-001 requires receiving an incorrect NTLM message from a
malicious NTLM proxy. Another weakness identified while reviewing the items in scope
for this assessment was PSI-01-004. However, 7ASecurity determined upon further
examination that this latter finding was not directly related to any of the enhancements
and hence, was considered out of scope (OOS).

The code audit, unsurprisingly, delivered similar positive impressions. The 7ASecurity
team scrutinized all relevant source code using a combination of manual and automated
analysis through multiple Go auditing tools. During the review, the code was found to be
well documented, clean, professional looking, and intact, like the lifework of competent
developers. No issues were identified while reviewing the cryptographic primitives and,
with few exceptions, nothing in the code looked like a regular vulnerability. The go-ntlm
package was an exception here as it looked like it was never audited before. This has13

13 https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/.../psiphon/upstreamproxy/go-ntlm
12 https://golang.org/

7ASecurity © 2021
20

https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/f1863f4f24bbdeb37d04767a0982adad7bedb956/psiphon/upstreamproxy/go-ntlm
https://golang.org/
https://7asecurity.com

Pentest Report

been illustrated through the number of issues mentioned in PSI-01-001. 7ASecurity
suggests that this package is diminishing the overall code quality of Psiphon, which is
otherwise clean, documented and polished.

In addition to the comprehensive code audit, 7ASecurity performed code-level fuzzing on
multiple functions within the Psiphon source code as well as third party software
components in charge of parsing network packets. These targets were fuzzed
extensively without the identification of any vulnerability or weakness.

As part of this assignment, 7ASecurity also performed network-level traffic analysis and
fuzzing. While testing for DoS, the Psiphon server and clients showed resilience against
DoS attacks. The team was unable to find any way to negatively impact the performance
or availability of Psiphon servers at runtime. The team finally managed to find a way to
disrupt tactic1 communications for Psiphon clients (PSI-01-005). However, clients proved
to be more difficult to disrupt when using tactic2 strategies. Please note that all similar
attempts made were unsuccessful against the server component. Other server DoS tests
included SYN floods. In certain the tests, the Mausezahn tool was used, with different14

options in each attempt (i.e. tactic1 body content, fake source IP addresses, traffic
speed, etc.). The Psiphon server defended itself effectively against all such attempted
attacks.

In general, the Psiphon server and clients were well configured and protected against
bugs that could put user censorship bypassing at risk. Psiphon offered strong resistance
against issues like IP blocking, DoS attacks via network-level fuzzing, code-level fuzzing,
server fingerprinting and Psiphon server list extraction, as well as many other attempted
attack vectors. Overall, the security posture painted a positive picture.

During the audit, the 7ASecurity team shared a Slack channel with the Psiphon team,
which was used to promptly report all issues identified regardless of their severity.
Communications were fluent and the Psiphon team were helpful and diligent at assisting
7ASecurity in answering all queries in a timely manner.

Despite best efforts made to cover the Psiphon circumvention enhancements thoroughly,
it is important to note that the time for this assessment was limited and insufficient to
cover all complexities of the Psiphon codebase, servers and clients in their entirety.
Hence, it should be assumed that additional vulnerabilities still exist. It is recommended
that the Psiphon team search for the security anti-patterns recognized in this assignment
and attempt to identify additional areas with similar issues in the codebase. This should

14 https://man7.org/linux/man-pages/man8/mausezahn.8.html

7ASecurity © 2021
21

https://man7.org/linux/man-pages/man8/mausezahn.8.html
https://7asecurity.com

Pentest Report

ideally be done before any other security audit. Future security audits are encouraged to
be conducted in a similar whitebox fashion, whereby the audit team has access to
source code. This will keep ensuring a comprehensive analysis and better fix
suggestions, referencing specific lines of code, as could be done in this assignment.

It is recommended that all issues identified in this report, including informational and low
severity tickets, are addressed where possible. This will not just strengthen the security
posture of the platform, but also reduce the number of tickets in future security
engagements.

In addition, it is advised that the platform continues to be tested regularly, at least once a
year or in the event of substantial changes, before they are deployed, to ensure that new
features do not introduce undesired security vulnerabilities. This proven strategy will
continue to lower the number of security issues and make the Psiphon server and client
components more resilient against online attacks over time.

Finally, 7ASecurity would like to thank Jessica Wever, Mike Fallone, Irv Simpson, Rod
Hynes and the rest of the Psiphon Team for their excellent project coordination,
admirable support and assistance, both before and during this assignment.

7ASecurity © 2021
22

https://7asecurity.com

